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ABSTRACT

Object oriented programming languages and the computer architecture to sup-
port the reliable and efficient execution of programs written in these
languages are important issues for providing better programming enviromment.
The main purpose of this paper is to establish the foundation for the design
and implementation of object oriented pfogramming languages - and object
oriented architecture. First, various definitions for gobject in existing
languages and'systems are surveyed, and then a new definition of object is.
introduced. The sketch of a new object oriented programming language whose
design is based on the definition is shown. Finally, issues in the design
and implementation of an object oriented architecture which direetly’reflects

both the definition of objects and the structure of the programming 1anghage
is described.

1. INTRODUCTION

Recent requirements for high level programming languages can be summar-

ized as follows:

(1) Easy to read/write programs,

(2) Flexible and yet efficient programming,
(3) Reliable execution, and

(4) Small software life-time cost.

Modular programming plays the most important role in satisfying these
requirements, and object orientation, which is the ultimate form of data

abstraction, is the paramount notion for achieving modular programming.
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Briefly, object oriented languages/systems are languages/systems in
which all the objectives of operations are called objects, and the operations

permitted to operate on an object are described in or together with that
object. Hydra [Wulf 75, Wulf 81], CLU [Liskov 79], and Smalltalk [Gold-
berg 76, Xerox 81] are systems/languages which adopted the notion of object
orientation. Actor [Hewitt 73, Hewitt 77] is a computational model which is
closely related to this notion. Although the notion of object orientation
has become popular in recent years, detailed definitions for object and
related terms differ much from one system to another. Thus, it would be
worthwhile to survey difinitions of objecg and related terms in order to
comprehend the reasons why such definitions are employed in their respective

systems.

In order to establish the foundation for the design and implementation
of object oriented programming languages and object oriented architecture, we
propose a model of object and computation on objects. The definitions of
object and related terms in this model are also described hereinafter. An
object oriented programming language is used both to exemplify how the model
is applied to object oriented programming languages and to give a sketch of
our new object oriented language which employs this model. This language 1is
featured by the decomposition of types into property and attribute, the
notion of multiple representation in a class, and the notion of 1link of a

name to another name.

As the level of abstraction in programming languages becomes higher,
architectural support 'for more efficient and reliable execution of programs
becomes indispensablé. A few object oriented machines have been proposed
[Snyder 79] or implemented [Giloi 78] [Rattner 80]. An architecture which
adopts the object oriented model and executes programs written in the new
object oriented language efficiently and reliably is outlined. Issues in the
design and implementation of the object oriented architecture, including pro-
gram structure, cache for object memory, the context switch/parameter passing
mechanism, variable length operations, and garbage collection, are also
described. Rationale for the new object oriented language and the architec-

ture are discussed.

The discussion in this paper is based on the preliminary discussion in
[Tokoro 82].

2. . A SURVEY OF DEFINITIONS OF OBJECT

In this section, we survey definitions of obqu; and related terms in
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some existing systems.
2.1. Object in Hydra

Hydra [Wulf 81] is the kernel of an operating system. Object in Hydra
is the analog of a variable in programming languages. An object is the

abstraction of a typed cell. It has a value or state. More precisely, an

object is defined as a 3~-tuple:
(unique name, type, representation)

A unique name is a name that differs from any other object. A type defines
the nature of the resource represented by the object in terms of the opera-
tions provided for the object. The representation of an object contains its

actual information content.

In Hydra, capability is the other important element for its conceptural
framework., Capability is the analog of a pointer in programming languages;
the main differences are 1) that a capabiiity contains a 1list .of permitted
access rights in addition to pointing to an object and‘2)‘that a capability

can be manipulated only by the kernel.

Representation may contain capabilities for other objects. That is to
say, representation consists of a data part which contains simple variables

and a C-list part which is a list of capabilities. Objects are named by path
routed from the current Local Name Space (LNS) of a program. Fig. 1 shows
objects in Hydra. v

Objects in Hydra can be envisaged as the extension of the notion of
storage resources in two directions: one is to incorporate type, i.e., the
set of operations defined over the object, and the other is to include capa-
bilities in an object. There is no notion of assignment at the object level.
Assignement is performed by copying a value (but not an object) into a simple
variable in the representation of an objeét. If we would like to incorporate
assignment at the object level, we could ask the kernel to store in a slot of
the current LNS the capability that points to an object. The slot is associ-
ated with the variable name to which the assignment has taken place. There
is no typé associated with a slot. Thus, we would do nothing with type

checking for assignment at the object level.
2.2. Objects in CLU

There are two basic elements in CLU semantics [Liskov 79], object and
Yariable. Objects are data entities that are created and manipulated by a

