ooooboooao
4820 1983 0 255-295

Partial Computation of Programs
Yoshihiko Futamura

Central Research Laboratory, HITACHI,LTD.
Kokubunji, Tokyo, Japan

Abstract

This paper attempts to clarify the difference between
partial and ordinary computation. Partial computation of a
computer program is by definition "specializing a general piogram
based upon its operating environment into a mére'éfficient
program". It also shows the usefulness of partialmcompﬁtation.
Finally, the formal theory of partial computation,4£echnical
problems in making it pracﬁical, and itS"future'tésearéh probléms
are discussed.

The main purpose of this paper 1is to make partial
computétion effectiveness widely known. waever, two new results
are also reported:

(1) a partial computation compiler, and

(2) a tabulation technique to terminate partial computation.

1l. Introduction

Research on automating partial computation has been
conducted in Sweden, Russia, thé United States, Italy, Japan etc.
for some time. Rapid progress has been made in this field in the
last decade. Recent research achievements have indicated the
practical utility of paétial computation.

Partial computation of-a computer program is by definition

."specializing a general program based upon its operating
-1 - : -

256

environment into a more effic¢ient program”™ (This is also called
mixed computation[l4] or partial evaluation [6, 16, 20, 23
etc.]). For example, let us assume that a programmer has written
program f having two input data k and u. Then let f(k,u) be the
computation performed by £. Let us further assume that f is
often wused with k=5. In this case, it is more efficient to
produce a new program ,say fS’ by substituting 5 for k in £ and
doing all possible computation“ based upon value 5, as well as
iteratively compute f5(u), than to compute f£(5,u) iteratively
changing values of u. |

Partial computation is an operation automatically producing
fS' when £(5,u) 1is given. Contrary to partial computation,
ordinal computation described, for example, ih FORTRAN or COBOL
does not produce f5~> but = produces an error message "u is
undefined". The:efore, generating fS, ’from f(5,u) must be done
by a FORTRAN or COBOL programmer by himself. Thus, present
computer's lack of partial computation ability forces programmers
to do partial computation by themselves to write efficient
programs. Since general‘ or standard progiam specialization is
often performed in everyday program production activity,
automating the specialization is expected to greately improve

program productivity.

This paper attempts to clarify the difference between
partial and ordhﬁry computation. It also shows the usefulness of
"partial computation. Finally, the. formal theory of partial
‘computation, technical problems in making it practical, and its

future research problems are discussed.

257

2. Partial Computation Algorithm

Usually, a computer program is designed to produce desired
result based upon given data. To makevdiscussiqn‘easier, let us
consider program f processing only two input data k (for known
data) and u (for unknown data). Ordinary computation can start
only ~ when ’both‘ k and u are given. This is called total

computation (see Fig 1).

INPUT " , OUTPUT

£ : >f(k,u)'

PROGRAM - PFINAL RESULT

Fig 1: Total computation produces a final result.

On the,vcontrary,,partial computation can start when one of
the input data, say k, is given. Content of the computation is
as follows: | -

All vcomputation'in f that can be performed based upon k are
finished. All'thg computation that cannot be performed withbqt u

are left intact. Thus, a new program is producéd (see Fig 2).

258

k u
INPUT l OUTPUT
£ > £, > 5 (1)
PROGRAM INTERMEDIATE PROGRAM FINAL RESULT

Fig 2: Partial computation produces intermediate program fk
based upon f and partial data k.

For example, let
f(k,u)=k*(k*(k+1l)+u+l)+uru

and k=2 be given. Thus, an intermediate program (or projection

of £ at k=2) |is
fz(u)=2*(7+u)+u*u .

When data u 1is given to £ the fz(u) result is equal to

2'

that of £(2,u). Thus,the following equation holds for fk and f:

fk(u)=f(k,u) ————— El
Both total computation and computation via partial
computation give 1identical results. This fk is called a
projection of f at k.
Now, 1let us consider the reason partial computation is
useful. Actually, there is a case in which partial computation

is not useful.

When f is computed just once with k=2 and u=1 in the above

example, computation via £f3 jg less efficient than direct

- 4 -

259

computation‘of'f(2,3).

HoweVer, when £(k,u) is iteratively computed with k fixed to
2, and u varied from 1 to 1000 by 1, the situation may be
reversed.

The reason is obvious:

Assume that each addition and multiplication takes time a,
and producing an intermediate program f2 takes time p (see Fig

3).

us=1 A Produce intermediate | rIME p
. TIME 7a program £, (u)
while || TE(2,)] = B
TIME 4a
u<1009 us=u+l while £5 (1)
kLR] I YT
TOTAL COMPUTATION PARTIAL COMPUTATION

Fig 3: Partial computation is often useful when f is
computed repeatedly. (Programs in this figure
are described in PAD. See Appendix..l).

time for computing f£(2,u) = 7a
ﬁime for computing fz(u) = 4a

Therefore, -if computation is repeated 1000 times it takes
7000a for total computation,and p + 4000a for partial
computation. Thus, if p is less than 3000a, partial computation
is more efficient.

As described | above, .partial computation :may be mbre

efficient when a program is computed iteratively with a part of
the .input data fixd and the remaining data changed.

-5 -

260

A little more complex -example of partial computation is
given below to clarify its difference from algebraic manipulation
and ‘symbolic execution.

