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ABSTRACT

In spite of the fact that a great deal of effort has been expended trying to
prove lower bounds for algorithms and trying to solve the P = NP question, only
limited progress has been made. Although most computer scientists remain con-
vinced that solutions will be found, others (Hartmanis and Hopcroft, Fortune,
Leivant and O’Donnell and Phillips) have questioned the adequacy of Peano
arithmetic for computer science. This uncertainty has only been increased by the
recent work of Paris and Harrington, showing that certain simple, finitistic, com-
binatorial statements are in fact independent of Peano Arithmetic. In this paper
we survey complexity theoretic statements that are known to be independent of
arithmetic theories. In addition, we survey recent results analyzing the arith-
metic quantifier structure of computational problems.
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1. Introduction

It has been fifty years since Goedel showed that Peano arithmetic is inadequate for a com-
plete analysis and understanding of arithmetic and all its attendant branches of mathematics
(including computer science). In the intervening years, mathematicians have come to believe and
accept that, in spite of Goedel's work, most arithmetic problems of real interest can in fact be
handled by Peano arithmetic. Computer scientists, whose mathematical training has largely been
from this same school, have thus been convinced that Peano arithmetic provides an adequate for-
mal tool for analysis of their programming languages and problems. However, in spite of the fact
that a great deal of effort has been expended trying to prove lower bounds for algorithms and try-
ing-to solve the P = NP question, only limited progress has been made. Although most computer
scientists remain convinced that solutions will be found, others (Hartmanis and Hopcroft [H&H-
76), Fortune, Leivant and O’Donnell [FOR-79], [LEI-81b], [ODO-79], [F,L&O0-81], and Phillips
[PHI-79]) have questioned the adequacy of Peano arithmetic for computer science. This uncer-
tainty has only been increased by the recent work of Paris and Harrington [PAR-78], [P&H-78],
showing that certain simple, finitistic, combinatorial statements are in fact independent of Peano
arithmetic. In this paper we survey complexity theoretic statements that are known to be

independent of arithmetic theories.

2. Independence Results for Peano Arithmetic

In the early 1900’s many mathematicians were interested in obtaining a complete axiom sys-
tem for all of mathematics. A variety of formal axiom systems were introduced. Despite the fact
that Goedel later showed that all of mathematics can not be uniformly axiomatized, many of
these formal systems have been very useful for proving theorems in various branches of
mathematics. One such formal system is Peano arithmetic. Today it is generally believed that
all of the theorems of real interest pertaining to arithmetic and finitary combinatorics can be
proved using Peano arithmetic. For this reason most computer scientists believe that Peano arith-

metic is an adequate formal system for resolving questions concerning program behavior and com-
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plexityl. In this paper we will survey results that question whether Peano arithmetic and certain
other formal systems that are weaker than Peano arithmetic are adequate for resolving questions
of program behavior and complexity. For this reason we will be discussing statments that are
independent of these formal systems. Recall that a statement is independent of a theory Tif it is
expressible in the language of T but neither it nor its negation is provable from T. If a statement
is independent of a theory T then the theory T is inadequate for resolving its truth or falsity. If
natural statements concerning program behavior are independent of Peano arithmetic or various
other arithmetic theories, then those theories are inadequate for answering natural questions con-

cerning program behavior.

Independence results can be proved using two fairly distinct techniques. Historically,
independence proofs for arithmetic theories were primarily proof theoretic in nature and involved
a detailed arithmetization of the proof theory for the theories. Although many of the more recent
results have also been proof theoretic, they tend to rely on results arising from the earlier arith-
metizations which established bounds on how rapidly functions could grow and still be provably
total. Examples of this sort of approach are the results of Paris and Harrington [P&H-78] show-
ing that an extension of Ramsey’s theorem is independent of Peano arithmetic and the results of
Fortune, Leivant and O’Donnell [FOR-79), [LEI-81b], [ODO-79], [F,L&O0-81], showing that the
termination theorem for certain strongly-typed programming languages is independent of Peano
arithmetic. A second technique for proving statements independent is model theoretic and
involves constructing one model of arithmetic in which the independent statement is true and a
second model in which it is false. Considerable work concerning model theoretic techniques for
obtaining arithmetic independence results has been done by Kirby and Paris [K&P-76] and is dis-
cussed briefly below. Many of the results that we discuss later will be proved using model

theoretic techniques.

For background we begin with a brief discussion of some of the more important early

1. The recent results of Paris and Harricgton, [P&H-78], [PAR-78], and Fortune, Leivant and O’Donnell,
[FOR-70], [LEI-81b], [ODO-79], [F,L &£0-81], which we discuss later, cast some doubt on this belief.



independence results for Peano arithmetic.

2.1. Goedel’'s Theorems

In 1900 Hilbert, [HIL-02], posed the problem of whether a complete axiomatization could be
given for mathematics. At that time he and many other mathematicians believed that there
should be a sound and complete set of axioms from which all the true statements of mathematics
could be derived. In 1931 Goedel showed that this is not the case. In his paper [GOD-31], "On
formally undecidable propositions of Principia Mathematica and related systems I”, Goedel
showed that for any theory containing very minimal arithmetic axioms there are sentences that

are.true but unprovable:

Theorem (Goedel): In every consistent formal system that contains a certain amount of finitary
number theory, there exist undecidable propositions [neither they nor their negations are prov-

able]. Moreover, the consistency of any such system cannot be proved within the system.

Although Goedel’s theorem dashed all hopes of finding a set of axioms from which all the
true theorems of arithmetic could be derived, until very recently no naturally occurring true
statements about finitary arithmetic had been found that could not be proven from the Peano

axioms, an axiomatic system which is more than adequate for applying Goedel’s theorem.

Goedel’s proofs of these results were proof theoretic in nature and involved a lengthy arith-

metization of the proof theory for arithmetic.

Other independence results that are important for historical reasons are those that follow
from the proof of Ryll-Nardzewski, [R-N-52], showing that Peano arithmetic is not finitely
axiomatizable. If for no other reason, these results are important because they use purely model
theoretic techniques. The proofs construct nonstandard models to show that for any finite class of

axioms for Peano arithmetic there are induction axioms that are independent of the axioms.



2.2. Ramsey’'s Theorem

As mentioned above, the result of Paris and Harrington, [P&H-78|, [PAR-78|, is startling
because it represents perhaps the first example of a naturally occurring, nonmetamathematical,
statement about the natural numbers that is true but not provable from Peano arithmetic. The
result is that a simple extension of the finite version of Ramsey’s theorem, [RAM-29], is indepen-

dent of Peano arithmetic. The standard finite version of Ramsey’s theorem is the following:

Theorem (Ramsey): For all natural numbers e, r, k there is an integer M such that, if all of the
e-element subsets of M are partitioned into r disjoint classes then there is a homogeneous subset
of M of size at least k. (By homogeneous we mean that all of its e-element subsets were placed in

the-same r-class.)

The extension to Ramsey’s theorem that Paris and Harrington show is independent of
Peano arithmetic is obtained by requiring that the homogeneous set be relatively large, where rela-

tively large means that the cardinality of the set is greater than its minimal element.

This result has had considerable impact for two reasons: First, it has caused mathematicians
and computer scientists, whose work is often combinatorial, to question whether other fairly
natural combinatorial statements may be independent of Peano arithmetic. Second, Paris’ proof,
[PAR-78], is essentially model theoretic. Thus the proof has sparked a new interest among
mathematicians and computer scientists in the use of nonstandard models. For example, some of
the ideas used by Lipton, [LIP-78] arise naturally from the work of Kirby and Paris, [K&P-76],
which developed the model theoretic techniques initially used ([PAR-78]) for obtaining Ramsey

independence results.

2.3. The Impact of Goedel’s Theorem on Computer Science

Independence results in computer science have a history which goes back more than fifteen
years (Fischer [FIS-65], Young [YOU-77|, Hartmanis [HART-77], Hartmanis and Hopcroft [H&H-
76], Gordon [GOR-79], and Phillips [PHI-79]). The notion of a provably recursive function was

introduced by Kreisel as early as 1952, [KRE-52]. In a somewhat later paper, [KRE-58], Kreisel
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showed that the recursive functions provably total using Peano arithmetic are exactly the same as
those provably total using intuitionistic or Heyting arithmetic [HEY-59]. In [FIS-65] Fischer stu-
died the class of provably recursive functions in detail and compared them with the class of total
recursive functions. Somewhat later Young, [YOU-77], studied optimization among provably
equivalent programs and showed that questions of speed-up and optimality are dependent, not on
the function computed, but instead on the particular program which is chosen to compute the

given function.

The first paper that ezplicitly investigated independence results relating to computer science
was presented by Hartmanis and Hopcroft, [H&H-76]. They showed that the Goedel incomplete-
ness results for arithmetic could be coded into many problems of interest to computer scientists.
Specifically, their paper contains the following results (for F any formal system adequate to prove

the Goedel incompleteness results):
Theorem (Hartmanis and Hopcroft): For every F we can effectively construct an i such that ¢; is

recursive and P¢’ = NP” can be neither proved nor disproved in F.

Theorem (Hartmanis and Hopcroft): For every such F, there exists an algorithm (which can be

explicitly given) whose running time is n?, but there is no proof in F that it runs in time < 2°.

Although Hartmanis and Hopcroft’s results show that there are statements of apparent
interest to computer scientists that are independent of Peano arithmetic, none of these early
papers relating independence results to computer science produced results that could be described
as surprising: All of the results were obtained by straightforward diagonalizations and by coding
standard Goedel undecidable sentences into questions of computer science. The resulting pro-
grams and problems could hardly be expected to arise in practice or to give insight into real prob-
lems. A fact which is nicely illustrated by results of Hajek [HAJ-77], [HAJ-79] and Grant [GRA-
80] showing quite clearly that such codings of incompleteness results give little or no insight into

the independence of P =? NP from Peano arithmetic.
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2.4. The Termination Theorem for Polymorphic Typed Programming Languages

In [ODO-79], O’Donnell presented the first natural example of a statement concerning pro-
gramming languages that is true but unprovable using Peano arithmetic. This work has subse-
quently been extended by Fortune [FOR-80|, Leivant [LEI-81b], and O'Donnell [F,L&O-80].
They show that for certain strongly-typed programming languages similar to CLU, ALPHARD,
MODEL and RUSSELL, the question of program termination for programs which in less sophisti-
cated languages would be trivial straight-line code is independent of second order Peano arith-

metic. The results begin by observing the

Termination Theorem: Every program containing only total operations and nonrecursive func-

tion definitions and applications is total.
They then go on to prove

Theorem (Fortune, Leivant & O’Donnell): The Termination Theorem for the Polymorphic

Typed Programming Language is independent of second order Peano arithmetic.

The implication of this work is twofold: First, if languages become too sophisticated,
verification of simple correctness may become literally impossible unless increasingly sophisticated
formal systems are available. Second, the theorem reinforces the view expressed earlier by Hart-
manis and Hopcroft that Peano arithmetic may be inadequate for solving some of the long-
standing open questions of computer science.

The proof of Fortune, Leivant and O’Donnell is proof theoretic and uses the same sort of
techniques as those used by Paris and Harrington in [P&H-78]: O'Donnell et ol show that a
universal function for the polymorphic typed programs which contain only total operations and
nonrecursive function definitions and applications must grow faster than any function which is

provably total in 2nd order Peano arithmetic.

2.5. P =? NP and Models of Complete Arithmetic

Recently Dimitracopoulos and Paris [P&D-80] have used model theoretic techniques to
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investigating the possible independence of computational statements. They show that the P =
NP and NP = coNP questions are related to certain natural problems concerning definability in
nonstandard models of complete arithmeticz. For example, they show that P = NP if and only
if there is a nonstandard model of arithmetic in which elements are "equivalent” whenever they

cannot be distinguished by any standard polynomial time program.

