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This book is based on the reference manual for the PL/CV Program- 
ming Logic and on lecture notes used to teach the logic to first year 
college students. The Programming Logic consists of a formal system for 
reasoning about integers, arrays, and programming language commands (in 
the PL/I dialect called PL/CS). The arguments can be checked by the 
PL/CV Proof Checker (available in PL/I and in C, see [-14-]). The pro- 
grams can be executed by PL/CS compilers (see [-I0-3), including the 
Cornell Pz~gram Synthesizer ([-19-3) and the Cornell Program Environ- 
ment. 

The notes are written from the point of view that computer program- 
ming is formal ~ problem solvin2. The subject is formal 
because problem solutions must be written so that a computer can execute 
them. In ~ome cases this formality can be extended to the entire argu- 
ment whiuh led to the solution, and the computer can be used to verify 
the arg~Bent. 

In cases when the entire argument can be formalized, there are 
obvious advantages to doing so, For one thing, onets confidence in the 
solution is appreciably increased. This observation has been the basis 
for research in the subject called program verification (see the di~s- 
sion in [5,6]). Another advantage of formalization is pedagogical - one 
is able to see the complete structure of the argument and explain it to 
someone who is learning to reason algorithmically. This is the same 
advantage that rigorous argument offers to any subject, and is a justif- 
ication for teaching formal logic in the college curriculum. 

Various computer systems to check proofs have been employed in the 
teaching of formal logic ([-13,17-]). We feel that such systems can 
play an especially interesting role in computer science courses. In the 
first place, programming courses by necessity teach a great deal of for- 
malism and logic. For example, the treatment of boolean expressions in 
modern programming languages is an introduction to the propositional 
calculus, and the definition of a program state and its effect on asser- 
tions in programs is the same as the concept of an interpretation in the 
predicate calculus. 

In the second place, the concepts of program verification, espe- 
cially the notions of asserted program, weakest pre-condition, loop 
invariant, procedure call rules, etc. have an increasing place in the 
computer science curriculum. A rigorous treatment of these concepts is 
close to a formal treatment in a very high level logic such as PL/CV. A 
formal treatment allows computer assistance in teaching the subject. In 
particular, the student can experiment with forms of argument in private 
and at his own pace. 

In the third place, the Proof Checker, like the language transla- 
tor, is an interesting piece of computer software. Exposing students to 
it will enhance their appreciation of the potential of computer automa- 
tion. 
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For these reasons we feel it is appropriate to teach a programming logic in 
the computer science curriculum. These notes can be used for that purpose. 
They introduce a completely formal programming logic, PL/CV2. The logic 
and its Proof Checker were designed by R. L. Constable, S. D. Johnson, and 
M. J. O'Donnell~ The logic has been reported in the book A~Xeg~amming 
Lo~iq [-6-] and in various articles [-5,7,14-], and the Proof Checker is 
described in [-7-] and in the book A Com~ System ~ ~~_Koof~ 
[-14-]. The underlying programming language PL/CS is described in the 
textbook [-ll-]. The system is a merging of the predicate calculus and the 
Floyd-Hoare style of reasoning about programs [-16-]. I£ was designed to 
be simple, conventional, high level and efficient so that it could be used 
in college courses, and so that it could be used to explore elementary pro- 
gram verification. 

The odd-numbered chapters introduce topics informally at a very elementary 
level, and the even-numbered chapters provide a succinct and precise sum- 
mary of the logic (which may be skipped on a first reading)0 Numerous 
examples are provided, and all of the complete proofs have been checked by 
the Proof Checker (PL/I version). The exposition in the odd-numbered sec- 
tions is oriented toward thereader with almost no programming experience. 
A more advanced account of the logic appears in A Pro~rammiRK Logic. 

E x p e r i e n c e  with t h e  s y s t e m  

We have used PL/CV2 at Cornell to teach logic and basic program verifica- 
tion in a sophomore discrete mathematics course. Our experiences here have 
been very positive. We also used PL/CV2 to teach introductory programming. 
We found that students were overwhelmed by the amount of formalism to be 
grasped at first encounter. We surmise that the system could be success- 
fully used in a second course on programming to help teach the basics of 
programming methodology. 

The interactive synthesizer version improves useability of PL/CV by a fac- 
tor of 2 or 3 over the batch oriented system. We have not yet used that 
system in a course however. 

The PL/CV programming logic has been considerably extended to include a 
rich constructive theory of types. In this language, called PL/CV3 it 
appears possible to formalize the kind of non-elementary algorithmic prob- 
lem solving exhibited in such textbooks as The Design ~Analvsis of Gom- 
p _ ~ ~ b y  Aho, Hopcroft and Ullman. The language was designed to 
allow a feasible formalization of any argument solving a sequential algo- 
rithmic problem 

The reader interested in the concept of a constructive formal logic as a 
programming tool should follow the work of the Cornell Automated Logic 
group. The project on Program Refinement Logics, PRL, is building a pro- 
gra~ing system which extracts executable code fom formal constructive 
proofs (see [-I-]). 
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