Program. Variables are just the names used in a program to denote objects.
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Each object consists of a type and a value. A type defines a set of
operations which create and manipulate objects of this type. An object may

be created and manipulated only via the operations of its type. The opera-
tions of a type are defined by a module called cluster which describes the
template (or skeleton) of the internal representation of objects created by
that type and the procedures of the operations of that type. An object may

refer to other objects or itself.

There are two categories of objects: mutable object and immutable
object. A mutable object may change its state by certain operations without
changing the identity of the object. Arrays and records are examples of mut-
able objects. If a mutable object m is shared by objects x and y, then a
modification to m made via x will be visible from y. There are also copy

operations for mutable objects.

On the other hand, immutable objects do not exhibit time-varying
behavior. Examples of immutable objects are integers, booleans, characiers,
and strings, There are immutable arrays, called sequences, and immutable
records called structure. Since immutable objects do not change with time,

there is no notion of share or copy for immutable objects.
Invocation, which is the procedure call in CLU, is specified as:
type $ operation ( parameters )

There is no subtype or derived type in CLU.

A type is declared for each variable in CLU programs. There are
literals for naming the objects (i.e., constants) of built-in types. A vari-
able can have type any to name an object of any type. There is an operation,
force, which checks the type of the object named by the variable. CLU also
has tagged_discriminated union types ggggﬁ for an immutable 1labeled object
and yvariant for a mutable labeled object. The tagcase statement is provided
for decomposing oneof and yariant objects. In assignment, the object which
results from the execution of a right-hand side expression must have the same

type as the variable to be assigned. There are no implicit type conversions.

Assignment y := z causes y to denote the object denoted by z (Fig. 2).
The object is not copied; after the assignment is performed, the object will
be shared by x and y. Assignment does not affect the state of any object.
The declaration of a variable specifies the type of the objects which the

variable may denote.



2.3. Actor Model

In actor model [Hewitt 73, Hewitt 78, Yonezawa 81], actor is the unified
entity of procedures, storage resources, and data. An actor is activated

when it receives a message.

A message conveys the requests of operations with or without data,
replies to requests or results of operations. Replies and results can be

passed to an actor other than the requesting actor.

There are two kinds of actors: pure actors and impure actors. A pure
actor is immutable while impure actor is mutable. The simplest impure actor
is called cell and accepts two kinds of messages: one 1is T"contents:" to
reference its content and the other is ™update: <value>" to update the con-
tent. Thus, variables in programming languages are implemented by using cell

actors. There is no notion of class or type for an actor.

Fig. 3 shows an actor named 3 which accepts a message "™+ 4" and returns
mrn and a cell actor named x which first accepts "update: 4", then accepts

"econtent:", and returns "4",
2.4. Smalltalk

In Smalltalk [Goldberg 76, Xerox 81], there are two basic elements:
object and variable. An object is a package of information and a description
of its manipulation. A variable is a name in a program which refers to

objects. An operation for an object is designated in terms of a message to

the object. A message contains selectors (i.e. the operation names) and
parameters.,
Class is a module which defines the operations to create an object and

the operations to operate on objects ereatéd by the class. An object which
is created by a class is called its instance. A class is itself an object.
A class may contain its own variables (i.e., the state of the class). That

is to say, a class is more than a template.

A class inherits methods (i.e. operations) directly from one (and only
one) other class. In such a case, the class from which methods are inherited
is called its super class. A super class itself may be subsumed under
another super class again. There is a special class called OBJECT, which is

the ultimate super class of any classes.

Smalltalk's objects are independent of the notion of storage resources.
Particularly, there is no explicit declaration for the internal representa-

tion of objects.
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In Smalltalk, there is no class (type) declaration for variables.
Therefore, it is not easy for a compiler to determine classes and methods at

compile-time. This impedes fast execution. It may possibly lead to 1less
reliable execution, since no (static nor dynamic) type checking is pehformed
for an assignment. There is research work on type inference at compile-time
done without changing the language construct [Suzuki 80] and on the incor=-
poration of explicit type declarations into variable declarationsin order to

increase reliability and efficiency of execution [Borning 81].

2.5. Discussion

Programming 1anguagés should be independent of the restrictions imposed
by the existing machine architecture, especially from the structure and
management schemes of storage resources., After we establish the firm founda-
tion as to what high 1level programming languages should be, performancé
issues for execution of programs should be discussed along with the design

and evaluation of new computer architecture.

We think the notion of objects employed in Smalltalk seems to be very
appropriate in the sense that it is independent of storage resources. The
notion of class and the inheritance mechanism of Smalltalk also seems to be
natural. We also think that the notion of variables in CLU is powerful in
the sense that a variable specifies the type of objects which can be denoted

by the variable.

In CLU, a'muggglg object is effectively used when it is:. shared by
objects which communicate through it. Communication, however, can also be
achieved by sharing a yariable, if such a mechanism is provided. Then, we
need not distinguish mutable objects from immutable objects. A mutable
object in CLU also contributes to reducing the number of memory claims and
reclamatidn. This will, however, not always be true in our programming
language that is proposed later, since objects of a class can vary in size.
An efficient memory claim/reclamation scheme should be provided by object

oriented memory architecture.

In contrast with CLU, the actor model employs a cell object which func-
tions as a yariable. A cell object can receive messages from two or more

objects. This is equivalent to sharing in CLU.

3. THE MODEL OF OBJECT AND COMPUTATION

In this section we present the model of objeet and computation with

definitions., Example programs are also shown to explain the model as well as
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to sketch our new object oriented language which employs this model.
3.1. Object and Name

Let us define name as an identifier which denotes objects. A name
corresponds to a variable in CLU. Assignment is defined as the association

of an object to a name.

We have decided to construct our model with object and name. This deci-

sion has been made through the following reasoning:

(1) The semantic structure of an information object is decomposed into two
disjoint subfunctions, the access/visibility control and the entity
which is the subject of operations. Name takes charge of
access/visibility control and object takes charge of the entity to be

operated on.

(2) History sensitiveness is achieved only by a name. Thus, a state change

occurs only when an assignment is executed, and is explicit.

(3) Sharing of an object is specified only through a name. There is no
implicit sharing of an object. (An object may be shared in the imple-
mentation, but it is not knownh or manipulated by programmers.) For this
purpose, we introduce 1link which relays a befefence to a name to the
referencee of the name. Thus, sharing is controlled by name which is
the access/visibility control function. Therefore, an object can remain

as an entity to be operated on.

An object which has no internal name space functions as an immutab;e
object. An object which has its internal name space may function as a mut-

able object.
3.2. Reconsideration of Type

In most of the strongly-typed languages such as CLU and ADA [ADA 801,
class or type is specified for yariable, although type is defined as a set of
objects on which a set of operations is defined. To specify a class for a
variable implies two purposes: one is to give information to compilers for
determining the class of an operation in advance of execution, and the other
is to check whether the assignment of an object to a variable is valid. This
situation is consistent unless we introduce subtype and/or derived Ltype.
When we introduce them, it becomes very difficult to infer the type of an
operation from the types of the variables [Feldman 79]. To make the situa-
tion worse, there are cases in which programs are correctly executed even

though the range of the operation does not cover the domain of a variable
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(but all the values associated with the variable). Such cases often occur,
as shown in the following:

x: integer; y: even i er; y = 2 % x;

Obviously, what is done first is to perform the multiply operation, and then
to perform the assignment of the result td the variable with an appropriate -
check. The type of the multiply operation is determined as .integer, unless
the type of constant 2 is explicitly specified as even integer. Even in the
case that constant 2 is explicitly specified as even integer, we do not usu-

ally define another multiply operator with the range of egven integers. Thus,

the assignment fails in compilation, though the statement is tautologically

correct.
In order to get rid of this situation, there are three alternatives:
(1) to abandon strong typing,

(2) to define all the operations with the domain(s) and type(s) of

operand(s) and the range(s) and type(s) of the results, or
(3) to introduce the notions of property and attribute.

The third alternative, which is proposed also by [Feldman 79] and [Wil-
liams 79], is most attractive. Property is attached to name and attribute is
attached to object. Property is the assertion for a name, which is described

in the form of a proposition.