3. Complexity Theory and Weak Arithmetic Theories

The independence results surveyed in the preceding section were primarily concerned with
Peano arithmetic and its extensions. Computer scientists have recently given considerable atten-
tion to the study of formal systems that are weaker than Peano arithmetic. Although it is
undoubtedly true that independence results for full Peano arithmetic are of primary importance,
weaker fragments of arithmetic seem to be more tractable, and perhaps as a result, there is a
rapidly growing body of work relating complexity-theoretic results to such fragments. Most of
the systems studied are not rich enough to prove all of the theorems that interest computer scien-
tists. Nevertheless computational complexity theoretic independence results for these systems are
of interest for a variety of reasons: (i) for better understanding exactly how powerful proof tools
must be in computer science, (ii) for classifying the proof-theoretic complexity of results in com-
puter science, and (iii) as precursors for independence results either for richer axiom systems or
for more interesting statements. In addition, for some of these weak theories the independence of
specific computational statements is equivalent to their independence from full Peano arithmetic.
This is because several of these theories include in their axioms all of the true or provable arith-
metic sentences that have very restricted quantifier structure (at most one alternation of
quantifiers). Many important open questions of computer science can be expressed by such simple
sentences. For example, the formal sentence which asserts that "P = NP” is of the form

(3y)(¥z)S(z,y) where S involves only bounded quantifiers. Similarly, the formal sentence that

2. Complete arithmetic is the theory which has as axioms all of the true sentences about addition and multipli-
cation on the natural numbers.



-8-

asserts that "P ¢ NP” is of the form (Vz)(3y)R(z,y) with R involving only bounded quantifiers.
Statements asserting the equivalence or inequivalence of NP and coNP also have a fairly simple
form. Analyzing the quantifier structure of these computational statements is dependent on
obtaining suitable arithmetic characterizations of sets in NP, and considerable work in this area

already exists:

3.1. Quantifier Structure of Sets in NP and coNP

Some of the earliest work on arithmetically characterizing sets in the class NP was done by

Adleman and Manders [A&M-76]. They showed that:

i) If membership in a set S is expressible by a Diophantine predicate in the form:

neSe @uslnl<enl) - Qusluel <plln DIPs(n;y1,-8) = 0]

where p and Ps are polynomials, then S € NP.

ii) If S € NP, then membership in S can be expressed by the Diophantine predicate:
n €S e (Ayslvl <20"D) - @Qymi| v | K290 D)[Qs(nsyy, - - -, ym) = 0]

where q and Qg are polynomials.

In somewhat later work Stockmeyer [STO-77] and Wrathall [WR A-78] considered the classes

of sets definable in the form:

nes e (Buslnl<elinl) - (Ghvslvel <pelln]) (2.1)

[PL(nny; e ;yk)]

where the quantifiers alternate and the matrix of the expression, PL(n,y,,...y;), is a predicate
computable in polynomial time. (Earlier Karp [KAR-72] had observed that the class NP is
exactly the class of sets definable in this way using only one existential quantifier.) Although it is
not known whether the sets definable by predicates of the form (2.1) form a hierarchy based on
numbers of alternating quantifiers, it is known that such a hierarchy has more than one level iff P

# NP.
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Recently, an exact arithmetic characterization of NP has been given by Kent and Hodgson
[K&H-80]. They defined a class of predicates that they call the Ezponential Ezistential Bounded
Arithmetical Predicates and showed that the class NP is exactly the class of sets definable by

Exponential Existential Bounded Arithmetical Predicates:
Definition (Kent and Hodgson): A set of natural numbers, S, is said to be definable in Ezponen-
tial Existential Bounded Arithmetical form if and only if,
n €S e [En<2" ). an<!)
(Vai<a(lnl) - (Yzu<gm(|n )]
[PS(nYyll s ey YRR, Zm) = 0]
where p; and ¢; are polynomials and Pg is a polynomial and the Il in front of the quantifier

prefix indicates that an arbitrary permutation of quantifiers is allowed.

A hierarchy of arithmetic predicates called the Bounded Arithmetic Predicates that is simi-
lar to the Ezponential Ezistential Bounded Arithmetical Predicates was introduced by Harrow
[HARR-78]:

Definition (Harrow): A set is defined by a Bounded Arithmetic Predicate if and only if

n €S & (Ay<pi(n))(Vy<pon))...(Qur <pr(n ) Qur+ 1< Pi+ i(n))
[P5(n,y1, s )yk+l) = 0]

Harrow showed that the Bounded Arithmetic Predicates define exactly the same class of sets
as the Rudimentary Predicates (RUD) studied by Smullyan [SMU-61], by Wrathall [WRA-78], and
by others.

