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Abstract.

We present a polynomial-time algorithm for the factorization of univariate polynomials
over algebraic number fields. Our algorithm is a direct generalization of the polyno-
mial-time algorithm for the factorization of univariate polynomials over the rationals

[71.

1. Introduction.

1n [7) a polynomial-time algorithm was given to chtor polynomials in one variable with
yational coefficients. In this paper we generalize this result to polynomials in one
variable with coefficients in an algebraic number field.

The existence of a polynomial-time algorithm for this problem is not surprising
in view of [7]. Kronecker's idea of using noxrms reduced the problem to the factoriza-
tion of univariate polynomials with rational coefficients, and in [5] it is shown that
this reduction is polynomial-time., Here we pursue a direct approach to the factoriza-
tion of polynomials over algebraic number fields. As suggested in [6: Section 5] we
regard the irreducible factor we are looking for as an element of a certain intebral
lattice, and we prove that it is the ‘smallest' element in this lattice. As we have
seen in [7] this enables us to effectively compute this factor by means of a basis
reduction algorithm for lattices.

The practical importance of our algorithm should not be overstated. This is main-
ly due to the rather slow basis reduction algorithm. For practical purposes we recom-
mend the algorithm from [6], where the ideas of the lattice approach are combined with
the well-known exponential-time factoring algorithm. In the algorithm from [6] the al-
gebraic numbers are represented by their residues module a certain prime-power pk.

In the last step (trial divisions to determine the true factors), the algebraic num-



bers are restored in a& unigue way by means of a reduced basis of a certain integral
lattice. Experiments have shown that this greatly reduces the running time (cf. [6]).

This paper is organized as follows. Section 2 contains some notation and defini-
tions; furthermore we recall there some results from [7: Section 1]. Section 3 deals
with the connection between factors and lattices; it generalizes the first part of
[7: section 2]. In Section 4 we give a glcbal description of the factoring algorithm
and we analyze its running time.

For a polynomial £ we denote by 6f the degree of £, by fLc(f) the leading

coefficient of £, and f 1is said to be monic if Lc(f) =1.

2. Preliminaries.

Let the algebraic number field @(a) be given as the field of rational numbers @
extended by a root o of a prescribed monic irreducible polynomial Fe zZ[T], i.e.
@(a) =@[T]/(F). This implies that the elements of @(x) can be represented as poly-
nomials in o over { of degree <6F. We may assume that the degree of the minimal
polynomial F is at least 2.

Similarly, we define Z[a]=Z[T]/(F) as the ring of polynomials in a over Z
of degree < 6P, where multiplication is done 'medulo F'.

Let f be a monic polynomial in @(a)[X]. In Section 4 we will describe how to
choose a positive integer D such that
(2.1) f and all monic factors of f in @(a)[X] are in %Z[(ﬂ[x}.
The algorithm to determine the irreducible factors of £ in @(a)[X] that we will
present, is very similar to the algorithm for factorization in #Z[x] as described in
[7]: first determine the factorization of f over some finite field (Z/pZ in [7]),
next extend this factorization to a factorization over a large enocugh ring tz/pkza
in [7]) , and finally use a lattice reduction algorithm to determine the factors over
®(%). Therefore we first describe how to chcose this finite field and this ring.

Let p be a prime number such that
(2.2) p does not divide D,
13 e Z[T)- and some integer £ we de-
or (Gmodpz} the polynomial Eitai modp"}Ti B (m/pi Z)[T]. In Section

and let k be a positive integer. For G=ZI

note by Gg



4 we will see that we are able to determine p in such a way that we can compute a

polynomial HeZ[T] such that:

(2.3) H is monic,
k
(2.4) B, divides F, in (=z=/p =)[T],
(2.5) H, is irreducible in (=z/pz)[T],
(2.6) (31)2 does not divide F; in (zZ/oz)[T].

1t follows that H, divides F, in (Z/pz)[T], and that 0<B8HSEF.
This polynomial H, together with the prime number p and the integer k, gives

us the possibility to construct the finite field and the ring we were looking for. We

denote by a the prime-power p'SH and by !2: the finite field containing g elements.

SH~-1

From (2.5) we derive that JE;I= (Z/pZ) [T]/(31] . Remark that F = {z a ui: a,e

1=0 1710 T4
Z/p Z} wvhere a, = (T mod “‘1” is a zero of Ei' This enables us to represent the
elements of JP% as polynomials in a, over Z/pZ of degree <$§H. The finite field
Fq corresponds to Z/pZ in [7]; we now define the ring that will play the role of
za/pkz in [7]. Let wk(rq) = ( E,’pk Z) ['I']/(Ek} be a ring containing qk elements.