Attribute corresponds to a specified type or class. Each proposition of
Dbroperty should specify at least an gttribute. Thus, the class of an opera-
tion is determined by the operands' properties at compile-time, and if it
cannot, by the operands' attributes at run-time. Property is validated at
compile~time if it is possible, or it is translated into object codes to ver-

ify when an association of an object to the name occurs at execution-time.

Properties of names are declared as shown in the following example.

i: property {i: integer};

j: property {j: integer; 0 < j < 100 };

k: property {k: integer; k mod 2 = 0};

m: property {m: integer; m > k};

x: property {x: anyof (real, integer);
CLASS$class(x) = real & x > 3.5 |
CLASS$class(x) = integer & x <= 0 };
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In an assertion proposition, it is permitted to refer to other names and
to invoke operations if necessary. CLASS$class(x) is the operation of the

most primitive class CLASS which will return the class of x.

In practice, it might be more amenable to programmers to declare pro-

perty as¥:

<name>: <attribute> [in <representation>]

[property <assertion proposition>];

where <assertion proposition> describes more detailed property which cannot
be expressed in attribute or representation. Representation is discussed
below. If the same proposition is used for many names, it would be benefi-

cial to use compile-time facility to define property texts.
3.3. Reconsideration of Representation

In most abstract data type languages, an operation is strongly related
to the representation of values. That is to say, one representation is asso-
ciated with and used in a class. An operation, however, should simply be the
mapping of values to values and be independent of their representation. That
is to say, we would like to unify semantically equivalent classes into one

class, regardless of the difference of representation.

In order to express a value, we need a bit-string ‘whieh is Jjust long
enough to express the value. Integer numbers of any size should be operated
on in a unified manner and the result should be generated in ‘appropriate
sizes. Binary integers and decimal integers should automatically be adjusted
in the operations. Floating numbers of any size and formats should - also be
operated on in a unified manner. The orthogonal and polar representation for
a complex number should be used interchangeably. The 1list representation,
dope vector representation, and 1linear representation for an array should
also be used interchangeably. In most cases, representation should not be
seen by programmers. For primitive representation such as length or radix,
computer architecture should provide the facilities for__ bit-strings
interpretation/generation/conversion in accordance with the description of
representation of an object. For more complex representation, programming
languages should provide a method of describing the

interpretation/generation/conversion of representations.

Thus, we introduce multiple representation in a class. That is to say,
a class can have multiple representations with their operations definitions,

¥ L clause surrounded by "["™ and "]" may be omitted.
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and the transformation rules between representation if possible. An example
of a multiple-representation class is shown as follows:

class complex is
create _xy,create_polar,add,sub,mul,div,
X _cordinate,y._cordinate,abs,angle;
rep structure {r, i: real} as orthogonal;
rep structure {r, theta: real} as polar;

procedure create_xy (x, y: real)
returns( orthogonal cvt)
return rep${ r: x, i: y } as orthogonal
end create xy

procedure add (x: orthogonal cvt, y: cvt)
returns (orthogonal ¢vt)
repcase y of
orthogonal: preturn complex$create xy (x.r
+ Y.r, X.i +y.1i);
polar: return complex$create xy( x.r +
y.r ® real$cos(theta),
X.i + y.r ® real$sin(theta) );
end repcase
end add

brocedure add (x: polar cvt, y: cvt) returns (polar cvt)

end complex

Note that we do not need to have different classes for orthogonal and
polar complex numbers, although the same effect could be expressed by tagcase
for the oneof type in CLU. Representation can neatly describe units, for

example, the class for length such as in meter, centimeter, inch, mile, and
so forth. Representation is attached to object in addition to attribute.
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3.4, On the Visibility and View of Objects

Access to an object should be regulated for the purpose of protection,
C bility, as used in Hydra, is one of the methods of regulating access.
However, we do not feel secure in using capability, since a given capability
is valid forever and is transferable. Thus, we introduce the notion of
scope. Scope resembles the access list method of protection [Denning 76] in
the sense that all the information for protection is kept in the accessed

entity, and the permission to access is determined by the accessed entity.

It should be noted, however, that scope is not specified for an object,
but is specified for a name. Scope specifies the yisibility of a name with
respect to time and usage. Like a virtual circuit in a communication net-
work, permission is given to an accessing entity, but can be revoked at any

time. The permission is not transferable to others.

