12/17/2007 16:38 TFAX canon730i@rice.edu » Bel €1001/014

Yet Another Process Logic

(Preliminary Version)

Moshe Y. Vardi’

Stanford University

Pierre Wolpert

Bell Laboratorics

ABSTRACT

We present a process logic that differs from the one introduced by Harel,
Kozen and Parikh in several ways. First, we use the extended temporal logic of
Woiper for statements about paths. Second, we allow a “repeat” operator in the
programs. This allows us to specify programs with infinite computations. How-
ever, we limit the interaction between programs and path statements by adopting
semantics similar to the ones used by Nishimura. Also, we require atomic pro-
grams to be interpreted as binary relations. We argue that this gives us a more
appropriate logic. We have obtained an elementary decision procedure for our
logic. The time complexity of the decision procedure is four exponentials in the
general case and two exponentials if the logic is restricted to finite paths.

1. Introduction

While dvnamic logic [Pr76] has proven to be a very useful tool to reason about the
input/output behavior of programs, it has become clear that it is not adequate for reasoning about
the ongoing behavior of programs. In view of this, Pratt [Pr78) introduced a process logic, that
extended dynamic logic with the connectives “during” and “throughout”. Parikh [Pa78] chose to
extend dynamic logic with quantification over computation paths. His logic, SOAPL, is strictly
more expressive than Prate’s {Ha79].

T Rescarch supported by & Weizmann Post-Doctorat Fellewship and AFOSR grant 80-12907. Address: IBM

Research Laboratory, 5600 Cottle Rd., San Jose CA 95193,
+ Address: Beil Laberatories, 600 Mountain Ave., Murray Hill N1 07974,

12/17/2007 16:38 TFAX canon730i@rice.edu » Bel €002/014

-7

At the same time. a differcnt approach was taken by Pnueli, who developed a remporal logic,
called 71 [Pn77]. TL is oriented towards reasoning about the ongoing behavior of programs, but
does not allow programs to be mentioned explicitly. In dynamic logic, on the other hand, the pro-

grams are an essential part of the formulas.

Nishimura [Ni80] suggested combining the two approaches. The essence of his logic is that
computation paths are specified by referring to programs explicitly, as in dynamic logic, and tem-
poral logic is used to specify temporal properties of these computation paths. He showed that his
logic, while its syntax is much cleaner than that of SOAPL, is at least as‘expressivc as the latter,
This approach was continued by Harel et al. [HKP80]L. They extended Nisliimura’s logic by remov-
ing his distinction between state formulas and path formulas. Moreover, their logic, called PL, is

defined in such a way that it is a direct extension of dynamic logic.

We contend that PL is not an adequate logic of processes, since it is at the same time too

powerful and not powerful enough. Let us first see why PL is not powerful enough.

PI uses Pnueli’'s 7L for its temporal part. T/, however, is equivale'nt [GPSS30] to the first-
order theory of (N), the natural numbers with the less-than relation, and consequently cannot
specify arbitrary regular properties, Thus, from that aspect, the temporal pe;rt of PL is weaker than
its dynamic part (sce also [Wo81,HP82]). Another weakness of PL is its limited ability to deal with
non-terminating processes, e.g., operating systems. Such processes often run by repeatedly execut-
ing the same program. PL. however, cannot specify the infinite repetition of programs, while rea-

soning about non-terminating processes was a primary motivation for introducing process logics.

Let us now sce in what aspects 2L is too powerful. The interpretation of an atomic program
in PL is an arbitrary sct of paths. But in practice the interpretation of an atomic program is never
an arbitrary set of paths but rather a binary relation, Le., a set of paths of length two, consisting of
the initial state and the final state. Even if one wants to consider a higher-level program as atomic,

the interpretation of such a program should not be an arbitrary set of paths.