-1 > & k
(=0 240t a4¢ Z/v Z) where a, = (T mod (Hk}) is a zero of

We have that Wk{JF";) = {L
l:lk. So elements of wk(m&) can be represented as polynomials in o over za/pkm
of degree < &H, and wk(r;!) can be mapped onto Fq by reducing the coefficients of
these polynomials modulo p. For aewk(li{‘; )[X] we denote by (amodp) e!;;[x] the re-
sult of applying this mapping coefficient-wise to a. Rematk that W'l(ZI"q )= l!';';
We now show how we map polynomials in %E[a][)ﬁ] to polyncmials in ]Fq[x] and
wk{lf“;)[x] respectively. Clearly, the cancnical mapping from z[T]/(F) to
(Z/pi' z)[Tl/ [Hl) defines a mapping from z[al to Wo(E, ), for f&=1,k. (Informally,
this mapping works by reducing the polynomial in @ module p?' and Hi(u} .} Foxr ace
#Z[a] we denote by (amod (pi,ﬂi)) € HE.“E;;) the result of this mapping. Finally, for
g=X, a_; xj' e%z[u][x] we denote by (gmod (pl,HEJJ the polynomial
Eit((n_imdp")ail mod {pl,ainxiewi(rq)tx]. Notice that D_lmdp" exists due to (2.2).
wWe conclude this section with a result from [7: Section 1] that we will need here.
Let bi' bz, ey bn € (%}n be linearly independent; we restrict ourselves to the case
that the n¥*n matrix having bl' bz' 3 o 1:~ﬂ ag columns is upper-triangular. The

i-dimensional lattice L, < (%}i with basis by, by, .../ b, is defined as L;=

¥ R - ) . &
zj=3ij _{Ij=1rj bj' rjez}. we put L=L_ .



(2.7) Proposition. (cf. [7: (1.11), (1.26), (1.37)]) Let BeZ,, be such that 1nbjlzsa
for 1%j%n, where || denotes the ordinary Euclidean length. There is an algorithm
that determines a vector belL such that Db belonos to a basis for L, and such that
Iﬁizszn_11xiz for every xe¢L, x=0; this algorithm takes O(n'4 log B} elementary
operations on integers having binary length 0O(nlogB). Furthermore, during the first
0“_4 logB) operations (on integers having binary length 0(i logB)), vectors 55.' be-

i=1
|x

o~ 2
longing to a basis for L;r are determined such that |b 12 S2 | for every

i i

x, €L

L €Ly xiro, for 1sisn. [

Informally, (2.7) states that we can find a reasonable approximation of the shortest
vector in L in polynomial-time. Furthermore, during this computation, we find approx-

imations of the shortest vectors of the lattices Ly without any time loss.

3. Factors and lattices.

This section is similar to the first part of [7: section 2]. We formulate the general-
jzations of [7: (2.5), (2.6), (2.7), (2.13)] to polynomials over algebraic number fields.
Let £, D, b, k, F, and H be as in Section 1. We put n=0£f; we may assume that n>(

Suopose that we are given a polynomial heZ[ellX] such that

(3.1) h is monic,

(3.2) (hmod (6%,8)) atvides (fmod (0%,m)) in W(E )X,
(3.3) (h mod (p,[-ll)) is irreducible in :I'-;[x],

(3.4) (h mod {9.31))2 does not divide (£fmod (p,H,)) in rétx].

We put £ =6h; so 0<2<n. In Section 4 we will see which extra conditions have to
be imposed on p so that h can be determined.

Let ho e%Z&[a][x] be the unigue monic irreducible factor of £ for which
[hmd(p,Hll} divides (homod(p,ﬂl)] in I‘a[x] (or eguivalently (hmd(pk,ﬂk)}

divides (h. mod (pk,H

)

b in wk(rqltx]. cf. [7: (2.9)]).

(3.5) In the remainder of this section we fix an integer m with f£sSm<n. We define
L as the collection of polynomials ge%%[u][ﬂ such that:

(i} Sgsm,

(ii) if 6g=m, then fclgleZ,

(i1} (hmod (pk 'Hk” divides (gmod {pk,ﬂk}} in "k( Fa ) Ex].