As for usage, there are three different modes: evaluate enable/disable,
ggsogiate' enable/disable, and link enable/disable. If evaluation is enable
for a name which denotes an object, then the evaluation of the object returns
the object as a whole. If evaluation for a name which denotes a procedure in
the object is also enable, then the procedure can be evaluated. Associate
enable is equivalent to write enable in many operating systems. In our
object oriented programming language, yvariable must héve at least associate
enable for the surrounding context (i.e., local variable). Link enable is

used to specify that a name can be shared (pointed) by more than one other

name.

Scope can specify permission for specific accessing entities. Thus, we

can regulate access for each accessing entity at various modes.

It is sometimes strongly demanded that different views [Goldstein 80] be
provided for the same object. View is achieved by the use of link and scope.

3.5. The Model

In this section, we will summarize the definitions of object and related

terms discussed above.

The relations between an access and the accessed object are classified

into the following four hierarchical categories:

Scope: Scope defines the set of permitted accessing methods between an
access entity and the name to be accessed. That is to say, scope speci-
fies for a name the authorized accessing entities and access methods.
The access methods include evaluate and associate. This corresponds to
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capability. Thus, scope is used to regulate access to shared informa-
tion,

Property: Property defines the relation between a name and the set of.
objects which can be associated with the name. Thus, property is the
assertion of a name, which is validated at each association. Thus, pro-
perty ‘describes an assertion proposition .which is evaluated on associa=-

tion. - An assertion proposition may specify property and representation,
may refer to other names, and may invoke operations.

Attribute: Attribute defines the relation between an object and the set of
operations to be performed on the object. That is to say, attribute
corresponds to specifying class, and is used to check the eligibility of

an operation to be performed.

Representation: Representation defines the relation between an object and
its physical representation. For example, representation specifies rad- L
ices and sizes for an integer and real number, the orthogonal or polar
representation for a complex number, mapping methods for an array, and
the length of a string. Representation can be transformed dynamically

at the execution-time to meet the operation to be performed¥.
Thus,‘ bject, class, and name are formally presented as follows:

Object: Object is a package of information and the description of its mani-

pulation.. An object is represented as a 3-tuple:
(<attribute>,<representation>,<bits>)

An object can be envisaged as an environmenti(or context), where <attri-.
bute> specifies a class and <representation> and <bits> are local data

. in the environment.

Qla§§: Class is a module which defines the operations to create an object
and the operations to operate on objects created by the class. An
~object which is created by a class is called its instance. A class is

‘itself an object. A class may contain its own variables.

Name: Name is an identifier that denotes an object (i.e., the current

object or nil). A name is represented by a quartuple:

(<identifier>,<scope>,
<property>,<object pointer>)

® and the property of name to be associated, if necessary.
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Objects can be referenced only through names.

3.6. Operations

We define three basic operations for the interpretation of programs,
~association, evaluation, and link. Association, which is used to assign a
value to a variable, performs the association of a name with an object. This

basic operation is expressed in the following form:
assoc (<name>,<object>)

Association frees the old object that has been associated withk a name from
the name and then associates a new object with the name. In advance to this
association, the eligibility of the access right of association’ is checked
first according to the scope of the name, and then the eligibility of associ-
ation of the object to the name is checked according to the attribute (and
representation, if necessary,) of the object and property of the name.

The evaluation of a name or operation on objects returns an  object.

Evaluation is expressed in one of the following forms:

eval (<name>)
‘gzg; (<class name>$<procedure name>

<parameter list>)

where <parameter list> represents the list of names. The eligibility .of
evaluation of the name or operation is checked in advance according to the
Scope of the name or operation. Evaluation of <name> simply returns the
object denoted by the name. Evaluation of a procedure is performed as fol-
lows: after the necessary checking is performed, the context of the <pro-
cedure name> of the <class name> is created; after the parameters are passed,
the procedure body is executed. - The returned object has attribute and

epre ion, but can have neither property nor scope until it is associ-
ated with name. Object is, therefore, defined as the entity as a whole that
is associated with name.

Thus, for example, the statement z := x + y is compiled as either of
the followings:

assoc( z, eval( number$add( x, y ) ) )

which is the object program when the compiler knows that the class of x is
type number, or
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assoc( z, eval( CLASS$class(x)$add( x, y )))

when the compiler does not know the class of x.

Link makes a link from one name to another. This basic operation is

expressed in the following form:
link( <from name>, <to name> )

Assume this operation has been performed. Then, the evaluation of <from
name> keeps performing this operation along with this link until it reaches
the ultimate object. Checking of the eligibility of access is done at every
name it hauls. Association of an object to <from name> associates the object

to the ultimate name of <from name>.
link( <name>, undefined)

unlinks <name> and denotes undefined.

4. THE OBJECT ORIENTED ARCHITECTURE
4.1. Proposal

In order to perform a computation, we need a program and information.
Thus, the internal structure of a computer can be envisaged as the pair of an
operational unit and an informational unit. The operational unit controls
and executes operations, while the informational unit preserves and suppiies
information. In conventional architecture, the operational unit and thé
informational- unit <corresponds to CPU and the memory, respectively. The
interface between CPU and the memory is performed in terms of the physical
memory address, The memory returns a string of bits to the CPU, In the
object-oriented architecture proposed here, pnames are used for this inter-
face. The informational unit returns gbjects.

- The names, which interface the operational unit and the informational
unit in the objeet"oriented architecture, are similar to the names in the
éapability based architecture [England 72] [Myers 81] [Houdek 81] [IBM 80] in
the 'sensé that they are unique in the system. In order to make distinction
between the local information enviromment of a program segment and the global

information environment of the system, the object oriented architecture pro-
vides the local name space and the global name space. Fig. 6 shows the con-

ceptual level description of a procedure being executed on the object
oriented architecture.

During the evaluation of a class procedure of an instance, the instance
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logically contains the procedure object. Thus, even though different
instances belong to the same class, these instances can be evaluated (exe-
cuted) simultaneously. However, multiple procedures of an instance cannot be

evaluated simultaneously.

The functions of the informational unit are to regulate all the access
to objects as well as preserve objects. The informational unit supports the
virtual memory system. The informational unit is also 1in charge of doing

garbage collection.

The four principal functions of the operational unit are the following:
1) to check whether or not the attributes of objects are eligible for an
operation to be performed, 2) to find an appropriate resolution for the
representation of objects, 3) to perform the operation on the objects, 4) to
request the informational unit to access/preserve the object with a name,
The operational unit also controls the sequencing of instructions and process

activities.

4.2. Issues

Issues in the design and implementation of the object oriented architec-

ture are described here.
(1) Attributes

An attribute can be either primitive or structured. Examples of primi-
tive attributes are boolean, character, integer, fraction, real, and complex.
A structure object supplies a space for names and has an internal addressing
mechanism, so that an element of the structure object is accessed via an‘ele-
ment name. An element of a structure object may be a structure or a primi-
tive object. Some typical structure attributes are array, §Lglgg; record,
stack, and list. Nil is defined here as the value of an object whose
representation is not defined. Undefined is defined as the value which indi-

cates that the object name is not associated with any object.
(2) Program Representation and Procedure Invocation

A procedure object is represented by a tree of segments, each of which
represents a block in a block level. There are no branch instructions that
specify memory addresses. Control branchs to the top of a segment and
returns from the bottom of the segment without‘exception, and thus structured

programming is attained at the architectural level.

A procedure is invoked by evaluating the name of the procedure with
actual parameters. Thus a procedure invocation can be envisaged as the
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passing of a message to the procedure object. The scope of the name of the
procedure is checked as to whether it is executable (evaluate enable to the

caller) or not. If it is executable, the eligibility of the association of
the actual parameters with the formal parameter names is checked according to
the scope and property of each formal parameter name. Then, the local name
table is created in accordance with the procedure template, and the actual
parameters are associated with the formal parameters. The local name table
is freed when the execution of the procedure is completed. Therefore, a pro-

cedure object cannot be history sensitive.

(3) Name Table Structure

As seen in commércialized object oriented computers such as Intel U432
[Rattner 80] [Intel 81] and IBM System 38 [Houdek 81] [IBM 80], fast address
transformation via a chaih of tables is the most'impoftant issue for higher
‘bgrformance. Fast hashing hardware such as [Goto 77]-and enough table looka-

side buffers are indispensable.

Placing a simple object to the pointer part of an entry of address
transformation tables should also be considered. In our object oriented
architecture, basic operations are performed in variable size fashion.
Therefore, we place into the pointer part a simple object whose length is
less than or equal to that of the pointer part. If the length of an object
is larger, the object is created in the heap area of the system.' Since the
length of most of the primitive objects is less than the length of the object
pointer, this strategy will result in a fast execution speed with variable

length operations.

