Skip to main content

Estimating a probability using finite memory

  • Conference paper
  • First Online:
Foundations of Computation Theory (FCT 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 158))

Included in the following conference series:

Abstract

Let {X i āˆži=1 } be a sequence of independent Bernoulli random variables with probability p that X i =1 and probability q=1 āˆ’ p that X i =0 for all iā‰„1. We consider time-invariant finite-memory (i.e., finite-state) estimation procedures for the parameter p which take X 1, ... as an input sequence. In particular, we describe an n-state deterministic estimation procedure that can estimate p with mean-square error O(log n/n) and an n-state probabilistic estimation procedure that can estimate p with mean-square error O(1/n). We prove that the O(1/n) bound is optimal to within a constant factor. In addition, we show that linear estimation procedures are just as powerful (up to the measure of mean-square error) as arbitrary estimation procedures. The proofs are based on the Markov Chain Tree Theorem.

This research was supported by the Bantrell Foundation and by NSF grant MCS-8006938.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Chandrasekaran and C. Lam, ā€œA Finite-Memory Deterministic Algorithm for the Symmetric Hypothesis Testing Problem,ā€ IEEE Transactions on Information Theory, Vol. IT-21, No. 1, January 1975, pp. 40ā€“44.

    Google ScholarĀ 

  2. T. Cover, ā€œHypothesis Testing with Finite Statisticsā€, Annals of Mathematical Statistics, Vol. 40, 1969, pp. 828ā€“835.

    Google ScholarĀ 

  3. T. Cover and M. Hellman, ā€œThe Two-Armed Bandit Problem With Time-Invariant Finite Memoryā€, IEEE Transactions on Information Theory, Vol. IT-16, No. 2, March 1970, pp. 185ā€“195.

    Google ScholarĀ 

  4. J. Doob, Stochastic Processes, Wiley, New York, 1953.

    Google ScholarĀ 

  5. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1957.

    Google ScholarĀ 

  6. P. Flajolet, ā€œOn Approximate Counting,ā€ INRIA Research Report No. 153, July 1982.

    Google ScholarĀ 

  7. R. Flower and M. Hellman, ā€œHypothesis Testing With Finite Memory in Finite Time,ā€ IEEE Transactions on Information Theory, May 1972, pp. 429ā€“431.

    Google ScholarĀ 

  8. M. Hellman, ā€œFinite-Memory Algorithms for Estimating the Mean of a Gaussian Distribution,ā€ IEEE Transactions on Information Theory, Vol. IT-20, May 1974, pp. 382ā€“384.

    Google ScholarĀ 

  9. M. Hellman and T. Cover, ā€œLearning with Finite Memory,ā€ Annals of Mathematical Statistics, Vol. 41, 1970, pp. 765ā€“782.

    Google ScholarĀ 

  10. W. Hoeffding and G. Simons, "Unbiased Coin Tossing with a Biased Coin,ā€ Annals of Mathematical Statistics, Vol. 41, 1970, pp. 341ā€“352.

    Google ScholarĀ 

  11. J. Koplowitz, ā€œNecessary and Sufficient Memory Size for m-Hypothesis Testing,ā€ IEEE Transactions on Information Theory, Vol. IT-21, No. 1, January 1975, pp. 44ā€“46.

    Google ScholarĀ 

  12. J. Koplowitz and R. Roberts, ā€œSequential Estimation With a Finite Statistic,ā€ IEEE Transactions on Information Theory, Vol. IT-19, No. 5, September 1973, pp. 631ā€“635.

    Google ScholarĀ 

  13. S. Lakshmivarahan, Learning Algorithms ā€” Theory and Applications, Springer-Verlag, New York, 1981.

    Google ScholarĀ 

  14. F. Leighton and R. Rivest, ā€œThe Markov Chain Tree Theorem,ā€ to appear.

    Google ScholarĀ 

  15. F. Morris, ā€œCounting Large Numbers of Events in Small Registers,ā€ Communications of the ACM, Vol. 21, No. 10, October 1978, pp. 840ā€“842.

    ArticleĀ  Google ScholarĀ 

  16. C. Mullis and R. Roberts, ā€œFinite-Memory Problems and Algorithms,ā€ IEEE Transactions on Information Theory, Vol. IT-20, No. 4, July 1974, pp. 440ā€“455.

    ArticleĀ  Google ScholarĀ 

  17. K. Narendra and M. Thathachar, ā€œLearning Automata ā€” A Survey,ā€ IEEE Transactions on Systems, Vol. SMC-4, No. 4, July 1974, pp. 323ā€“334.

    Google ScholarĀ 

  18. J. von Neumann, ā€œVarious Techniques Used in Connection With Random Digits,ā€ Monte Carlo Methods, Applied Mathematics Series, No. 12, U.S. National Bureau of Standards, Washington D.C., 1951, pp. 36ā€“38.

    Google ScholarĀ 

  19. A. Oppenheim and R. Schafe, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

    Google ScholarĀ 

  20. L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

    Google ScholarĀ 

  21. R. Roberts and J. Tooley, ā€œEstimation With Finite Memory,ā€ IEEE Transactions on Information Theory, Vol. IT-16, 1970, pp. 685ā€“691.

    ArticleĀ  Google ScholarĀ 

  22. A. Sage and J. Melsa, Estimation Theory With Applications to Communications and Control, McGraw-Hill, New York, 1971.

    Google ScholarĀ 

  23. F. Samaniego, ā€œEstimating a Binomial Parameter With Finite Memory,ā€ IEEE Transactions on Information Theory, Vol. IT-19, No. 5, September 1973, pp. 636ā€“643.

    ArticleĀ  Google ScholarĀ 

  24. F. Samaniego, ā€œOn Tests With Finite Menory in Finite Time,ā€ IEEE Transactions on Information Theory, Vol. IT-20, May 1974, pp. 387ā€“388.

    ArticleĀ  Google ScholarĀ 

  25. F. Samaniego, ā€œOn Testing Simple Hypothesis in Finite Time With Hellman-Cover Automata,ā€ IEEE Transactions on Information Theory, Vol. IT-21, No. 2, March 1975, pp. 157ā€“162.

    ArticleĀ  Google ScholarĀ 

  26. B. Shubert, ā€œFinite-Memory Classification of Bernoulli Sequences Using Reference Samples,ā€ IEEE Transactions on Information Theory, Vol. IT-20, May 1974, pp. 384ā€“387.

    ArticleĀ  Google ScholarĀ 

  27. B. Shubert and C. Anderson, ā€œTesting a Simple Symmetric Hypothesis by a Finite-Memory Deterministic Algorithm,ā€ IEEE Transactions on Information Theory, Vol. IT-19, No. 5, September 1973, pp. 644ā€“647.

    ArticleĀ  Google ScholarĀ 

  28. T. Wagner, ā€œEstimation of the Mean With Time-Varying Finite Memory,ā€ IEEE Transactions on Information Theory, Vol. IT-18, July 1972, pp. 523ā€“525.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marek Karpinski

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abstract, E. (1983). Estimating a probability using finite memory. In: Karpinski, M. (eds) Foundations of Computation Theory. FCT 1983. Lecture Notes in Computer Science, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12689-9_109

Download citation

  • DOI: https://doi.org/10.1007/3-540-12689-9_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12689-8

  • Online ISBN: 978-3-540-38682-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics