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ABSTRACT: We characterize the class of Full Implicational Dependencies introduced by 

Fagin as the maximal class of dependencies which are safe, admit finite models in a 

strong sense and admit Armstrong Relations. We also give other more modeltheoretic 

characterizations of Full and Embedded Implicational Dependencies. 

i. INTRODUCTION 

Data base dependencies are first order formlae that can be specified to hold for a 

given relational data base. They form a basis for organizing semantic knowledge 

about data bases. They are also invaluable for structuring a data base so as to avoid 

various problems, or anomalies, having to do with inserting and deleting data (cf.[U]). 

In recent years several proposals have been made for reasonable sets of dependencies 

[ABU, BV, D F77, G/, N, P, PP, PY, R78, SU, SW, TKY78 and U] and attempts have been 

made to unify all these notions. Two classes of particular interest emerged in the 

literature: The set of Embedded Implicational Dependencies (EID) as the largest class 

so far considered [F80, PY, CLM] including the Template Dependencies [US] and the Full 

Implicational Dependencies (FID) [P80]. 

In [CLM] some evidence is presented that the EID form too large a class: the inference 

problem for EID is undecidable and there are EIDs which admit only infinite relations; 

in contrast this is not so for the FIDs, The main result of this paper is a character- 

ization of the FIDs in terms of properties which emerge from data base theory, i.e. 

safety, securability and admitting Armstrong relations. The idea behind such character- 

izations is to delimit the use of full first order logic in data base theory and to 

show that these limitations are inherent to the subject. Previously [CLM] model 

theoretic characterizations of both the EIDs and FIDs have been given, but we feel 

* During part of the work supported by Swiss National Science Foundation Grant 
No. 82.820.0.80. 
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that the characterizing properties had too much of an algebraic flavour and too little 

to do with data base theory. 

The properties involved here are well established: Domain invariance or safety stems 

from the fact that we do not consider general models, but rather relations as such~ 

So, if we want to use model theory, we have to justify that our dependencies only 

speak about the relation. The existence of Arms trongrelations can be considered 

fundamental to 4ata base theory, especially if they are finite. They allow the design- 

er of the data base model to gain a thorough overview of what he already assumes to 

be true. The notion of securabilit~ is new to data base theory, though it seems 

implicite in many considerations: it is a property that not only guarantees the 

existence of finite relations satisfying a given finite set of dependencies, but it 

guarantees it continuously: the property holds or fails in a given set of data 

provided some finite configuration of data is present. The notion was introduced by 

Tharp in a different context [Th] and further studied in [Ma]. Now the FIDs satisfy 

all of these demands and the main theorem tells us that no extension of the FIDs will 

do so. Extending the FIDs may still be reasonable, but we have to pay a price: 

Undecidability of the satisfaction and consequence relations is likely by [CLM] and 

violation of one of the above demands sure. 

The plan of the paper is as follows: In Section 2 we review and present new model 

theoretic characterizations of the EIDs and FIDs and present a new characterization 

of safe dependencies. Other such characterizations of safety may be found in [PY and 

Co]. In Section 3 we present the concept of securability and in Section 4 we discuss 

sets of dependencies having the Armstrong property. All this is collected in Section 

5 to prove our main result. Detailed proofs will appear elsewhere. 

2. SOME MODEL THEORY 

Let R be a relation symbol of arity n. A model M = (D,R) for R consists of a 

set D [the domain) together with a relation R ~ D n. Throughout, we assume that 

first order formulae have just one non-logical symbol R and may contain equality. 

An atomic formula is a formula of the form R(x i .... ,x i ) or x. = x. where the 
1 n 1 j 
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x.'s are variables. An (untyped or general) embedded implication al dependency, or 
1 

EID for short, is a sentence of the form 

Vx I ..... Xp((A I ^... ^Aq) ~ 3y I ..... Yr(BI^ ...^Bs) ) 

where each Ai, Bj is an atomic formula. We will assume that each x i appears in 

at least one of the A.'s. W.l.o.g,, it may be assumed that no A. is an equality 
J J 

and equaligy in the Bi's only uses xi's. An EID is said to he full if it has no 

existential quantifier. We abbreviate full implicational dependencies by FID. 