A program that computes u5 and stores its value to z is
shown in Fig 4. The partial computation result of £ at k=5, i.e.

an intermediate program, is shown in Fig 5.

z:=1
z:=2%*u
£ (k,u)=[wnite]] [29dk)
k78 k:=k/2
u:=u*u

k
Fig 4: £ computes z:=u

z:=1*u
us=u*u
£_{(u)=ju:=u*u
5 z:=z2%u

Fig 5: £, (u)= £(5,u]

The author hopes readers are aware that the result of
partial computation (i.e. projection) is a program while that of
algebraic manipulation or symbolic execution is an algebraic.
expression.

A very important point is that partial computation procedure
itself can be <a computer program. This partial computation‘
program is called projection machine, partial computer or partial
evaluator. By letting it be J., we get the below equation:

A (£,k) = £ ——-—-E2 |

Now, consider o(f, which is the result of partial

- 6 -

261

computation of cl at f.
~From El we get C{f(k) = ol (£,%)
From E2 we get ci(f,k) = fk

Therefore

ol g(k) = £, —=-== E3

This E3 is called the basic equation of partial computation.

The author hopes that readers have grasped the rough idea of
partial computation thus far. It is further hoped readers
understand that "Since computation performed by a computer
usually contains repetitions, partial computation would seem
useful".

To clarify the usefulness of partial computation,examples of

its applications are described in the next chdpter.

3. Applications of Partial Computation: Examples

Since a computer program usually coniains repetitions,.
computation effiEiency of a program can often be improved through
partial computation. Therefore, the author believes thét the
basic comuptation mechanism of a computer should be established
based on partial computation. He also believes that present
computer's 1lack of partial computation ability is one of 'the
biggest obstacle to program development. It forces programmers
to do partial computation by themselves to write efficient
‘programs. This is basically inefficient.

As Kahn pointed out in [23], program production using

automatic partial computation mechanism, i.e. projection

machine, could be made much easier than it is now. For readers
-7 - '

262

to understand the power of partial computation,four examples are
shown below. They are selected due to their clearness in
application areas and effectiveness (See [3] and [12] for other

examples) .

3.1 Automatic theorem proving

Theorem prover 1is a ‘program automaticlly proving a given
theorem based upon a given set of axioms.

Let theorem prover be P, axioms be A, and theorems be T.
Generally, a large number of theorems are proved based upon a
fixed set of axioms, e.g., axioms of Euclidian geometry or the
group theory. That is, compute P(A,T) with A fixed and T
changed. In this case, generating PA by partially computing P at
A and iteratively computing PA(T) is more efficient than
computing P(A,T) iteratively. |

For example, consider theorem proving in Euclidian geometry.,
Program PA ,is then a specialized theorem prover for Euclidian
geometry (PA=ci(P:A))- Theorems are proved by using this PA'

Projection machine c{ for specializing P automatically was
first developed by Dixon in 1971 to the best of the author's
knowledge [5]. His Cl can partially compute programs written in

pure LISP [38].

- 3.2 Pattern matching

Text editors 1like word processors have simple pattern
matching functions. For example, consider the case when a text
string like

THIS IS A BOOK.

263

is searched in order to substitute PEN in the pattern and to get
the string

THIS IS A PEN.

This sort of operation for locating where a pattern is in a
« text'string is pattern matching.

Let M be a pattern matching program,-P be-a pattern and T be
a text string. Pattern matching is thus represented as M(P,T).

| When a pattern,say BOOK, repeatedly appears in a text and

when all the instances of the pattern are replaced by the other
string ,say PEN, or when a pattern is used frequently, it is
useful to partially compute M at the pattern /,say P, to>get*MP,
and to perform MP(T) repeatedly. .

Emanuelson[6] implemented such a projeétibn macﬁihe‘gl to
produce M by performing Ci (M,P}) for - a complicated pattern

P
matcher M written in LISP.

3.3 Syntax analyzer

In language processing, a program called syntax anaiyéer'is
necessary for parsing a given sentence Dbased upon a given
grammar. Let S be a syntax analyzer, G be a language grammar and
T be a given text. Syntax analysis then can be represented as
S(G,T).

When grammar G is fixed and T is varied, it is not efficient
to compute A{(G,T) repeatedly. Specialized analyzer AG can be
produced by partially computing A at G. The author discussed the

partial computation method for BTN(Basic Transition Network)

analyzer in [8]. Ershov's group also partilly computed.LR(l)

264

analyzer S at PASCAL grammar G[28].

Let G be FORTRAN grammar and T be a FORTRAN program. Syntax"
analysis 1in FORTRAN compiler can then perform the same function'
as S(G,T). Note that G is fixed and only T is varied in thig
case. Thus, SG(T) can be used instead of S(G,T).

Generally speaking, projection machine ol produces less

efficient syntax analyzer S, than a good human partial computer

G

nowadays. Therefore, very efficient S, for popular programming

G
languages 1like FORTRAN and COBOL are implemented by human

programmers at the cost of a lot of man-hours. However, in the

future it may be possible that S. produced by ol (S,G) will become

G
more efficient than that made by human programmers.

3.4 Compiler generation

)

The three examples described above are generation of
intermediate programs from data 1like axioms, patterns, of
grammars. Therefore, they may be called compilation of axioms,
patterns, or grammars instead of partial computation.

In tﬁis section, problems in automatically generating
compilers are discussed. A compiler is a program to transform a
program in some language (this is called source language) into a\
program in another language (this is called object language)n

We often hear "A BASIC program runs slowly because it is
executed by an interpreter. If we have a good BASIC compiler as f
FORTRAN, it will run much faster".

What is the interpreter in this case?

Interpreter,say I, 1is a program to perform spécified,i

computations that analyze the meanings of a given program,say P, .