(4) Maximal Utilization of Cache

--Since ‘it is expected that the instruction and data access patterns
differ greatly from each other in the object oriented enviromment, to provide
separate caches for instruction and data sounds reasonable and effective.
The instruction cache would be similar to those which are used in existing
machines. However, the data cache would be peculiar to the object oriented

architecture.

The data cache should be designed to provide for the very fast creation
of objects. The object oriented architecture would try first to create an
object on the data cache. If the cache has no free space, one or more
objects which have copies in main memory and/or which are expected not to be
referenced in the near future are rolled out. Thus, the cache acts as a fast

local nmemory. The cache does not have to be a partial copy of the main
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memory addresss space, but can provide a separate address space.' A separate
garbage collection (possibly with a different scheme) from main memory might

be effective for the data cache.
(5) Fast Context Switching and Parameter Passing

It is well known that a procedure call instruction appears on the aber-
age every 10 instructions in the object codes of a high level language pro-
gram. In object oriented language programs, the frequency of the apparance
is expected to be higher. Thus, fast context switching/parameter passing
mechanisms are of particular significance. Since our object oriented archi-
tecture is not a general register machine, fast context switching/parameter
passing mechanisms by optimized general register usage such as those employed
in IBM 801 [Radin 82] or RISC [Patterson 81] cannot be employed. Object
oriented context switching/parameter passing mechanisms are being investi-
gated. The use of multiple stacks with stack caches have been of special

interest.

(6) Yariable Length Operations

One of the purposes of our object oriented architecture is to provide
variable' length operations by hardware. Variable size operations for binary
and decimal integers, boolean, and character strings will be implemented by
hardware. Variable size floating-point operations by means of recurring

rationals [Yoshida 82] are being considered for hardware implementation.
(7)- Support for Dynamic Checking

We have decided on the policy that in order to generate efficient object
codes the compiler checks the eligibility of access and operation as much as
it can at compile-time, and leaves what it cannot check at compile-time for
dynamic checking at execution time. We employ tags [Iliffe 68] [Feustel T72]
for frequently used properties, attributes, and representations. Thus, we

need high speed tag manipulation hardware.
(8) Garbage Collection

In object oriented architecture efficient garbage collection schemes
must be adopted. ‘>This is especially important in our architecture, since
objects are not only dynamically created and freed but also the sizes of the
bit strings vary in concert with their values. The sizes are indicated in
their representation specification. Thus, we might have to incorporate com-

paction as well as garbage collection.

We employ the combination of the reference counter method and the

- 17 -



18 -

marking method for garbage collection. - In most cases, the reference counter
method is effective and efficient. For the cases in which links make a cycle

and in which a reference counter overflows, the marking method is effective.
The employment of a garbage collection processor is being considered in the
informational unit. It will run parallel with the other part ‘of the 1nforma-

tional unit. .

" The object'Oriented langnage deScribed in thisdpaper 'provides' us with
powerful and yet flexible descriptivity. The decomposition of types into
ngggztx and a ttrib gte, the notion of letip;e ggnesegtgt;on in a class, and
the notion of ;;g; of one name to’ another are most novel features of the

.language.

- The object oriented architecture that directly .supports . this 1language

brings us the follow1ng advantages:

(1) Information can be independent of programs. and . programming languages.
' This 1ndependence enables sharing of information among programs written

'1n different programming languages. ‘

(2) ~Programs become independent of the types, structures, and representation
- of data. This enables a procedure to be used with parameters of various

Pproperties as long as the algorithm is the same.

(3) Increased software reliability and debugging capability arerachieved, by

the dynamic checking of scope, property, and attributes.

. . The issues 1n the de51gn and 1mplementation of . this architecture are
described for the rialization of versatile,4eff1cient,nand fast VLSI object
or;!.ented computers. Since the VLSI technology has alr‘eady brought us . more
than »af-millionltransistors on a chip, author believes that we will have the

object oriented architecture in a microcomputer in the very near future. .

The final decision for the design of the object  oriented. language is
being made by the object oriented programming/processing system (OOPS!) group
jtiKeio Uniyersity; The des1gn of the architecture is also being performed

kalong w1th performance evaluation.
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