An EID (FID) is said to be t~ed if no variable occurs in two different columns 

(places) in R, and equality occurs only between variables appearing in the same 

column. Models for types EIDs .could be replaced by many-sorted models M = CD 1 ..... Dn;R) 

with R c D 1 × D 2 ×...× D n. A model is trivial if IDI = 1 and R = D n (in the 

typed case this amounts to each D i being a singleton {d i} and R = {(dl,d 2 ..... d n) }). 

Given a set of formulae Z and a formula ~, we say Z = ~ (~ is a consequence of Z) 

if ~ holds in all (finite and infinite) models of X. We write Z~f ~ if 

holds in all finite models of Z. 

2.1 Domain Invariance (Safety, permissibility) 

A first order formula ~ is said to be Domain independent [F80] provided ~ holds 

in a model (D,R) iff it holds in a model [D',R') with R= R'. Domain independence is 

called safety in [U, p.l13] and safe formulae are called permissible in [Co]. 

Note that "domain-independent" is used in [P4] for what we call "typed". 

In [CLM] we defined a dependency to be a domain independent formula that holds in the 

trivial structure. 

Note that the FIDs and EIDs are indeed dependencies. 

Let ~ be a first order formula in prenex normal form with matrix in disjunctive 

normal  form y ~ %j. 

We define a variable x to be constrained following [Co]: 

(i) A direct constraint on x is an atomic formula R[ .... x...) in which x occurs. 

(ii) An indirect constraint on x is a formula x= y where y is directly 

constrained. 
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(iii) 

(iv) 

If x is existentially quantified in ~ then x is constrained iff in every 

disjunct ^~ij in which x occurs some ~ij is a direct or indirect cons- 

traint on x. 

If x is universally quantified in ~ then x is constrained iff in some 

disjunct ^~ij in which x occurs, every ~ij in which x occurs is the 

negation of a direct or indirect constraint on x. 

Now let 

F(z) be 

which is 

3x by 3x(F(x) ^..) and 

The following is an easy observation 

Fi(z ) be the formula 3XlX2...xi_iXi÷l...x n R(Xl,...Xi_l~Z,Xi+ I ..Xn) and 

v~Fi(z ) . If ~ is a first order formula we denote by ~F the formula 

obtained from ~ by inductively replacing each bound variable occurrence 

Vx by Vx(F(x) ~ . . . ) .  

(el.  [co], [Va]). 

Proposition i: Let ~ be a first order formula which holds in the trivial model. 

Then the following are equivalent: 

(i) ~ is a dependency; 

(ii) ~ is equivalent to ~F; 

(iii) ~ is equivalent to a formula ~o in which each bound variable is constrained. 

This can be read as a characterization of safe formulae in syntactic terms. Since 

may contain arbitrary complex "superfluous" parts, we cannot replace "~ is 

equivalent to..." by "~ is of the form...". Proposition i states precisely and 

improves the observation in [Co]. We predict that this will be a "folk theorem" in 

the sense of [Ha]. 

Proposition 1 is a special case of an easy theorem in model theory characterizing 

sentences preserved under relativizations. Its origin goes back to the 1950 period. 

A more refined version involving theories was proved using ultraproducts by Keisler 

[Ke] and [CK, problem 5.2.20]. Note that Vardi observed [Va] that dependencies are 

recursive enumerable but not recursive. See also section 6. 

2.2 Model Theoretic Characterizations of FID and EID 

In [CLM] several characterization theorems for FID and EID were exhibited. We restate 

these results here and add some new ones. Undefined model theoretic and algebraic 
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concepts may be found in the standard text book [CK]. We denote by UM. and lim M. 
i611 i61 i 

the product and direct limit (for homomorphisms) of a family M i i 6 I of structures. 