Finally, we believe that the distinction between state formulas and path formulas is inherent

to our thinking about processes. A computation path is characterized by the properties of its states,

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1003/014

-3_

and a state is characterized by the properties of the paths that start from it. The resulis of removing
this distinction are not very intuitive. Consider the PL formula [alsomef, where « is a program
and P is an atomic proposition, While we want it to mean that all computations of e eventually
satisfy P, it actually is true of all paths that either eventually satisfy P or can be extended by a
computation of « that eventually satisfies 2. The artificiality of the latter statement is self-evident.
This comes ag a result of the desire to have PL extend dynamic logic in a direct way, In our opin-
ion, any attempt to have a logic for ongoing behavior that directly extends a logic for input/output
behavior will lead to artificial results.

The logic that we introduce in this paper, which we call YAPL (yct another process logic) for
lack of a better name, is an attempt at solving all these problems. Its temporal part is extended to
deal with regular properties using the extended temporal logic (ETI.) described in [WVS83] follow-
ing [Wo81], it can specify the infinite repetition of programs, its atomic programs are interpreted as
binary relations, and the distinction between state and path formulas is maintained, Moreover, our
logic has an elementary decision procedure. Validity can be decided in two exponentials if we con-
sider only finite paths and in four exponentials if we also consider infinite paths. Our decision pro-
cedure is based on a translation from YAPL to a variant of prepositional dynamic logic {PDL)
[FL79] in the case of finite paths and to a variant of Strecit’s APD/. [St81] in the case of infinite

paths,

2. Definitions

2.1. Propositional Dynamic Logic with Repeat

We first consider the propositional dynamic logic of flowcharts (APDL) defined in [Pr81]. It
differs from PDL [FLT79] in having programs specified by automata rather than by regular expres-

sions. It is defined as follows:
Svntax

Formulas are defined from a sct of atomic propositions Prop and a set Prog of atomic pro-

grams. The scts of formulas and programs are defined inductively as follows:

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1004/014

e cvery element p€ Prop is a formula.
o if 1 and f; are formulas, then —fy and f1 /\ f» are formulas.
e if @ is a program and [is a formula, then <e>f is a formula

. If « is a nondeterministic finite automaton (nfa) over an alphabet X, where Z is a finite sub-

set of ProgU{f?] fis a formula}, then a is a program.
Semantics

An APDL structure is a triple M =(S,R.IT) where S is a set of states, R:Prog—>25%S
assigns binary relations on states to atomic programs, and [1:5—2f™F assigns truth values to the
propositions in Prop for each state in S. The function R is extended to all programs by the fol-
lowing definition:

. R(F)y={(s,s)sES}.

e R{a)={(s,5')} such that there exists a word w=wyw;--- w, accepted by a and states

$0,5% + + .+ » Sy 41 Such that s=sg, 5 =s5,..1 and for all 0<i <n we have (5,5, 1)ER (w;).
Satisfaction in a state s of the structure M is then defined as follows:
e for a proposition p€Prop, s = p iff p€I(s).
. sE 1N fHiffskE frandsE £
e sk mfiffnotsk fl.
. s E <ad>f iff there exists a state s° such that (s,5YER(a) and ¢ = f.

Even though APDL is exponentially more succinct than PD/[, its validity problem has the

same complexity {Pr&81,HSR3]: -
Proposition 2.1: Validity for APD/. can be decided in time Ofexp(n)). &

We also use AAPDL, which is to APDL what APDL [St81]is to PDL. That is, a new logi-

cal construct denoting infinite repetition is added:

e if o is a program, then Aa is a formula,

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1005/014

with the semantics:
. s Ao iff there exists an infinite sequence sp.51, ... of states such that sp=s and for all
n>0 we have {s,.5,+1€R (a).
The decision procedure given in [St81] for APPL can be adapted to AAPDL . We thus have
the following:

Propesition 2.2: Validity for AAPDL can be decided in time O{exp*(n)). m

2.2. Extended Temporal Logic

The temporal part of our process logic will be a propositional Ecmpoz;ai logic where the tem-
poral connectives are defined by nondeterministic finite automata {nfa). Note that the logic defined
in [Wo81] uses looping automata. Looping automata differ from nfa by not héving accepting states. -
They accepts only infinite words: an inﬁné.te word w is accepted by a looping automaton A if there

exists an infinite run of 4 on w. For a more detailed study of these logics see [WVSE3L
Formulas of ETL are built from a set Prop of atomiic propositions by means of’

. Boolean connectives
.