- 10 -~

265

based uéon given data, say D. Thus, running a program by
interpreter means performing I(P,D). While a compiler, say C,
translates a source program, say P, to an object program C(P).
When this C(P) runs with data D, the result is the same as that
of I(P,D). This produces the following equation:

C(P) (D)=I(P,D)

While I =g (I,P). Thus, we get the below equation .

(First equation of partial computation)

Therefore.IP can be regarded as an object program of P.

From the above discussion, it is clear that the repetitive
computation of I(P,Df with P fixed and D varied is less efficient
than that of IP(D) after producing IP by compiler C.

Now if we compute I(P,D) once with both P and D fixed, is a
compiler still wuseful ? Genefally, partial computation is not
useful when a computation is performed iust once. However, it is
also true that generally a program runs -faster after it is
compiled even if if is executed only once. Why is this ?

The -reason 1is that a program P itself contains repetitive
computation (i.e. loops) . Usually, a program contains a loop
for performing repetitive, say 10 or 10000 times, computation.
When this program is executed by an interpreter, the interpreter
repeats analysis of a loop. ~ However, partial computatio; of
interpreter I at program P (i.e. CA (1,P)) finishes the part of
meaning analysis 'which can be performed without knowing data D,
e.g. analysis of a program structure. So, when a loop in an

object program I, is performed repetitively, there remains just a

P
small part of computation performed by an interpreter I. Thus,

- 11 -

266 /

even when I(P,D) is computed-just once for given data P and D,
compiling P is often useful. If P contains no loops, compiling p
is useless.

From the discussion above, readers may see the significance
of a compiler. »The remaining part of this section deals with a

compiler generation method based upon partial computation.

I1If P is an object program, then can CL which produces IP
from I and P be regarded as a compiler ? The answer is no.
Generally, cl is a complicated program and computation of c{ (1,P)
takes a long time. Therefore, regarding cl as a compiler is not
practical.

Now, ‘notiﬁg that ci itself is a program with two data, let
us look atcﬂ I which is produced by partially COmputing'cl at I.
"From equation E3, equation E5 is derived by substituting each f

and I for k and P, respectively.

{Second equation of partial éomputation)

Since IP is an object program andci I transforms a source
program P to IP,CJ 1 has the same function as that of a compiler.
Furthermore, 1in CJ 1’ computation of Ci concerning I has been
finished. Thus, it is not wrong to regard<J 1 s a compiler.
Generally, implementing an intérpreter is much easier than that
of a compiler [16]. Therefore, 1if we have a good partial
'computerci, a compiler can be made automatically through<j u{,I)
after easily implementing I [16].

Now, what is the result of partial computation of o ét.
itself (i.e. O(ol) ? _

Equation E6- below is derived from eqhation E3 by

- 12 -

267

substituting each c{ and I for f and k, respectively.

(Third equation of partial computation)

Since ci I is a compiler, from E6 above, Cici is regarded as
a> compiler—compiler which generates a compiler c{ I from an
interpreter 1I.

From the above discussion, the relationship between laﬁguage
processors like interpreter, compiler ahd compiler-compiler is
clarified (see [15]). k

Let 1I-language be a language defined by an interpréter I.
From equation E6, I—langUage‘ compiler can be producea
automaticlly through Clci(I)' Now, let us sdbstifute c{ for I in
E6 or consider Ck as an interpreter. Then what'isc{ —language ?

Let f be a program in o] —languagé and k be data. From El,
the result of performing f with data k is:

o (f,k):fk.
Substitgting ol for I in E6, we get:
ol (dh=cly -

This .means Cisb is an C% -language COmpilér;' Thérefore,

clgjf) is an object program of f and we get equation E7 below.
Oly () (k) =f, —---- E7 |
k (Forth equation of partial computation).

From the‘discussion above, we see that, in geheral, partial
computation of f at k can be done more efficiently through
compiling f by C{{} than by difectly computihgc{ (f,k) (However,
when ‘f=c£, computing (jc*(k) is sufficient). Therefore c%ci is
the partial computation compiler desired. However, the author

has not heard of a report concerning the execution OfCL(tivék)

- 13 -

268

to produce Clc* for practical cLu

The author implemented an Cﬁ and an interpreter I in LISp
for ALGOL-like language, and tried to generate ALGOL compilercﬂ I
in 1970 [16]. The generated compiler was not efficient enough to
be used practically. Similar, but more advanced, experiment was
conducted by Haraldsson [20G]. He implemented partial computation
program REDFUN in lisp [3,20]. REDFUN was used by Emanuelson to
implement a pattern compiler [6].

Based upon partial computation and Prolog interpreter on
LISP machine (LM-Prolog [37]), Kahn [23] tried to automatically
generate Prolog compiler. The compiler translates a Prolog
program into a LISP program.

To do. so ,from the discussion in this section, it is
sufficient to have a LISP program QL which can partially compute
a LISP program. However, good Ci .1s very hard to write
(Haraldsson told in [20] his partial evaluator REDFUN-2 was 120
pages in prettyprinted format). Therefore, Kahn tried to write
his ci in Prolog [35,37,39]. Since Prolog has a powerful pattern
matching ability and theorem proving mechanism, it seems easier
to write complicated C{ in Prolog than in LISP. The outline of
Kahn's method is described below.

First, Kahn implemented the following two programs:

(1) L : Prolog interpreter written in LISP.

Let D be database and S be a statement in Prolog, then L
performs L{(D,S). Interpreter L is similar to a theorem prover
described in Section 2.1. Database D and S correspond to axioms
and a theorem, respectively.

(2) P : LISP partial computation program (projection
- 14 -

269

machine) written in Prolog.

