
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

129

Brent T. Hailpern

Verifying
Concurrent Processes
Using Temporal Logic

Springer-Verlag
Berlin Heidelberg NewYork 1982

Editorial Board

W. Brauer P, Brinch Hansen
J. Stoer N. Wirth

D. Gries C. Moler G. Seegm~ller

Author

Brent T. Hailpern
IBM Thomas J. Watson Research Center
EO.Box 218, Yorktown Heights, NY 10598, USA

CR Subject Classifications (1981): 5.21 5.24

ISBN 3-540-11205-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11205-7 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1982
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergetr.
2145/3140-543210

Abstract

Concurrent processes can exhibit extremely complicated behavior, and
neither informal reasoning nor testing is reliable enough to establish their
correctness. In this thesis, we develop a new technique for the verification
of parallel programs. The technique is stated in terms of axioms and inference
rules, and it is used to prove safety and liveness properties of parallel programs.
Safety properties are assertions that must be satisfied by the system state at
all times; they are analogous to partial correctness. Liveness properties refer
to events that will occur in the future, such as program termination or the
eventual receipt of a message. In addition to the formal proof rules, we present
several heuristics to aid in the preparation of correctness proofs.

We model a parallel program as a set of interacting modules (processes
and monitors), and we exploit this modularity in the verification process. First
we prove properties of the low-level modules directly from their code. We
then combine the specifications of the low-level modules to prove properties
of higher-level modules, without again referring to the code. Eventually, we
prove properties of the entire program.

We discuss the application of this verification technique to two classes of
parallel programs: network protocols and resource allocators. Most previous
approaches to verifying network protocols have been based upon reachability
arguments for finite-state models of the protocols. Only protocols of limited
complexity can be verified using the finite-state model, because of the com-
binatorial explosion of the state space as the complexity of the protocol in-
creases. In contrast, our approach allows us to abstract information from the
details of the implementation, so that the proof need not grow unmanageably
as the protocol size increases.

The discussion of resource allocation centers around Hoare's structured
paging system, which is a complex hierarchical program. With this example,
we demonstrate that many of the techniques used in program verification can
be used for specification as well.

The thesis also describes a number of tools that have been useful in proving
concurrent programs. Two of the most important are history variables and
temporal logic. We employ history variables to record the interaction between
the modules that constitute a program. Temporal logic serves as a convenient
notation for stating and proving liveness properties.

Acknowledgments

Years ago, my parents taught me to love learning. I thank them for that
lesson and for their love; for without either one, this thesis would never have
been written.

Many people at Stanford contributed in one way or another to this thesis.
John Hennessy and Gio Wiederholds as members of my reading committee,
provided me with many useful comments and suggestions. John Gilbert, Jim
Boyce, and Shel Finkelstein helped me understand the beauty of formal logic in
general and temporal logic in particular. Robert Tar jan guided me through my
first year at Stanford with his wisdom and his inexhaustable common sense. To
these people and to the faculty, staff', and students of the Stanford Computer
Science Department, I express my gratitude.

I want give special thanks to two of my dearest friends: David Wall and
Richard Pattis. They provided constant professional and emotional support
during my entire graduate career. The two of them were always there when I
needed advice, someone to listen to me complain, a sounding board, criticism,
or companionship. They contributed greatly to this thesis by reading various
drafts and providing numerous comments.

There are no words to express my gratitude to Susan Owicki, my advisor.
She introduced me to program verification and to temporal logic. Her ideas,
comments, advice, and suggestions form an integral part of this thesis. It has
been a great honor to have known her and to have worked with her.

I dedicate this thesis to my wife, Susan. Her love, support, and under-
standing gave me the strength to write this thesis. I am in her debt for the
many hours I spent working when we could have been together, and I look
forward to spending the rest of my life discharging that debt.

My research was supported by a number of agencies, and I gratefully
acknowledge their generosity. My graduate education was funded primarily
by fellowships from the National Science Foundation and the Fannie and John
Hertz Foundation. I received additional support from teaching azsistantships in
the Stanford Computer Science Department and Computer System Laboratory
and from research assistantships with the S-1 project and my advisor. (The
S-I project is supported at Lawerence Livermore Laboratory of the University
of California by the Department of the Navy via ONR Order No. N00014-
78-F0023. Research with my advisor was supported by the Joint Services
Electronics Project, under contract N-00014-75-C-0601. JSEP also funded my
travel expenses in connection with this research.)

Table of Contents

Abstract

Acknowledgments

Table of Contents

List of Figures

Chapter 1. Introduction .

Chapte r

2.1.

2.2.

2. Programming Environment

Pascal-like Constructs

Processes and Monitors

Chapter

3.1.

3.2.

3.3.

3.4.

3,5.

3. Verification .

Floyd .

Hoare .

Manna and Pnueli

Owicki and Gries .

Modulari ty .

Chapter

4,1.

4.2.

4.3.

4.4.

4.5.

4. Temporal Logic

Introduction .

Syntax .

Axioms .

Semantics .

History of Temporal Logic

Chapte r

5.1.

5.2.

5. Techniques .

Basic Tools .

5.1.1. Safety Inference Rules--Sequential VALET

5.1.2. Invariants .

5.I.3. Auxiliary Variables

5.1.4. Safety Properties of Parallel VALET

5.1.5. Commitments and Liveness Inference Rules

5.1.6. Monitor and Process Specifications

Heuristics .

3

3

5

15

16

18
20

22

23

27

27

29

30

31

33

36

36

37

37

39

44

45

49

51

VI

Chapter
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

6. Network Protocols

Introduction

Verification

The Communication Medium

The Alternating Bit Protocol

Stenning's Data Transfer Protocol (Simplified Version)

70

70

72

74

77

96
Stenning's Data Transfer Protocol (Full Version) i06

Brinch Hansen's Network 118

6.7.1. Overview 120

6.7.2. Safety: Communication Medium 123

6.7.3. Safety: Node Components 125

6.7.4. Safety: Node 133

6.7.5. Safety: The Relationship Between the Nodes 138

6.7.6. Safety: System 142

6.7.7. Liveness: Communication Medium 146

6.7.8. Liveness: Node Components 147

6.7.9. Liveness: Node 151

6.7.10. Liveness: No Blocking 153

6.7.11. Liveness: System 154

Chapter 7. Resource Allocation 157

7.1. Introduction 157

7.2. Hoare's Structured Paging System 158

7.2.1. Overview 159

7.2.2. Resource Allocators: MFree and DFree 163

7.2.3. Main Store 165

7.2.4. Drum Module 166
7.2.5. Virtual Memory Specifications 170

7.2.6. Virtual Memory Implementation 172
7.2.7. Virtual Page Implementation 175

Chapter 8. Conclusion 183

Appendix A. Temporal Logic (Derived Theorems) 185

Appendix B. Hoare's Structured Paging System: The Program 194

References 203

Chapter 2.

2.1-i

2.1-2

2.2-1

2.2-2

2.2-3

2.2-4

2.2-5

Chapter 3.

3.1-i

3.2-i

3.2-2

Chapter 5.

5.1-1
5.1-2

5.1-3

5.1-4

5.2-I

5.2-2

5.2-3

5.2-4

5.2-5

5.2-6
5.2-7
5.2-8

Chapter 6.
6.2-1

6.4-1
6.4-2
6.4-3
6.4-4
6.4-5
6.4-6

List of Figures

Programming Environment

Pascal-like Constructs in VALET 4

Array Initialization 6

A Buffer System 8

Module Procedures 9

Module Procedures 10

Shared Stack Monitor 12

One Hundred Shared Stacks 14

Verification

Flowchart of Program to Compute Ej__la.~ 17

Division by Repeated Subtraction 19

Proof of Division Algorithm lg

Techniques

Safety Axiom and Inference Rules for Sequential V A L E T 38
Shared Stack Monitor 42

Revised Push and Pop Procedures 43

Live-assertions for Sequential VALET 46

Unbounded Buffer 53

Unbounded Buffer with History Variables 54

Bounded Buffer System 58

Bounded Buffer 59

Semaphores 63

Semaphores with Auxiliary Variables 64

Proof of Invariant 2 66

Proof of Invariant 3 67

Network Protocols

The Alternating Bit Protocol 73

System Diagram for the Alternating Bit Protocol 78

Alternating Bit Protocol: Process A 7g

Alternating Bit Protocol: Process B 80

Proof of AI 84

Parity and Corruption 88

Proof of A8 gl

6.5-1
6.5-2
6.5-3

6.6-1
6.6-2

6.7-1
6.7-2
6.7-3
6.7-4
6.7-5
6.7-6
6.7-7
6.7-8
6.7-9
6.7-10

Chapter 7.

7.2-I

7.2-2

7,2-3

7.2-4

VIll

Stenning's Data Transfer Protocol 97

Stenning's Data Transfer Protocol: Transmitter 98

Stenning's Data Transfer Protocol: Receiver 99

Stenning's Data Transfer Protocol: Transmitter 110

Stenning's Data Transfer Protocol: Receiver 111

Brinch Hansen's Network 119

Node 122

Medium 124

Reader 126

Writer 126

Bur Monitor 128

Inputs Monitor 130

Outputs Monitor 131

Table of Submodule Invariants 135

Table of Node Invariants 143

Resource Allocation

Hoare's Structured Paging System 161

The Drum Module 167

The Virtual Memory Module 173

The Virtual Page Module 176