M= 1 =i ™a T S
- r a, u"X +a X with the op + 1)=4adilicl=
We identify such a polynomial g }:L=0 5=0 4% 20 \m 1=G LAl

sional wvector (aoo, am, ey ao sp-1 "7 am_l SF=1" am(}) . Using this identification
. 7z, méF+1
it is not difficult to see that L 1s a lattice in (-s-) . From the fact that

H and h are monic ((2.3) and (3.1)) it follows that an upper-triangular basis for
L is given by:
{%pkccj xi= 0sj<éE, 0si<fi}l U
God % k' smsy<or, 0si<a} v
{%ujhxi_i: Dsy<éF, Lsi<m} v
S e
We define the length |gl of g as the ordinary Euclidean length of the vector iden-
tified with g; the height g . ©f g is gefined as max“aij1 }. similarly we

define the length and the height of polynomials in z[T].

(3.6) Proposition. Let belL satisfy

m n
(3.7 pkiﬁH/GP>(Dfmx({n+l)6F(1+me) “‘1)") (sbmxtcmn&puwmx}“")”) .

Then b is divisible by hj, in @(a)[%] and in particular ged(f, b) = 1.

proof. The proof is similar to the proof of [7: (2.7)]; we therefore omit the details.
Put g=gcdl(f,b), and e= 8g. Identify the polynomials
(3.8) {ajxlf: 0<y<8F, 0<i<éb-e} U {njxib: 0<j<éF, O0<i<n-el}

. - i e
with (8F (n+éb-e))-dimensional vectors. The projections of these vectors on sz +

§F-1e 1 SF-1 xn+ fh=a=1

1 e b e+l
—_ X F e t— +—
DEZcr. Za X sz

+...+%Za form a basis for a

(6F (n+6b-2e) ) -dimensional lattice M'. Using induction on Jj o©ne proves that

3

@x'__ = (a 33,

=
ﬂ'max fmax(1+rmax
so that, for 0<j<déF and 0<i<db-e,

ladx'sl s £ ((n+1) §e) % (1 + lej.

With Hadamard's ineguality, and a similar bound on looxB|  we get

5?—-1)5 m

6F-1 3 )‘”

‘

a(M') = ((fmu((n+1155‘(1+?m ) )

= (b, (1) SF(14F )

where d(M') denotes the determinant of M'. With (3.7) this gives
k%68

ﬁ(l‘l'!-ml §F

It is easy to prove that hg divides g 4in @(o)[x] if and only if (hmod {p,ﬂl)l

(3.9) dm') <

divides (gmod (p,H,)) in ]t-;[xl (cf. [7: (2.5)]). So assume that the latter is not




the case; we will derive a contradiction from this.

Let ve%m[u]{x] be some integral linear combination of the polynomials in (3.8)
such that dv<e+ 2. It follows from our assumption that (vmed [pk,ﬂk)) =0 in
wk(rq)fx] (cf. [7: (2.7)]). Therefore, if we regard fZc(v) as a polynomial in a,
we have

(3.10) fLc(fc(v)) =0 meduloe pk if &c(v) <6H.

Now choose a basis beo’ bel' aaTag be SF-1" be+10’ S bn+5b—e—1 5F-1 for M such
that Gbij-i and Gic(bij)=j for e<i<n+fb-e and 0=j<46F, where lc{bij} is
regarded as a polynomial in a. From (3.10) we derive that 1c{£c(bij}} =0 mod pk

k
for 0Sj<8H and esic<e+l., Since Rc(ic(bi))e%‘, we cbtain |£c(2c{bij)112%-

3
for 0sj<0H and esi<e+i and iictlc(bij))IZ% for 6HS j<3F or e+Lsic<n+éb-e.

The determinant of M' equals the product of lictzc(bi Y}, so that

K268 X 1
ntn+6b—2e] §F = Dtn+m)6F E
Combined with (3.9) this is the desired contradiction. [

da(m') =

(3.11) Proposition. (cf. [7: (2.13)]) Suppose that

n,2m n,._4n+m n{6F-1)

(n+1) P (m+1) ¢ e M sr-1)

(3.12) Pkié!-!/&l? 5 (zn (mSF+1)

!
(n+m) (6FP-1) -n\", n+m 2n(6F-1)
(Hpmax) |discr(F) | ) (pf ) (B3l *

where discr(F) denotes the discriminant of F. Then we have Ghoﬁm if and only if

(3.7) is satisfied with b replaced by b, where b results from applying (2.7) to 1

Proof. In [8] we show that the method sketched in [10] combined with resumlts from [9]
gives the following upper bound for the length of a monic facter of degree sm of £
in 1z[al(x1:

fm(2(n+1)6P3{6F—1)6F-1 (2:)}}511;.'2(5?"1) lasscr (7) | 7.