Note that P is database for L. Let f be a LISP program, k
and u .be its input data, and [f,k] be a Prolog statement
describing £ and k. Then the equation‘below holds.

fkéL(P,[f,k]) ----- E8 ;
He then gets LP by performing L(P,[L,P]) frém‘EB which is

again a LISP program.

From El: o
LP([f,k])=L(P,[f,k]) ————— E9 ;
From E8 and E9, LP([f,k])=fk is derived, Therefore, LP is a
LISP program producing fk from £ and k. This means that LP is a

LISP partial computer described in LISP.

Lgt LP " be o, . Then from equation E5, by pérforming
cj (d,L), we can get a Prolog compilerci L translating a Prolog
program into a LISP program, |

Kahn's method of producing‘ a frolog‘compiler seems very
promising-because:

(1) A partial computation method of a LiSP program is
becoming clearer through its long time research. |

(2) A very convenient language like Prolog for describing

partial computer is becoming available.

4. Theory of Partial Computation

It was 1in the 1930's that Turing, Church, Kleene, etc.
proposed several computation models and clarified the
mathematical meanings of mechanical procedure. A computation

model, in plain language, is a sort of programming language.

- 15 -

270
Typical computation models include the Turing machine, lambda
expression and the partial recursive function.

At that time, the main research interest concerned
computability, i.e. - computational power of the models, not
computational complexty or efficiency. Since partial computation
was the same as ordinary computation, as far as computability was
concerned, it did not attract research attention.

However, equation El in Chapter 2 appeared in Kleene's S-m-n
theorem (It is also called the parametarization theorem or
iteration theorem) of the 1930's[41,45]. A procedure to produce

f by fixing k in £ was also described in the proof of the

k
theorem. That procedure was just 1like putting assignment

statement k:=(value of k), i.e. k:=5, in front of £(5,u):

[k:=5
f_ (u)==

5 £ (.k,u)l

Furthermore, the partial computation of cl itself, which

appears in the third equation of partial computation, was also
used in the proof of Kleene's Recursion Theorem[41](1938).
However, he only used partial computation in its simplest form to
fix the value of a variable.

While Turing machines and partial recursive functions were
formulated to describe total computation, Church's lambda
expression was based wupon partial computation. Inputs to a
lambda expression are also lambda expressions, and the result is,
again, a lambda expression. This computation is called lambda
conversion. Furthermore, when a lambda expression corresponding

to f(5,u),for example, is computed with u undefined, the result

- 16 -

271

is a lambda expression corresponding to fs(u) in which
computation concerning k=5 is finished. Lambda conversion of
f5(u) with, again for example, u=6 produces the same result as
£(5,6) ‘(by the Church-Rosser Theorem). That is to say,
fk(u)=f(k,u). Thus lambda conversion is partial computation.

As described above, the concept of partial computation
already existed in the 1930's. However, implementation of a
projection machine and its application to real world problems
started in the 1960's after the programming language LISP began
to be widely used (see Appendix 2).

Problems in making a practical projection machine will be
discussed in the next chapter. The rest of this chapter deals
with the theory behind the projection machine.

The relationships between a projection machine and a
‘ianguage processor, i.e. equations E4, E5 and E6, have been
discussed by Futamura[l6,17), Beckman[3], Ershov[8,12,14] andv
others. “

Formal treatment of a projection machine and'its proof of
correctness were presented by Ershov in [9,13,14]. He dealt with
ALGOL-like programs that included assignment, conditional and
GOTO statements in [9] and a recursive program schema similar to
pure LISP in [13]. The author believes [9] and [13] are landmark
papers that establish the theoretical foundations for a
projection machine.

It is important for projection machine cl to satisfy the
following/three conditions:

(1) Correctness: Program Ci should satisfy the eqﬁation

o (£,k) (u)=£(k,u).

- 17 -

272

(2) Efficiency improvement: Program cl should perform ag
much computation as possible based upon given data k.

(3) Termination: Program Cl should terminate on partial
computation of as many programs as possible. Termination at
o (d,o) is most desirable.

In condition (2), the meaning of "as much computation ag
possible" is not mathematically clear. This can be rephrased as
"all possible computation" for a simple language as a recursive
program schema. However, for a 1language with assignment
statements or side effects, it is not easy to make computatidﬁs
concerning k only without spoiling condition (1). Therefor, the
author believes that it is of primary importance to establish a
projection maehine satisfying conditions (1), (2) and (3) for a
recursive program schema that makes theoretical discussion
easiest to do.

Ershov(13] has established o satisfying (1) and (2) for a
recursive program schema. This paper attempts to describe a new
Cl that satisfies all threeiconditions based upon Ershov[13].
The description 1is rather informal in order for readers to
understand ci intuitively.

Roughly speaking, a recursive program schema is a program
consisting of only three different components:

(1) Condition:

(2) Expreséion:

- 18 -

273

(3) function definition:
def
oY
Six examples of recursive program schema are described

below:

Example 13

] 1
£ (k,u)=={u=0

odd (k)

1
£ (k+l,u-1)

This means a program that takes value 0 if u>=0 or 1loop

indefinitely if u<0; i.e.

f(k,u)==u20

Following Examples 2 to 4 describe this same function in

different forms.

Example 2:

2
£ (k'u)==

2
£ (k+],u-1)

- 19 -

274

Example 3:

3
£f (k,u)==|{u=20

factorial(-1)

factorial (x)==

x&factorial (x~1)

Example 4:
4
£ (k,u)
£ (u#l,u)
Example 5:
o
5
f (k,u)==|u=u
5
£f (k+1l,u)

: 5
The value of £ 1is always 0.

