
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

135

R.L. Constable
S.D. Johnson
C.D. Eichenlaub

An Introduction
to the PL/CV2
Programming Logic

.~ n r; n rl¢= r-\/¢= r l ~ r l

Editorial Board

W. Brauer P. Brinch Hansen
J. Stoer N. Wirth

D. Gries C. Moler G. Seegm~iller

Authors

R.L. Constable
S.D. Johnson
C.D. Eichentaub
Cornel l University, Dept. of Computer Science
405 Upson Hail, Ithaca, NY 14853, USA

ISBN 3-540-11492-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-38?-11492-0 Spr~nger-Vedag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to "Verwertungsgesellschaft
Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1982
Printed in Germany

This book is based on the reference manual for the PL/CV Program-
ming Logic and on lecture notes used to teach the logic to first year
college students. The Programming Logic consists of a formal system for
reasoning about integers, arrays, and programming language commands (in
the PL/I dialect called PL/CS). The arguments can be checked by the
PL/CV Proof Checker (available in PL/I and in C, see [-14-]). The pro-
grams can be executed by PL/CS compilers (see [-I0-3), including the
Cornell Pz~gram Synthesizer ([-19-3) and the Cornell Program Environ-
ment.

The notes are written from the point of view that computer program-
ming is formal ~ problem solvin2. The subject is formal
because problem solutions must be written so that a computer can execute
them. In ~ome cases this formality can be extended to the entire argu-
ment whiuh led to the solution, and the computer can be used to verify
the arg~Bent.

In cases when the entire argument can be formalized, there are
obvious advantages to doing so, For one thing, onets confidence in the
solution is appreciably increased. This observation has been the basis
for research in the subject called program verification (see the di~s-
sion in [5,6]). Another advantage of formalization is pedagogical - one
is able to see the complete structure of the argument and explain it to
someone who is learning to reason algorithmically. This is the same
advantage that rigorous argument offers to any subject, and is a justif-
ication for teaching formal logic in the college curriculum.

Various computer systems to check proofs have been employed in the
teaching of formal logic ([-13,17-]). We feel that such systems can
play an especially interesting role in computer science courses. In the
first place, programming courses by necessity teach a great deal of for-
malism and logic. For example, the treatment of boolean expressions in
modern programming languages is an introduction to the propositional
calculus, and the definition of a program state and its effect on asser-
tions in programs is the same as the concept of an interpretation in the
predicate calculus.

In the second place, the concepts of program verification, espe-
cially the notions of asserted program, weakest pre-condition, loop
invariant, procedure call rules, etc. have an increasing place in the
computer science curriculum. A rigorous treatment of these concepts is
close to a formal treatment in a very high level logic such as PL/CV. A
formal treatment allows computer assistance in teaching the subject. In
particular, the student can experiment with forms of argument in private
and at his own pace.

In the third place, the Proof Checker, like the language transla-
tor, is an interesting piece of computer software. Exposing students to
it will enhance their appreciation of the potential of computer automa-
tion.

!V

For these reasons we feel it is appropriate to teach a programming logic in
the computer science curriculum. These notes can be used for that purpose.
They introduce a completely formal programming logic, PL/CV2. The logic
and its Proof Checker were designed by R. L. Constable, S. D. Johnson, and
M. J. O'Donnell~ The logic has been reported in the book A~Xeg~amming
Lo~iq [-6-] and in various articles [-5,7,14-], and the Proof Checker is
described in [-7-] and in the book A Com~ System ~ ~~_Koof~
[-14-]. The underlying programming language PL/CS is described in the
textbook [-ll-]. The system is a merging of the predicate calculus and the
Floyd-Hoare style of reasoning about programs [-16-]. I£ was designed to
be simple, conventional, high level and efficient so that it could be used
in college courses, and so that it could be used to explore elementary pro-
gram verification.

The odd-numbered chapters introduce topics informally at a very elementary
level, and the even-numbered chapters provide a succinct and precise sum-
mary of the logic (which may be skipped on a first reading)0 Numerous
examples are provided, and all of the complete proofs have been checked by
the Proof Checker (PL/I version). The exposition in the odd-numbered sec-
tions is oriented toward thereader with almost no programming experience.
A more advanced account of the logic appears in A Pro~rammiRK Logic.

E x p e r i e n c e with t h e s y s t e m

We have used PL/CV2 at Cornell to teach logic and basic program verifica-
tion in a sophomore discrete mathematics course. Our experiences here have
been very positive. We also used PL/CV2 to teach introductory programming.
We found that students were overwhelmed by the amount of formalism to be
grasped at first encounter. We surmise that the system could be success-
fully used in a second course on programming to help teach the basics of
programming methodology.

The interactive synthesizer version improves useability of PL/CV by a fac-
tor of 2 or 3 over the batch oriented system. We have not yet used that
system in a course however.

The PL/CV programming logic has been considerably extended to include a
rich constructive theory of types. In this language, called PL/CV3 it
appears possible to formalize the kind of non-elementary algorithmic prob-
lem solving exhibited in such textbooks as The Design ~Analvsis of Gom-
p _ ~ ~ b y Aho, Hopcroft and Ullman. The language was designed to
allow a feasible formalization of any argument solving a sequential algo-
rithmic problem

The reader interested in the concept of a constructive formal logic as a
programming tool should follow the work of the Cornell Automated Logic
group. The project on Program Refinement Logics, PRL, is building a pro-
gra~ing system which extracts executable code fom formal constructive
proofs (see [-I-]).

We gratefully acknowledge the support of the National Science Foun-
dation; the project started under MCS-76-14293 and continued under MCS-
78-00953. Finally the grant SED-79-18966 allowed us to experiment with
PL/CV in the classroom and provided the impetus for the expository
chapters of the monongraph.