With (3.6) the procf follows immediately. [

4. Description of the algorithm.

We describe how the results from the previous sections can be used to formulate a poly-
nomial-time algorithm to factor fe @(a)[X]. First we present an algorithm that deter-

mines h given D, p, # and h. Let d be such that fc%&[a][ﬂ.

0!



(4.1) Suppose that a positive integer D, a prime number p, and polynomials - cdol=d
and hez[al[X] are given such that (2.1), (2.2), (2.3}, (2.5), (2.6), (3;1), (3.3)
and (3.4), and (2.4) and (3.2) with k replaced by 1, are satisfied. We describe

an algorithm that determines h the monic irreducible factor of £ £for which

o’
(h mod {p,alﬁ) divides [h0 mod {p,Hl)} in I-‘q[x].

Put &=6h; we may assume that 2<n. We calculate the least positive integer
k for which (3.12) holds with m replaced by n-1:
2 GKLOH/GF (2“‘ (n-1)6F+1) (nﬂ]En—lnn(2if;l}]néf,5n~l(5?_1311{6?—1}

L
(2n-1) (6F-1) -n 2n-1 2n(8F-1)
) |aiscr(F) | ) v {DE...) IF| 2

(1+F
max

Next we modify H in such a way that (2.4) holds for the value of k just calculated.
The factor Hkn (B mod pk) of (‘r"modpk) gives us the possibility to compute in wk(Fq).
Therefore we now modify h, without changing (h mod (p,HIH. in such a way that (3.2)
holds for the above value of k. The computations of the new H and h can both be
done by means of Hensel's lemma [4: exercise 4.6.22; 11]; notice that Hensel's lemma
can be applied because of (2.6) and (3.4).

Now apply Proposition (2.7) to the (m6F + 1)-dimensional lattice L as defined
in (3.5), for each of the values of m=4%, 8+, ..., n=1 in succession; but we stop as
soon as for one of these values of m Wwe find a vector b in L such that (3.7) is
satisfied with b replaced by B. If such a vector is found for a certain value my
of m, then we know from (3.11) that éhOSm . Since we try the values m=1%, &+, ...

0

n-1 1in succession we also know that 6h0> mo-l. so 6h0=m0. By (3.6) ho divides

B in ©(a)[x] which implies, together with 655%, that 66=mj. From (3.5) (i)
and from the fact that h0 is monic we find that Bzcho, tor some constant ceZ.
Using that hOcL and that b belongs to a basis for L, we conclude that c=%1,
so that b= *hy -

1f on the other hand we did not find such a vector B in any of the lattices,

then we know from (3.11) that ﬁho‘- n-1. This implies that hoz £. This finishes the

description of Algorithm (4.1).

(4.3) Proposition. Denote by ru0=6hc the degree of the irreducible factor ho of
£ that is found by Algorithm (4.1). Then the number of arithmetic operations needed

by Algorithm (4.1) is o(mo(n55F6+ ngﬁi‘sloq(GFIPl) +n451-‘slog(nfmax) +n36F4lcgp)] and



the integers on which these operations are performed each have binary length

0(1’:355'3 - n25F3log(5F] Fl) + nzér-‘zlog{nfmx) +néFlogp).

Proof. Let m, be the larcest value of m for which Proposition (2.7) is applied;

1
so m,=m. or m, =m-1, From (2.7) it follows that during the application of (2.7)

170 1 0
to the (ml 6F + 1)-dimensional lattice, also approximations of shortest vectors were
obtained for the (md&F+ 1)-dimensional lattices, for ££mle. Therefore the number
of arithmetic operations needed for the applications of (2.7) for S‘.SmSml is equal
to the number of operations needed for m=m, only.

To analyze the latter we derive a bound B for the length of the vectors in the
initial basis for L (cf. (3.5)). Assuming that the coordinates of the initial basis
are reduced modulo pk, we derive from (4.2), |discr(F)l21, 6221 and 421 that
logB= 0(1126?2 + nGleogtéFfE‘H + néFlog(Dfmx) +logp). Combined with my -Otmo} and
(2.7) this yields the estimates given in (4.3).

It is straightforward to verify that the same estimates are valid for both appli-

cations of Hensel's lemma and for the computation of discr(F) (cf.[2],[11]). 0

(4.4) We now describe how to choose D, p, H and h in such a way that Algorithm (4.1)
can be applied. The algorithm to factor £ into its monic irreducible factors in
D(a)[X] then easily follows.