Example 6:

[|
6
f [u;k]l==|null{u]

6
cons [car[ul;f [cdr[ul;k]]

This is equal to append[u;k] in LISP,

- 20 -

275

As described in [42], a computation rule for a recursive
program schema is tepetition of (1) Rewriting and
(2) simplification. The computation terminates when there is no
longer occasion to apply the rewriting rule.

Partial computation of f at k is performed by repetition of
the following three rules:

(1) Rewrifing: Replace f(k,u) by its definition body (This
f(k,u) is called a semi-bound call by Ershov{l3]). This rule is
different from the rewriting rule for ordinary computation because
it can only be applied when u is undefined.

(2) simplification: Perform possible simplification to a
program produced by the rewriting rule. This is - not very
different from the simplification rule for ordinary computation.

(3) Tabulation: Let E be the expression derived from the
above two rules. |

(3.1) If there are semi-bound célls, éay £f'(k*',u'), in E,
then each one 1is replaced by f'k.(u'). Let the résulting

expression be E', Then define fk as Ef, i.e.

(3.1.1) If there is an undefined f'k. in E', repeat (1),
(2) and (3) for each f' and k' (i.e. partially compute f' at
k') .
(3.1.2) 1If there is no undefined f‘k, in E', terminate
the computation.
(3.2) If there is no semi-bound call in E', define fk as
E' and terminate the computation.

Thus, the discriminating characteristics of partial

- 21 -

276
computation are the semi-bound call and tabulation. Six examples

are shown to illustrate the above rules:

Example 1: Partially compute fl(4,u).

(1) Rewriting: Replace k by 4 in the f£¥(k,u) definition.

1 ' 1
£f (4,u)==|u=0 £ (4-1,u-1)

odd (4)

1
£f (4+1,u-1)

(2) Simplification: Perform computation and decide what can

be done based upon the value of k, i.e. 4.

0
1 '
£ (4,u)== u=0(
\

1
£ (5,u-1)

(3) Tabulation: Replace semi-bound call fl(s,u—l) by

fls(u—l). The resulting expression is defined as fl4

£ (u)y==|u=0
4

1l
£f (u-1)
£

Since fl5 is undefined, define fls(u) through partial

computation of fl(S,u), i.e.:

(4) Rewriting:

- 22 -

277

1 ' 1
£f (5,u)==|u=0 £ (5-1,u-1)

odd (5)

1
£ (5+1,u-1)

(5) Simplification:

£ (5,u)==

(6) Tabulation:

1
£ (u A=C='t =0
5 1
£f (u-1)

Since fl4 has been defined by previous tabulation, there is
neither a semi-bound call nor an undefined function in the above
expression. Thus, partial computation terminates. The results

are the following two equations:

£ (u)==|u=0

£ (u-1)

23

278

f (u) ==]u=0

£ (u-1)

Example 2: Partially compute f2(4,u).

(1) Rewriting:

2
£f (4,u)==|u=0
2 .
£ (4+1,u-1)
(2) Simplification:
2
£f {4,u)==|u=0
2
£f (5,u-1)

(3) Tabulation:

(4) Rewriting:

- 24 -

279

£f (5,u)==

2
f (5+1,u~1)

(5) Simplification:

2
£f (5,u)==

2
£f (6,u-1)

(6) Tabulation:

£ (u)

Undefined functions f26,f27, ... appear indefinitely and

partial computation does not terminate. Thus, fz4 cannot be

defined.

Example 3: Partially compute f3(4,u).

(1) Rewriting:

3 .

factorial(-1)

(2) sSimplification: According to the definition of‘the
‘ - 25 -

280

factorial function, factorial(-1l) does not terminate. Thus, this

partial computation does not terminate.

Example 4: Partially compute f4(4,u).

(1) Rewriting:

f (4,u)==|{uzo

4
£f (u+l,u)

(2) simplification:
The same expression as the above.

(3) Tabulation:

4
£ (u)y==ju=0
4

£ (u+l,u)

Since neither semi-bound calls nor undefined functions are

included in the expression, the partial computation terminates.

Example 5: Partially compute f5(4,u).

(1) Rewriting:

5
£ (4+1,u)

(2) simplification:

- 26 -

281

If this rule 1is powerful erough to find that u=u always
holds, then partial computation terminates and the result is 0
(i.e. f5(4,u)=0). However, if boolean expression u=u is not:
evaluated because u is unknown, partial computation of f5 at k=5
is performed. Thus, the same as in Example 2, partial

computation will not terminate.

Example 6: Partially compute f6[u;(A,B)].

(1) Rewriting:

(a,B)

6 .
£ [u;(A,B)l=={null{u]

: ()
cons [car{u];f [cdr[u]; (A,B)]]

(2) Simplification:
The same as above.

(3) Tabulation:

(A,B)

£ [u]:inull[u]
(a,B) 6
cons [car[u];f [cdr[u]]l
A,B)

Partial computation is terminated and projection f6(A B),is
' ’

produced.

In the above'examples, partial computation of f2vand f3 do

not - terminate, but total computation terminates, at u>=0 (see
Table 1). The reasons are as follows:

(1) The value of known variable k changes indefinitely (for

- 27 -

282
£2).
(2) Infinite computation that can be performed based upon

known variable k and constants is included (for f3).

Table]l: Summary of Examples.

Total computation Partial computation
1l 4 5 6 1 4 5 6
Terminating £ ,-3,f , £, £ £, £, £, £
(u20)
1 4 2 3 5
Non-terminating £, ,£ £, £, £
(u< 0)

As described 1in Chapter 3, partial computation can be
applied to such data of finite structure as a pattern, a set of
axioms, a grammar or a program. Therefore, case (1) above will
not happen in practical application. Furthermore, case (2) will
not happen either, if the programs to be partially computed are
written carefully. Thus, projection machine cl described above
seems powerful enough to be practical.