Extending these results, Wrathall [WRA-78] and independently, Hicks and Meloud [MEL-
79], showed that for a restricted class of the Rudimentary Predicates called the
Positive Rudimentary Predicates (R*), R* = RUD only if NP = coNP.

The above results show that the sets in BT, RUD, NP and coNP can all be defined by for-
mulas which have very restricted quantifier structure. Accordingly, one might expect weak

theories that restrict the quantifier structure of their axioms to be useful in studying the relation-
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ship between these classes. Relationships between such weak theories and the NP =? coNP ques-

tions have been investigated by Wilkie and others.

3.2. NP and coNP in Weak Theories of Arithmetic

Wilkie [WIL-81] related the question of whether NP = coNP to independence results for a
weak arithmetic theory. He showed that if Matijasevic’s theorem, [MAT-70], is provable in
PA™ + IZ, (Peano arithmetic with induction restricted to bounded formulas), then NP = coNP.

The proof uses Adleman and Manders’ result showing that the set of equations of the form
a'z+ by=c, ab,c>0,

solvable on the natural numbers is NP-complete. Manders [MAN-81] has observed that the
result can be strengthened to the system PA~ + IL’ where IE* is the induction schema for for-

mulae with bounded quantification of the form

(vz<2!?1"),  (3z<2!"1"), forn € N.

A more model theoretic approach to the NP = coNP problem was taken by DeMillo and
Lipton [D&L-79]. They defined a weak theory of arithmetic which they called the Theory of
Polynomial Time (PT) and showed that PT is rich enough to verify that NP = coNP iff P =
NP:

Definition (DeMillo and Lipton): The language of PT includes symbols for all of the functions
and predicates which are computable in polynomial time. The axioms of PT are all true sentences

of the form (3z)(Vy)A(z,y), where A is quantifier free.

Definition (DeMillo and Lipton): A theory T is said to verify that NP = coNP if for each S €
NP, T | S € coNP.

Theorem (DeMillo and Lipton): PT can verify NP = coNP if and only if P = NP.

On close investigation one discovers that this result rests primarily on the fact that the only
functions a theory such as PT can prove total are the functions defined by the terms or those

defined by cases from the terms. For PT these functions are essentially the standard polynomial



-11-

time computable functions since specific symbols for each of these functions were explicitly added

to the language of PT.

A similar result relates the theory PT to the question of whether or not sets in NP N coNP

are decidable in polynomial time:
Definition (DeMillo and Lipton): Let S be a fixed recursive set and let A(z,y) and B(z,y) be
defined as follows:

(3y)A(z,y) & z€S 8 (y)B(z,y) & z nomem S.
Now let

As(A,B) = (Vz)|(3y)A(z,y) V (32)B(z,z2)].

Theorem (DeMillo and Lipton): Let S € NP N coNP. Then the following are equivalent:

SeP
PT \— Ag(A,B) for some A, B in the language of PT.

Again, the proof of this theorem has little to do with NP or coNP, but rather depends on
the fact that essentially the only sets provably decidable using PT are the standard polynomially

decidable sets.

The results discussed in this section show that questions of provability in weak theories of
arithmetic are related to computational questions such as whether P = NP and whether NP =
coNP. However questions of which computational problems are resolvable in weak theories of
arithmetic and which complexity theoretic statements are independent of such theories, are of
interest in their own right. Explicit independence results and examples of complexity theoretic
statements which are unprovable have been obtained for some weak theories, and we survey

some of these results in the remaining two sections of this paper.

3.3. The Theory ET

One of the weakest fragments of arithmetic that has been used in studies of computational
complexity is the theory ET introduced by DeMillo and Lipton. The theory ET has as axioms all

of the true universal sentences from the first order language,
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L(ET) = {0,1,+ ,*, max(x,y), min(x,y), X 3X ., PO(z), Pl(z), Pz(z),...}

where the Pi are new predicate symbols corresponding to each of the standard polynomially time
computable relations. (By a universal sentence, we mean 2a sentence of the form

Vz,Vz, - - - Vz,58(2y,...,2,) where S contains no quantifiers, either bounded or unbounded.)