We say that a dependency (formula) ~ is: 

c M is a substructure (i) a substructure dependency (formula) if M ~ ~ and M ° 

then M ° ~ 

(ii) a product dependency (formula) if M i ~ ~ for i 6 I then HM. I= 
, i611 

(iii) a faithful dependency (formula) if M i $ ~ for i 6 I iff NM. ~ 
. . . . . . . . . . . . . .  i611 

(iv) a limit dependency [formula) if M i ~ for i 6 I then lim M i I=~ 

Here lim M. denotes the direct limit of the directed system Mi, i 6 I, with respect 
i6I i 

to some p a r t i a l  o r d e r  on I such  t h a t  f o r  any two s t r u c t u r e s  Mi, Mj, i and j i n  I ,  

there is a k above both i,j in I such that Mi,M j are mapped in M k . 

If N = N M. we call the M.'s the factors of N. We call a dependency (formula) a 
1 1 

iEI 

(v) a f a c t o r - d e p e n d e n c y  ( f o r m u l a )  i f  ~ M.~- ~ t h e n  M . ~  ~-- ~ f o r  each  i 6 I .  
1 1 

i 6 I  

(vi) a chain-dependency (formula) if Mi, i E I is a substructure chain and for 

each i 6 1 ~i.~ = Ip then U M.~ = <p • 
I i61 i 

Now we can extend Fagin's observation on preservation properties of various 

dependencies [F80] : 

Proposition 2: (i) The EIDs are product- , chain ~ and limit dependencies. 

(ii) The typed EIDs are in addition also factor dependencies ,hence faithful. 

(iii) The VIDs are also substructure dependencies. 

Proof: Consult [CK,exercices to chapter 5] . 

The model theorist's interest, having its sources in research done in the [950s, 

is in converse theorems, giving rise to syntactical characterizations of various 

semantically defined classes of formulas.E.g, the substructure formulas are exactly 

the formulas logically equivalent to universal formulas (i,e. formulas in prenex form 

with only universal quantifiers). The best source for this in general is[CK,chapter 5~ 
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With a bit more work we even get a converse: 

Theorem 3: Let ~ be a first order formula true in the trivial structure. Then the 

following are equivalent: 

(i) ~ is logically to a FID. 

(ii) ~ is both a product and a substructure dependency. 

Outline of Proof: (i) ~ (ii) follows since FIDs are universal Horn-sentences, 

hence by [CK] both factor and substructure dependencies. To prove (ii) ~ (i) we 

note first that ~ is equivalent to some universal Horn-sentence ~ by [CK] and 

by proposition 1 ~ is equivalent to ~F. Now, it is easy to see that if ~ is a 

universal Horn-sentence, so 9F is equivalent to an FID. In a way this is again 

"folk-theorem" in the sense of [Ha]. 

Theorem 4: Let ~ be a first order formula true in the trivial structure. Then the 

following are equivalent: 

(i) ~ is logically equivalent to an EID. 

(ii) ~ is both a product and limit dependency. 

Outline of Proof: Note first [CK, exercise 5.2.24 ] that every limit formula is of 

the form ~(Vx(~ i ~ Byei) ) with ~i' @i quantifier free and positive. Now we use 

the product property to eliminate disjunctions in @i and propositional logic to 

eliminate them in ~i" Then we apply proposition I. 

2.3 Critique 

We were rather casual about the proofs of Theorems 3and 4 because we think that 

they miss the point. Fagin proved that the (typed) EIDs are faithful dependencies 

in order to show that they always admit Armstrong relations. We shall show that no 

such converse theorem can hold in a later section. But our main point here is that 

algebraic operations alone is not what is needed in data base theory, faithfulness 

is not a priori interesting and in fact products should be avoided in data base 

constructions, even for the construction of Armstrong relations. 

What we would like are analogues to Theorems 3 and 4 where the algebraic properties 

are replaced by more practice oriented properties stemming from experience with data 
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base dependencies. What we have singled out as desirable properties will be discussed 

in detail in the next two sections. 

3. SECURABILITY 

The following concept has been studied in a different context in [Th, M]. 

first order formula %0 is called n-securable, for n a natural number, if for 

every structure M (for %0) there is substructure M ° of cardinality less or equal 

to n such that for every structure M I with M ° c M I c M M I ~%0 iff M ~ . 

A formula is securable if we replace less than n by "finite". Let Se£ be the 

set of securable formulae. 

The following is immediate from the definition: 

Lemma 5: Sec is closed under Boolean operations. 