Tabulation is a unique feature of ol (Tabulation technique
for ALGOL-like programs was described in [18]). The first paper
to mention the importance of tabulation in partial computation
was probably [16]. Kahn[23] also mentioned a powerful tabulation
method using Prolog.

Ershov([13] and REDFUN[6] devised mechanisms to terminate
partial computation in such special cases as when the value of k

does not change. For example, their Jd. can terminate for partial

- 28 -

283

computation of f(k,u), where

f(k,u)==|u=0

£(k,u-1)

and the projection fk(u) is

f (u)==|u=0

£ (u-1)

However, their o 's do not terminate for partial computation

of fl in Example 1 above.

5. Technical Problems in Making d Practical

One of the most energetic‘ groups persuing how to make
partial computatidn practical is Professor Sandewall's group in
Sweden, ‘to the best of the author's knowledge. 1In that group,
Beckman([3], Haraldsson[20], Emanuelson[6], Komorowski[25] and
Kahn[23,24] have been working on the subject for a long time.
The recent achivements of Emanuelson[6] and Kahn[23] lead the
author to believe that a practical projection machine can,be
implemented in the near future,

The group has been trying to partilly compute LISP programs.
" LISP is one of the best real-world languages \for partial
computation research because its interpreter is simple and clear,

its programs can be easily manipulated as data, and its program

- 29 -

284

structure is similar to a recursive program schema. Therefore,
the Sandewall group's approach of establishing ol for LISP as
their first step seems very sound.

As described in the previous chapter, partial computation is
a repetition of (1) rewriting, (2) simplification and (3)
tabulation.

Rewriting 1is 1like so-called macro expansion and procedure
integration[30] in the optimization techniques of a compiler.
This operation is often performed in combination with

simplification (see Fig.6).

AFTER SIMPLIFICATION

ORIGINAL PL/I AFTER INTEGRATION
PROCEDURES
P:PROC(A);
B=5; .
C=R*B s P:PROC(A) ;
! B=5;

CALL Q(A,B); C=A;B' P:PROC(A) ;
RETURN(C) ; A=A*B; A=A*5;
END; RETURN (C) ; ENg?TURN(A),

END; !
Q:PROC(X,Y); !
X=X*Y;
END;

Fig.6 Example of the integration and simplificationf30],

Partial computation 1is useful because it automatically
improves program efficiency. However, since d produces a
projection by simple rules, there still remain redundant parts in
the projection, such as car[cons[x;y]] for y with no side-effect.
These redundancyvshould be avoided by program optimization, e.g.
car[cons[x;y]] should be x. This operation 1is algebraic

manipulation of a program that is similar to transformation of

sinx+cos?x into 1 in symbol manipulation (A more compfék example

- 30 -

285

of program manipulation[23] is shown in Appendix 3).

Therefore, simplification is not a process unique to partial
computation but'a common one for program optimization[30]. This
process 1s most important to the efficiency of a generated
program (i.e. a projection). Program manipulation will become
easier through advancement of Prolog-like languages.

Tabulation 1is a process used to associate program f and
known data k to projection fk' Essentially, it builds a table,

like that shown below, and searches through it.

_ function known data projection

£ k1 £
k1

£ k2 £
| k2

k3 g
g k3

g k4 g
k4

£ ' k5 £
| : K5

- . d
. . hd

. . .

For example, when there is a semi-bound call f£(k2,u+l), it

is replaced by f u+l) and the table is searched for the entry

k2!
of £, k2 and sz.

If the entry is found, partial computation of £(k2,u+l) is
not performed again. If the entry is not found, £, k2 and the
unfinished definition of £y, are entered into thé table and
partial computation of f(k2,u+l) is performed. (A ﬁore detailed

discussion of this is conducted in Chapter 4).

The tabulation technique 1is important not only in partial

- 31 -

286

computation but also in ordinal computation. It has been studied
for some time in the field of recursive programs[31,32].
Tabulation can be performed efficiently if a powerful hashing

mechanism is implemented[33].

6. Conclusion

In the last decade, the author never bélieved that a
practical projection machine could be implemented within 10
years. However, he is now more optimistic.

The achievements of Ershov, Emanuelson, Kahn and others
establish the basis for the theory and practice of partial
computation. Furthermore, the comming of a commercial LISP

machine and inauguration of the 5th generation computer project

in Japan will encourage research in this field.

7. References

Those papers not cited in this manuscript are also

included.
[Theory and practice of partial computation]

[1] Babich,G.Kh., The DecAS algorithmic language £for "the
solution of problems with incomplete information and its
interpreting algorithms. Kibernetika, No., 1974, 61-71
(Russian).

[2] Babich,G.Kh. et al., The Incol algorithmic laﬁéhage fér

computations over incomplete information. Programmirovanie,

- 32 -

287
No.4, 1976,24-32 (Russian).

[3] Beckman,L. et al., A partial evaluator and its use as a
programming tool. Datalogilaboratoriet, Memo 74/34, Uppsala
University, Uppsala, 1974 (also: Artificial Intelligence,vol.7,
1976, 319-357).

[4] cChang,C,-L. and Lee, R., Symbolic Logic’and Mechanical
Theorem -Proving, (Chapter 10.9) Academic Press, 1973.