DeMillo and Lipton add a new constant symbol a to the language of ET and define a new

class of predicates, which we call PD &l 28 follows:
(1) P, €Ppgey, for all i,
(i1) PD &L 8 closed under Boolean operations, and

(iii) If A(x) € P , then so does (Ix <a)A(x).

Obviously, in the standard model, N (the standard natural numbers), the constant symbol ¢
can only be interpreted as a standard natural number, and of course each Pi can be correctly
interpreted as the polynomially time testable relation which it is supposed to represent. Thus, in
the standard model, for every interpretation of the constant symbol a, all of the predicates in

P are polynomially time testable. Furthermore, if we take any NP-complete set, for example

D&L
SAT (the set of satisfiable Boolean formulas in conjunctive normal form) then it can be expressed
as

x € SAT iff (3y)S(x,y)
where S is a polynomially time testable predicate. Therefore in L(ET) there is an explicitly intro-

duced predicate symbol PS that represents S. With this as motivation, we can now state the pri-

mary result of DeMillo and Lipton:

Theorem (DeMillo and Lipton [D&L-80]): Let A be a quantifier free predicate in the language

L(ET) such that { x | (3y)A(x,y)} is NP-complete. Then for some predicate ¢(x) € P,
ET + (¥x)[(3y)A(x.y) & ¢(x)]

is consistent.
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Before applying this theorem to NP-complete sets, one should bear in mind the fact, men-
tioned earlier, that the sets in NP can be characterized as those sets definable by using Kent-
Hodgson Exponential Existential Bounded Arithmetical Predicates. This characterization, along
with one’s general intuitions, makes it seem unlikely that many (or even any) of the NP-
complete sets can be defined in any natura13 way by arithmetical predicates that do not have
bounded-quantifiers. On the other hand, in the extended language L(ET) there is an explicitly
introduced predicate symbol PR for every polynomially time testable relation R. Therefore, for
every NP-complete set such as SAT, one can substitute the associated predicate symbol PS
which is in L(ET) in order to get the desired quantifier free predicates, A, used in the above
theorem. Since, in the standard model, all of the predicates, ¢, in PD &1, are polynomially time
testable, this theorem can thus be interpreted as saying that it is consistent with the axioms of

ET to believe that P = NP.

Although such an interpretation may be tempting, it is not entirely reasonable. Even in the
language of Peano Arithmetic there are obviously many different formal sentences which assert
that P = NP. Even for different natural sentences which assert that P = NP, it is not clear that
in theories as weak as ET that one can prove their equivalence. Additional difficulties arise with
the predicate symbols Pi' One such difficulty is the following: Although the axioms of ET are
strong enough to guarantee that polynomial time testable predicates like S and their correspond-
ing predicate symbols PS agree in the standard model N, (since each true instance, e.g., Ps(3) or
-Pg(3) is an aziom of ET), arithmetical predicates like S may involve so much bounded
quantification that the axioms of ET cannot guarantee that S and PS agree in all models of ET.

In particular, it is not clear that there is any model of ET in which
(V2)[(3y)Ps(z,y) & é(z)]

holds and at the same time PS agrees with S, which is the predicate it is supposed to represent;

i.e., it is not clear that there are any models of ET in which the preceding formula holds and {x|

3. Matijesevic’s Theorem tells us that there is a characterization that does not not involve bounded quantifiers
but not necessarily a natural one.
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(3y)Ps(z,y) } “correctly” represents the set of satisfiable boolean expressions in conjunctive nor-

mal form.

Even setting this aside, there are additional difficulties in interpreting what P = NP means

in models of theories as weak as ET:

First, we observe that the proof of DeMillo and Lipton’s Theorem does not use the fact that
the set { x | (3y)A(x,y)} is NP-complete. It only uses the fact that the relation A is expressed by
a quantifier-free formula in the language L(ET). Since every recursively enumerable set is charac-
terized by some existential predicate (again, this is Matijesevic’s Theorem), it is just as reasonable
to assert that it is consistent with ET to believe that every recursively enumerable set is testable

in polynomial time as it is to assert this merely of every NP-complete set.