Lemma 6: (i) ~ and ~f coincide on Se___~c. 

(ii) The consequence relation is decidable on Se___!c (provided we know which 

formulae are in Sec. 

This leaves us with the problem of identifying a securable formula. 

Lemma 7: (i) The FIDs are in Sec. 

(ii) There is an EID which is not in Se__~c. 

Proof: (i) If an FID is true in M then it is secured by the trivial substructure, 

otherwise its negation is secured by finitely many witnesses. (ii) By a result in 

[CLM] the consequence relation on EID is undecidable, contradicting Lemma 6, if we 

assume EID is in Sec. 

In [Th and M] the following is proved: 

Theorem 8: For a first order formula the following are equivalent: 

(i) ~0 is in Sec. 

(ii) %0 is n-securable for some n. 

(iii) q0 is equivalent to a Boolean combination of universal sentences. 

(iv) %0 and -<0 are both chain sentences. 

(iii) gives us a syntactic characterization of the securable sentences. Securability 
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is stronger than just the finite model property: it is in a sense a continuous finite 

model property. We claim that securability captures the finite model property inher- 

ent in data base theory. 

By a classical theorem of model theory, due to Galvin [Ga], [CK], every universal 

sentence is a Boolean combination of universal Horn-sentences. If we combine this 

with proposition I we get easily 

Theorem 9: A dependency ~ is securable iff it is logically equivalent to a Boolean 

combination of FIDs. 

Outline of Proof: By Theorem 8 ~ is equivalent to a Boolean combination of 

universal sentences, hence by Galvin~s theorem to a Boolean combination of universal 

Horn-sentences. Now a sentence of the form Vx(~ A i ~ False) is equivalent to False 

by our assumption on the existence of trivial substructures, hence the result. 

4. ARMSTRONG RELATIONS 

Let S be a set of first order formulae, We say that a structure M is an 

Arms trong-relati0n for Z a subset of S, if M ~ Z but for each a 6 S with a 

not a consequence of Z~ M does not satisfy s. We say that S is Armstrong 

if every subset of S, which has a model, has an Arn~trong-relation. The aim of this 

section is to study sets of formulae or dependencies which are Armstrong. This 

approach seems to be new, though it is implicite in [Fg0]. 

The following are immediate from the definitions: 

Lemma i0: (i) If S is Armstrong and S O is a subset of S, then S O is Armstrong. 

(ii) If S is Armstrong and S 1 is such that every a in S 1 is equi- 

valent to a finite (or infinite) conjunction of elements of S, so 

S 1 is Armstrong. 

(iii) If S is a set of pai~#ise inconsistent formulae so S is Armstrong. 

Note that there are very complex S which are Armstrong, due to (iii). This sub- 

stantiates our claim that Armstrong alone does not characterize 8ny S. 

In [F80] Fagin proved the following: 
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Theorem ii: For a set of first order formulae S the following are equivalent: 

(i) S is Armstrong, 

[ii) Whenever So, S 1 are subsets of S and AS ° [= ~S 1 then there is s in S 1 

such that ^S ° ~ s. 

(iii) There is an operation ~ that maps indexed families M i of models into models 

~M i such that for every ~ in S aM. I= i ~ ~ iff for every i M i ~a. (We 

say that S is m-faithful.) 

The existence of Armstrongrelations seems to be quite fundamental to Data base theory, 

so it is natural to ask for the class of dependencies to be Armstrong. Fagin proved 

Theorem iI for this purpose for it follows that the typed EIDs are Armstrong since 

they are faithful by proposition 2. But lemma I0 (iii) shows very clearly 

that there is no hope to improve Theorem ii so that Armstrong implies faithfulness. 