[5]1 Dixon,J., The SPECIALIZER, a method of automatically
writing computer programs. Div. of computer Res. and
Technology, NIH: Bethesda, Md

[61] Emanuelson, P., Perfo:mance enhancement in a
well-structured pattern matcher through partial evaluation.
Linkoping Studies in Science and Technology Dissertations,No.55,
Software Systems Research Center,Linkoping University, 1980.

[7] Ershov., A.P., Problems in many-language programming
syatens. Language hierarchies and interfaces. LNCS, vol. 46,
Springer-Verlag, Heidelberg, 1976,358-428,

[8]~==~=======— , On the partial computation principle.
Information Processing Letters, No. 2, 1977. k

[9]——=——==m- and Itkin, V.E., Correctness of mixed
computation in Algol-like programs. LNCS,Springer-Verlag,
Heidelberg, 1977.

[10]—=~—=—————— and Grushetsky, v.vV., An
implementation-oriented method for describing algorithmic
languages. Proc. ‘of IFIP 77, 1977.

[11}-----—-—--—- +A theoretical principle of system prOgramming,
Soviet Math. Dokl. Vol. 18 (1977), No. 2.

[12] ===~ ,On the essence of compilation. IFIP Working

- 33 -

288

Conference on formal description of programming concepts, August
1977.

[13]-~=mmmmmm = ;Mixed computation 1in the class of recursive
program schema. Acta Cyberneticca, Tom. 4, Fosc. 1, Szeged,
1978.

[14] - Mixed computation: Potential applications and
problems for study, Theoretical Computer Science 18(1982) 41-67.

[15]———=—mm e ,On Futamura projection. bit, Vol.12, No.l4,
‘1980 (Japanese) .

[16] Futamura, Y., Partial evaluation of computation process:
an approach to a compiler-compiler. Systems Computers Contreols,
vol. 2, No. 5, 1971.

[17]-=—=——————— ,EL1 partial evaluator. Term paper
manuscript, AM260, DEAP, Harvard University, 1972.

[18]——-———-———;—,Compilation of Basic Transition Networks.‘
Term paper»manuscript, AM221, DEAP, Har&ard University, 1972.

[19] ~=——mmmmm e (Partial computation of computer programs.
AL78-80, Inst. ._Electronics Comm. Engrs. Japan, 1978
(Japanese) .,

[20] Haraldsson, A., A program manipulation system based on
partial evaluation. Linkoping Studies in Science and Technology
Dissertations, No.l4, Department of Mathematics, Linkoping
University, 1977.

[21] - ’ Experiences from a program manipulation
systems. Inﬁormatic Laboratory, Linkoping University, 1980.

| [22] Heuderson,P. and Morris,J.H., Jr., A lasy evaluator,
Techn. Report No. 75, January 1976, Computing Laboratory, The

University of Newcastle wupon Tyne (also: 3rd ACM Symposium on

- 34 -

289

principle of programming languages, January , 1976.

[23] Kahn, K., A partial evaluator of Lisp written in a Prolog
written in Lisp intended to be applied to the Prolog and itself
which in turn is intended to be given to itself together with the
Prolog to produce a Prolog compiler. UPMAIL, Dept. of Computing
Science, Uppsala University, March 1982.

[24]-——==~—- . The automatic translation of Prolog programs to
Lisp via partial evaluation. UPMAIL, Dept. of computing Science
; Uppsala University, P.O. Box 2059, Uppsala, Sweden.

[25] Komorowski, H.J., A specification of an abstract Prolog
machine and its application to partial evaluation. Linkoping
Studies in Science and Technology Dissertations, No. 69,
Software Systems Research Center, Linkoping University, 1981.

{26] Lombardi,L.A. and Raphael, B., LISP as the language for
an incremental computer. In E. Berkley and D. Bobrow (Eds),
The programming language LISP: Its operation and4épplication, MIT
Press, Cambridge, 1964. |

(27] —m—mmwm e -, Incremental computation. Advances in
computers, Vol. 8, 1967.

[28] Ostrovsky, B.N., Obtaining language oriented parser
systematically by means of mixed computation, in I.V. Pttosin,
Ed., Translation and Program Models (Computing Center,
Novosibirsk, 1980) 68-80 (in Russian).

[29] Turchin, V.F., Equivalent program transformation in
REFAL. The automated system for construction control. Trans.

of the CNIIPIASS institute, issue 6, M., 1974, 36-68 (Russian).

[Program optimization} recurtion removal and tabulation]

- 35 -

230

[30] Allen,F.E. et al., The experimental compiling system.
IBM J ,RES DEVELOP. Vol. 24, No. 6, November 1980.

[31] Bird, R.S., Tabulation techniques for recursive programs.
Computing Surveys, Vol. 12, No. 4, December 1980.

[32] Goto,E, Monocopy and associative algorithms in an
extended Lisp. Report of the FLATS Project, Vol. 1, October
1978, Information Science Laboratory, The Institute of Physical
and Chemical Research, Wako-Shi , Saitama 351, Japan.

[33] Keller, R.M. and Sleep, M.R., Applicative caching:
Programmer control of object sharing and lifetime in distributed
implementation of applicative languages. Proc. Functional
Programming Language and Computer Architecture, 131-140, Dec.
1981.

[34] Rish, T., REMREC - A program for automatic recursion-
removal in LISP. Datalogilaboratoriet, Uppsala University, DLU

37/24, 1973.
[LISP, Prolog and PAD]

[35] Fuchi, K., Programming 1languages based on predicate
logic. Inf. Processing journal of Japan, Vol. 22, No. 6,
588~591, June 1981 (Japanese).

[36] Futamura, Y. et al., Development of computer programs by
PAD (Problem Analysis Diagram). Proc. of the Fifth
International Conference on Software Engineering (New York: IEEE
Computer Society, 1981), 325-332.