Second, it is not clear that in the models of ET in which

(vx)[(3y)A(xy) & ¢(x)]

holds for ¢ € PD&L that all of the members of PD&L are in fact testable in polynomial time. In
fact, it is not even clear in models of such weak theories what it should mean to say that a set is
testable in polynomial time. Here again, there are several difficuities. It seems that in theories
like ET, one may not even be able to prove that different notions of computation, for example
Turing machines, Markov algorithms, or Loop programs are equivalent, or if they are equivalent
that they are polynomially time related. Thus, it seems that one must simply pick some notion of

computation and analyze that notion.

Even when one has chosen such a notion, for example, the Loop programs of [B&L-74], once
one picks a predicate T which encodes sequences of computations, the T-predicate involves so
much bounded quantification that it is difficult to know how it behaves in models of theories like
ET.4 However as we observed above, there is a reasonable T-predicate that is testable in polyno-
mial time, so it has a corresponding predicate symbol, PT’ explicitly introduced in the language

L(ET). Since PT and T must agree on all of the elements of N, one might use PT as one’s

4. As pointed out by Csirmaz ([CSI-80]), similar problems arise for theories lacking multiplication.
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definition of computation in models of ET. Although T and Py will agree on N, T and Py suffer
the same difficulties as S and Pg discussed above. In particular, we cannot guarantee that they
agree in nonstandard models of theories as weak as ET. Nevertheless, since the symbol PT obvi-
ously involves no bounded quantification, it is tempting to use it for analyzing computations in

models of ET. Doing so has shown that with this notion of computation:

Theorem (Joseph and Young [J&Y-81]): For every recursively enumerable set { x | (3y)A(x,y)}

there is a formula ¢(x) € Phel for which it is consistent with ET to believe

(vx)[(Fy)A(x,y) & é(x)]

and that all formulas ¢ of PD&L have Loop programs which:
(a) correctly compute ¢ when they halt, and

(b) have a polynomial which bounds the number of steps of each computation.

Unfortunately, even if one accepts PT as expressing a meaningful notion of computation,
the preceding theorem does not guarantee polynomial time decidability. For example it is known
that in models of weak fragments of arithmetic there can exist programs which run for only a
bounded number of steps but still do not halt (Joseph and Young [J&Y-80]). Whether this or
some other malady plaques the computations described in the preceding theorem, we are not sure,

but nevertheless we can prove:

Theorem (Joseph and Young [J&Y-81]): Under the same conditions as the preceding theorem, in
the same model of ET as constructed there; there are members, ¢, of PD&L which are not

decided by any loop program in the model.

Exactly which predicates of PD &, €0 be tested in polynomial time in interesting nonstan-
dard models of theories like ET is an open question. In spite of this and our uncertainties about
computations in models of theories like ET, we do know that the study of fast algorithms in such
models is closely tied to how computations behave in the real world. There are theories very

similar to ET for which, if there exist models in which SAT is decidable in polynomial time, then
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in the standard model of computation SAT has arbitrarily long initial segments which can be
decided by short, fast programs. If such short, fast programs for SAT do exist, then from a prac-
tical standpoint one might believe that SAT is ”"almost” polynomially decidable. The following

results have been obtained:

Theorem (Joseph and Young [J&Y-81]): It is consistent with ET(Elem), (a theory which is quite
similar to ET), to believe that NP-complete sets are polynomially decidable iff in the standard
model of computation they have long initial segments that can be decided by short, fast pro-

grams.

We certainly believe that NP-complete sets do not have long initial segments which are
easily decidable by short programs, but the proof of this seems quite difficult and appears to be
closely related to the question of whether or not they have small circuit complexity. We do know
however that P-complete sets (with respect to log space reducibility) and EXP-time-complete sets
(with respect to polynomial time reducibility) do not have long initial segments that are easily

decidable by small programs and hence:

Theorem (Joseph and Young [J&Y-81]): It is not consistent with ET(Elem) to believe that poly-
nomially complete sets are linearly decidable or that EXP-time-complete sets are polynomially

decidable.