First we choose a positive integer D such that (2.1) holds, i.e. £ and all
monic factors of f in @(a)(X] are in -%ZZ[(:][X]. From [10] it follows that we can
take D=de, where d is such that fe%ﬂ[u]fx], and ¢ 4is the largest integer
such that c2 divides discr(F). This integer c¢ however might be difficult to com-
pute; therefore we take D=d|discr(F)| as denominator, which clearly alsoc suffices.

We may assume that the resultant R(£,f') e@(a) of f and its derivative ¢£'
is unequal to zexo, i.e. £ has no multiple factors in @(a)[Xx]. We determine p
as the smallest prime number not dividing D-discr(F)-R(£,£'); so (2.2) is satisfied.

Using Berlekamp's algorithm [4: Section 4.6.2] we compute the irreducible factor-
ization (Fmodp) =ﬂ:¥1 (Gimodp) of (Fmodp) in (Z/pz)[T]. This factorization
does not contain multiple factors because discr(F) ¥0 mod p. Combined with R(f,f')
¥ 0 mod p this implies that there exists an integer ioe {1; 2; <vu;t} such that

(R(£,£") med (p, (Gio modp))} #0; let H be such a polynomial Gio‘ We may assume



that H 1is monic, so that (2.3), (2.5), (2.6) and (2.4) with k replaced by 1 are
satisfied.

Next we determine the irreducible factorization of (f mod tp,Hl)) in Fq[x] by
means of Berlekamp's algorithm [1: Section 5], where quﬁﬂ and F = (z/pz)(Tl/ (B,).
(Notice that we use a modified version of Berlekamp's algorithm 'here‘, one that is poly-
nomial-time in p and 6&H rather than polynomial-time in the number of elements of
the finite field.)

Since f is monic the resultant R(f,f') is, up to sign, equal to the discrim-
inant of £, so that it follows from the construction of H that the discriminant of
£ is unegual to zero in ‘J-(‘;. Therefore (3.4) holds for all irreducible factors
(h mod ‘P"‘:” of (fmod (p,al)} in ]E'q[xl; we may assume that these factors are monic.

The algorithm to factor £ now follows by repeated application of Algorithm (4.1).

(4.5) Theorem. The algorithm sketched above computes the irreducible factorization of
any monic polyncmial fe%z&[a][){] of degree n>0. The number of arithmetic opera-
tions needed by the algorithm is O{nGGF +n56F610g(5FIFH + nSGFslcg{dfmx}) , and the
integers on which these operations are performed each have binary length

o(n 5?3+n251=‘ log(SF|F|) +n 252 log(af . ))-

Proof. It follows from [2] that the calculations of R(f,£') and discr(F) satisfy
the above estimates. From Hada;nard‘s inequality we obtain |discr(F)| = 6? Flr IZGF-
it follows that

log D=0(logd + 8Flog(SFIF()) -
In order to give an upper bound for the height of R(f,£'), we use the result f£rom [3].
Let A be a matrix having entries ai :Fol i3 R.T ez[T], for 1=i,js=m, and
some positive integer m. The determinant d(A) of A is a polynomial of degree

< m(6F-1) in z[T]. According to [3] the length, and therefore the heicht, of d(a)

is bounded from above by

SF-1 2.4
m‘;l 1(Egeg lagy N
Using this bound it is easily proved that the height of d(a) moduloF is bounded by
Gr-‘— 2.h (m—1) (6F-1)
(Mt el L R S .

It follows that



(R(E,£1)_, S (/awTorE ) 2. (/asEng )" (147 ) (2n-2) (§F-1)

where R{f,f') is regarded as a polynomial in a. We find from the definition of D
and p that

]
ﬂq BT, T g <d|discx(F) | (R(4Af,dF ”ma.x

and this yields in a similar way as in [7] that

p=0{logd +néFlog(éF|F|) +nlegn+n log(dfmax) )i

This implies that the computation of the prime number p, and the computation of the
factorizations of (Fmodp) 4in (Z/pZ)[T] and (fmod (9'31” in I‘q[x] satisfy the
estimates in (4.5). Theorem (4.5) now easily follows from the bounds on logD and

p, and from the observation that a monic factor g of £ in @(a)[X] satisfies
log(gmax)=t)(6Flog(6FlF1] +n +1°g(fﬁax)) (this follows from a bound similar to the

one given in the proof of (3.11)). 8]
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