[37] Kahn, K., Unique Features of Lisp Machine Prolog.
UPMAIL, Dept. of Computing Science, Uppsala University, March

1982.

- 36 -

291

[38] McCarthy, J. et al., LISP 1.5 Programmer's manual.
M.I.T. Press, Cambridge, Massachusetts, 1962.

[39] Nakashima, H., Prolog/KR User's Manual for Version C-2.
Wada Laboratory, Information Engineering Course, University of
Tokyo, August 1981.

[40] Weinreb, D. and Moon, D., Lisp machine manual. MIT AI

Laboratory, March 1981.
[Mathematical theory of computation]

[41] Kleene, s.C., Introduction to Meta—Mathematics.
North-Holland Publishiné Co., Amsterdam, 1952.

[42] Manna, 2., Mathematical Theory of Computation.r
McGraw-Hill, New York, 1974.

[43] Nakajima, R.,Introduction to Mathematical Information
Science, Asakura-Shoten, Tokyo, 1882 (Japanese).

[44] Wegner, P., Programming, Languages, Information science'
and Computer Organization. McGraw-Hill, New York, 1968.

[45] Yasuhara, A., Recursive Function Theory and Logic.

Academic Press, New York, 1971.
[5th generation computer project]

[46] Motooka, S., Overview of the 5th generation computer.
Information Processing Journal of Japan, 426-432, Vol. 23, ﬁo.

5, May 1982 (Japanese).

- 37 -

292

Appendix l: PAD (Problem Analysis Diagram) (343

PAD

chart and recursive program schema.

is a new program schema for a substitute for both flow

LISP and flow charts is described below.

f

Correspondence between PAD,

PAD LISP FLOW CHARTS
processing E
(LISP form)
selection P < , [(P->E1;T->E2]
&
definition} f£(x)=4E(f,x) fx]==E(f,x)
sequencing E1;E2
(in prog feature)
oo Alwnile ||
repetition p
comment | m—mee [conment | 1 e [comment
Exampies
] F:=1
- while F:=F*N;
FACT(N)== NYO Nellot ’

N¥FACT(N-1

)

or

- 38 -

RETURN(F)

| FETURNGE)|

293

Appendix 2: Early Research in the Field (Cited from [3])

Partial evaluation has been used by several researchers and
for a variety of ©purposes. We have identified the following

applications (in an attemted chronological order):

Lombardi and Raphael used it as a modified LISP evaluation
which attempted to do as much as it c¢ould with incomplete
data[26].

Futamura studied such programs for the purpose of defining
compilesrs from interpreters[lG].\

Dixon wrote such a program and used it to speed up
resolution[5].

Sandewall reports the wuse of such a program for code
generation in [S71].

Deutsch wuses partial evaluation in his thesis[D73], but had
written a partial evaluation program much earlier (personal
communication, December 1969). His idea at that time was to use
it as an alternative to the ordinary eval, in order to speed up
some computations.

Boyer and Strother Moore use it in a specialized prover for
theorems about LISP functions[B74]. Somewhat strangely, they
call it an "eval" function.

Hardy wuses it in a system for automating induction of LISP
functions[H73].

Finally, the language ECL[W74] can evaluate, during
compilation, a procedure call only containing "frozen" or
constant arguments. Most of these authors seem to arrive@‘at the

idea independently of each other, and at least number 2 thkough 5,

- 39 -

294

at roughly the same time.

~[B74] Boyer, R. and Moore, S., Proving theorems about LISP‘h
functions, Third 1International Joint Conference on Artificial‘
Intelligence, Stanford Research Institute, 1974.

[D73] Deutch, P.,An interactive program verifier. Ph.D.
thesis, Xerox, Palo Alto Research Center, 1973.

[H73] Hardy,S., Automatic induction of LISP functions.
Essex University, Dec. 1973.

[s71] Sandewall,E. A., Programming tool for management of
predicate~calculus—-oriented data bases. Proc. of Second
International Joint Conference on Artificial 1Intelligence,
British Computer Society, 1971.

[W74] Wegbreit, B., The treatment of data types in ELl.
Communications for the Association of Computing Machinery, 5,

251-64, 1974.

Appendix 3: An example of program manipulation [23]

Example: Produce an efficient new program combining two
programs.

Given programs:

1{x]: Compute the length of list 1.

i[x;y]: Produce the intersection of lists x and y.

New program to be produced:

li[x;yl: An efficient program - to compute the length of
intersection of x and vy.

Definitions:

- 40 -

295
1lx]== null[x]Z
| 1+1(edr(x]]

i(x;y]==|nulllx] [cons{ear[x];iledrix];yl] |

m[car‘[X];y]< @—ﬂ]

where m[x;y] is a predicate to give T if x is a member of y else

it gives NIL, i.e. m[x;y]=member[x;y].

Algebraic manipulation:

1ilx;y)==1[ilx;y]]
m{car{x];y] <

nulllx] !1[cons[car[x];i[cdr[x];y]]]J

N [iledr{x];v1]|

(From distribution over conditional expressions)

‘null[x]z !1+1[i[cdr[x];y]]l
m[car[x];y]<

Eli[cdr[x];y]ﬂ

(From the definition of 1)

:;;;IE;SZT"_{:] ’ !1+li[cdr[x];Y]l
m[car[X];y]<i

!li[cdr[x];y]|

(From the definition of 1i)
L:=0 I

while .
not [nu11[x]3|[—Lear [xdsv] <

‘:EEEEEEEEE] x::cdr[x][

(From recursion removal)

{L::L+Tl

- 41 -