The PL/CVl logic was designed with Michael J. O'Donnell whose
active interest and keen insights have shaped the project at every
stage. Our initial effort relied on the stability of the PL/C system
and the support of its director, Richard Conway.

Our faculty colleagues at Cornell provided both constructive criti-
cism and encouragement. In particular we thank Corky Cartwright, Alan
Demers, Jim Donahue, and David Gries. Work on the interactive system,
AVID, owes a great deal to Tim Teitelbaum and the Cornell Program Syn-
thesizer Project.

Many former students were active participants in discussions of the
logic and implementation. Carl Hauser was co-author of the first
manual. Gary Levin and Barry Bakalor were especially helpful.

Special thanks are due the contributing authors, all of whom have
also worked on the implementation, including Tat-hung Chan, Dean B.
Krafft, Ryan Stansifer and Daniel Zlatin.

Michelle Fish prepared large parts of the manuscript using the UNIX
text editing facilities. We are grateful for her very careful work.

Finally we thank our department and its chairman, Juris Hartmanis,
who have provided such a stimulating and tolerant atmosphere for our
work.

R. L. Constable
S. D. Johnson
C. D. Eichenlaub

I thaca , N.Y.
August 1981

TABLE OF CONTENTS

PREFACE

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

I THE LANGUAGE
Values.................i
Expressions 1
Functions .. 2
Variables 3
Quantifiers and Assertions 3
Proofs 5

II LOGICAL SYNTAX
2.1 Introduction 7
2.2 Overview ?
2.3 Conventions 7
2.4 Expressions 8

(i) integer expressions 8
(ii) boolean expressions 8

2.5 Assertions 9
(i) propositional structure 9
(ii) quantifier I0

2.6 Arguments I0
(i) proof group II
(ii) qualifiers Ii
(iii) statements ii
(iv) justifications II
(v) arguments 12

2.7 Files ~for IBM 370/168 version of PL/CV) 12
2.8 Type restrictions 13

III THE LOGIC
The ARITH Rule 17
Equality Rules 18
An Example 19
Function Rules 20
Logical Connectives 21
<=> Rules 21
=> Introduction 23
The Cases Rule 25
An Example 26
Rules for t0VB 27
Rules for ALL 29
Rules for SOME 31
Extended Quantifiers 32
Induction 33
The extended ARITH rule 34
Transformations 35
Extending Templates 36

Vii i

Chains of Reasoning 38
Abbreviations 42
Extended ALL Elimination and Function Rules 44
Daisy chaining 45
Keeping Perspective 48
Writing Proofs 48

!V PROOF
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4~ii

RULES
Substitutions 54
Macro substitutions 55
Format of rules 56
Enumeration of rules 57
In~ediate rules 59
Accessibility 59
Undefined and well-defined expressions 61
Equality 62
Array equality 63
Examples 64
Arithmetic 66
i. Ordinary Axioms of Number Theory 66
2, Variants of basic axioms 67
3. The arithmetic proof rule ARITH 69
4. Examples 71

4~12 Special Functions 71
I~ Enumeration of special functions 72
2. Applying the axioms 73

4o13 Induction. 73

V PROGRAMMING
Procedures 75
The Assignment Statement 77
The Assignment Rule 79
Well defined expressions 80
Assignment statements and accessibility 81
The IF statement 81
Indexed Loops 84
Loops and Accessibility 87
Arrays ... 88
An example: The Maximum of an Array 89
The RETURN statement 93
The DO ~ILE Rule 99
WHILE loops and accessibility 104
~HILE loops and well-defined expressions 104
The GOTO statement 104
GOTO statements and accessibility 108
Variations 108

SELECT 108
No-ELSE IFs 109
Downward DO-index loops II0
General ATTAINs on DO-loops II0
DO UNTIL iii
LEAVE 113

Shielded Program Text 113

IX

Rules for Arrays 116
Local Array Declarations 118
Assignment of Entire Arrays 119
Array Equality 120

Vl RULES FOR PROGRAM STATEMENTS
6.1 Introduction 121
6.2 Syntax 121

(i) shielding 121
(ii) Grammar of commands 122

6.3 Substitutions 124
6.4 Proof Rules 126

(i) Rule formats 126
(ii) Well-defined expressions 127
(iii) Accessibility 127
(iv) Proofs 129
(v) Enumeration of command rules 129

Vll PROCEDURES
PL/CV and Mathematics 136
Procedure Calls 136
Aliasing ... 139
Shielded Parameter Passing 139
External Variables140
Input-Output and Main Procedures 140
Recursive Procedures 141

VIII PROCEDURE RULES
8.1 Introduction 153
8.2 Syntax 153
8.3 Substitution 154
8.4 Proof Rules 155

(i) Declaration rules 155
(ii) Procedure rules 155
(iii) Proofs 159

IX FUNCTIONS

Motivation 160
Rules for Using Functions 161
Verifying Functions 162
Examples 163

X FUNCTION RULES

i0.I Introduction 166
I0.2 Syntax 166
10.3 Proof Rules . 166

APPENDIX A: PRODUCING VERIFIED FILES UNDER CMS 169

APPENDIX B: KNOWN BUGS IN PL/CV2 182

APPENDIX C: THE FUNDAMENTAL THEOREM OF ARITHMETIC 184

APPENDIX D: AN ALGORITHM FOR CHECKING PL/CVARITHMETIC

INFERENCES 5y Tat-Hung Chan 227

APPENDIX E: THE AVID SYSTEM by Dean B. Kraff~, 265

APPENDIX F: THE TYPE THEORY OF PL/CV3

(with Daniel Zlatin) 271

REFERENCES, ~,,, •,..o,~. 287

INDEX 289