3.4. Basic Number Theory

One theory which is strong enough to support unambiguous notions of computation is Basic
Number Theory (B). This theory is obtained by taking as axioms all of the IT, sentences (sen-
tences of the form (Vx)(3y)A(x,y) where the matrix A is permitted bounded quantifiers only) which
are provable in Peano Arithmetic. This theory has been extensively studied by logicians (Goldrei,
Macintyre, and Simmons [G,M&S-73|, Hirschfeld and Wheeler [H&W-75], Macintyre and Sim-
mons [M&S-75], and Simmons [SIM-76]), and a great deal is known about its models. Since Lipton
[LIP-78] first suggested its usefulness in studies of computational complexity, its adequacy as a

basis for theoretical computer science has been a matter of some debate. This issue has been
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thoroughly discussed elsewhere, and we shall forego a thorough discussion of the adequacy of
Basic Number Theory, instead referring the interested reader to such discussion already in the
literature (Lipton [LIP-78], Joseph and Young [J&Y-80], and Leviant [LEI-79]). These authors do
point out that Basic Number Theory and closely related theories are adequate for proving many
standard theorems of mathematics and computer science, a point which has been made much ear-

lier, for example by Rogers [ROG-67], Chapter 14 (and in particular page 322).

For our current purposes, it is enough to know that for models of B notions of computation
are invariant: Within B one can prove not only the equivalence of all of the standard models of
computation, but also that they are polynomially related. That is, one can prove that the class of
functions computable by Loop programs, Turing machines, RAMs or Markov algorithms is
exactly the class of partial recursive functions and that the computation times are polynomially
invariant. Therefore within models of B a function is easily computable if and only if there is a
Loop program which easily computes it. However, as we shall see, in spite of the power of Basic
Number Theory, it lacks sufficient inductive power to prove a number of standard results of

theoretical and practical computer science.

One of the first computational independence results for weak theories of arithmetic was
proved by Lipton [LIP-78] who showed that Rabin’s Theorem is independent of Basic Number
Theory. It is rather easy to prove that there are recursive sets which have no easy (e.g., linear or
polynomial) decision procedures. In fact such a proof can be carried out within Basic Number
Theory. Rabin [RAB-60] proved a somewhat stronger theorem, namely that there are recursive
sets, S, for which every decision procedure takes a long time (e.g., exponential or more) on all but
finitely many arguments. It is easy to see that for any such set S, neither S nor S can have an
easy to decide subset. It is also easy to see that for any set, S, whose characteristic function can
be sped-up almost everywhere in the sense of Blum [BLU-67], neither S nor S can have an easy to
decide subset. In 1978, Lipton showed that these results are independent of Basic Number

Theory:

Theorem. (Lipton [LIP-78]): For every standard (provably) recursive set S, there is a model of B
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in which:
(i) Either S or S has a infinite easily decidable subset.
Therefore
(ii) Rabin’s theorem on the existence of almost everywhere difficult sets can-
not be proven in B,
and
(iii) Blum’s theorem on the existence of functions which can be "sped-up” almost

everywhere cannot be proven in B.

These results have been strengthened by Leviant:

Theorem (Leviant [LEI-79]): The proceeding results (i)-(iii) apply not just to provably recursive

sets S and the theory B, but also to all recursive sets S and to the stronger theory Tn2 which has

as axioms all frue I1, sentences.

The two preceding theorems show that some esoteric(?) results of computational complexity

cannot be proved within Basic Number Theory and the even stronger theory T“a‘ Some of our
own work shows that, despite the fact that Basic Number Theory and its extension Ty, are fairly

powerful theories, these theories possess even more fundamental limitations as formal theories for

analyzing program behavior:

Theorem (Joseph and Young [J&Y-80]): There is a fairly large subclass, S, of the hypersimple
sets (all of which are recursively enumberable but in fact undecidable) and there are nonstandard

models of Ty, in which:

(i) All members of S are decidable in linear time.
(ii) Bounded sets are not all decidable.
And
(ili) There are Single Loop programs which contain only subroutine calls and

assignment statements, which do not terminate despite the fact that each assignment
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statement and subroutine call correctly terminates. (Recall that Single Loop programs con-

tain no nested loops and execute each loop only a fixed (constant) number of times.)

These results show that Basic Number Theory and the theory Tnz are inadequate for distin-
guishing between undecidability and linear time decidability even for a fairly natural subclass of
standard undecidable sets, and that these theories are also inadequate for proving fairly routine

statements about program termination for very simple classes of programs.
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