We end this section with a crucial lerama: 

Lemma 12: Let S be a set of first order formulae and S be a subset. Let us 
o 

assume that S is Armstrong and every ~ in S is equivalent to a Boolean combina- 

tion of formulae of S O • Then G is equivalent to a finite conjunction of formulae 

in S . 
o 

Proof: We first observe that two structures Mo, M 1 satisfy the same sentences of 

S iff they satisfy the same sentences from S O . Now suppose s is in S and is 

neither valid nor inconsistent. We claim that there is an a in S which is not 
o o 

valid and a ~ So 

By Theorem II (ii) it is enough to show that: 

~v{B 6 So18 not valid}. Call this set S I. Since S is Armstrong, if this is 

not the case, there are Armstrong relations Mo, M 1 where all the members of S 1 are 

false but M ° ~ s, M 1 ~ -s, which contradicts the fact that M e and M 1 satisfy the 

same sentences from S O . Now let K be {6 6 SolS ~6}. Again using that S is 

Armstrong we conclude that s is equivalent to the conjunction K. But now using 

compactness we conclude that there is a finite subset I ° of X such that s is 

equivalent to the conjunction of ~ . Q.E.D. 
o 
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5. THE CHARACTERIZATION THEOREM FOR FIDs 

Noto that by our definition the FIDs are closed under finite conjunctions. So 

our main theorem reads: 

'lheorem 13: Let S be a set of dependencies such that: 

(i) Each FID is in S 

(ii) Each dependency in S is securable 

(iii) S is Armstrong, 

Then S consists, up to logical equivalence, exactly of the FIDs, 

Proof: This is now a direct consequence of Theorem 9 and Lemma 12. 

Note that the EIDs satisfy (i) and (iii) and the class of Boolean combinations of 

FIDs satisfies (i) and (ii); so Theorem 13 is best possible. 

If we define that a dependency ~ is ne~atiye.ly securable if for every M which 

does not satisfy ~ there is a finite M ° such that for every M 1 M ° c M 1 c M 

M 1 does not satisfy ~; then we can have an analogue theorem for EIDs. 

Theorem 14: Let S be a set of dependencies such that: 

(i) each EID is in S 

(ii) each dependency in S is negatively securable 

(iii) S is Armstrong 

(iv) each model a subset of S has a trivial submodel. 

~hen S consists, up to logical equivalence, exactly of the EIDs. 

T~e significance of Theorem 13 is not in possible applications but in its limitative 

character: It seems to explain why the FIDs are a good class of dependencies and 

why it cannot be expanded without giving up some of its nice properties. We are 

fully aware that securability is a rather strong property. It would be interesting 

to know if we could replace it by a weaker hypothesis such as (a) the consequence 

relation on S is decidable or (b) each finite subset of S which has a model has 

a finite model? But it is obvious that then we have to assume stronger closure 

properties on S, such as closure under subformulas. Since these properties will, 

by Theorem 13, imply securability, Theorem IS is probably the nearest such 

characterization. 



96 

Theorem 14 shows how we can relax the securability condition. 

6. UNDECIDABILITY OF SEMANTIC PROPERTIES 

We often are in a situation that we have a set X of first order formulas which is 

recursively enumerable and such that every formula having some property P is equiva- 

lent to a formula in X .This is the case in theorem 8,9,13,14. In many cases(here 

theorem 8,9,13) is such that the set of valid sentences in X , call it VaI(X), is 

recursive. In our context this is mostly so because of the finite model property of 

the sets in question. It is now natural to ask, whether to have property P is deci- 

dable for first order formulas. Vardi observed the following nice theorem: 

Theorem 15: (Vardi [Va 2]) Let X be a set of first order formulas such that 

X is recursively enumerable and VaI(X) is not empty and recursive. Then the set 

Eq(X) = { 8:there is a oEX such that [= ~+-+ e} is not recursive. 

Proof: We show that,under the above hypotheses, Eq(X) recursive implies that Val([) 

is not recursive. Let ~ be any sentence. If ~ is not in Eq(X) ~ is not valid, since 

VaI(X) is not empty. But if ~ is in Eq(X) we can find e in Xsuch that ~ and0 are 

logically equivalent since Eq(X) is recursive by our assumption. But then ~ is valid 

iff e is in Val(X).Now, if we assume VaI(X) recursive, this would give us a decision- 

procedure for all valid formulas, which contradicts Godel's theorem. 

The following corollary is immediate from theorem 8,9,13: 

Corollary 16: The following are not recursive: 

(i) Eq(FID) 

(ii) Sec 

(iii) For any recursive subset X0of FIDs or Sec the set Eq(Xo). 
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