. Automata connectives. That is, every halting automaton 4 over an alphabet
Z={ay...,a,} is considered as an n-ary temporal connective. That is, if f1,..., f, are

formulas, then so is A(fy ..., ol

A structure for ETL is a finite or infinite sequence of truth assignments, i.e., a function
a:m =27 or g10—27% that assigns truth values to the atomic propositions in each state. For a
state i of a sequence o, satisfaction of a formula f, denoted i |4 f, is defined inductively as fol-
lows:
o for an atomic proposition p, i 4 p iff p€a(i).
s iEc NN NHilTiE;fiandiEg fr
s ks fiffnotik, /.

For the automata conngctives we have:

12/17/2007 16:39 IFAX canon730i@rice.edu - Bel

bl f;:oA(fl’---’fn)

if and only if there is a word w=aa;, " a; (1<i;<n) accepted by A4 such that, for all

0<j<m, i+jkqf

23. YAPL

Qur process logic (YAPL) includes both state and path formulas. Essentially, a state formula
is either a formula concerning a single state or specifies that the execution paths of a given program
started in that state must satisfy some path formula. A path formula is an ETL formula built from

state formulas, More precisely, we have the following:
Syntax
We consider formulas built from:
. A set Prop of atomic propositions p,g,r...
. A set Prog of atomic programs a,b.¢....

We now define inductively the set of state formulas, path formulas, and programs. We start

with state formulas:
. An atomic proposition p€ Prop is a state formula.
° If f1 and S5 are state formulas, then f1 /\ f> and —f) arc aiso state formulas.

. If « is a program (halting or repeating) and f is a path formula, then €a®f is a state for-

mula.
We now define path formulas:
. A state formula is also a path formula.
. If f1 and f; are path formulas, then /1 /\ fy and —f7 are also path formulas.

e If fi...f, are path formulas, and A is an #-ary ETL automaton connective, then A{f1,....f;)

is a path formmula,

Finally, we define programs:

0067014

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel € 007/014

-7 -

e If 4 is an nfa over an alphabet %, where Z is a finite subset of

Prog\J{f?| fis a state formula}, then «a is a halting program.

. If A is a Buchi automaton® (ba} over an alphabet %, where ¥ is a finite subset of

ProgU{f?| fis a state formula}, then a is a repeating program,

The notion of program in YAPL is more general than in APDL or AAPDL. Tt can be
gither a regular (for halting programs) or w-regutar (for repeating programs) set of execution
sequences, For simplicity we assume that the words accepted by programs consist of alternations of
tests (f/?) and atomic programs, starting with a test and, for finite words, also ending with a test.
There is no loss of generality, since consecutive tests can he merged and vacuous tests can be
inserted.

Semantics

A YAPL structure is a triple M =(S,R IT) where S is a set of states, R :Prog =257 assigns
a set of binary paths to atomic programs, and IT.5 =2 assigns truth values to the propositions
in Prop for each state in §.

Note that a YAPL structre is essentially a PDL structure. However, atomic programs are
viewed as sets of binary paths, rather than binary relations. This gives rise to a different way of
extending R to arbitrary programs. R assigns to each program a set of paths, i.e., a subset of $* or
a subset of §¥. Let @ be a program, and let 6=y, ...,8,,... be a path, i.e, a sequence of states
of . The path ¢ belongs to R (&) if and only if there is a word f12ay, . .., fy?a,, ... in a such
that 5; &= f; and (5,5, .)ER (a;).

For state formulas, satisfaction in a state s is defined as fo!lows.: :

o for a proposition p€ Prop, we have s k=p iff p€I1(s)

L] S}:flf\fziﬁ:.ﬂi:f]_&ﬁd.?':fg.

¥ A Buchi automaton [BuﬁZ]\m'cr an alphabet ¥ is a quadruple (S sp.deffa R), where S is a set of states, 5p€5 is
the initial state. §:5XT—25 is the transition table, and R €S i5 a sct of repetition states. An infinite word w is
accepled by A if there is a run r of 4 on w such that some state of R occurs infinitely ofien in r.

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1008/014

e sETfifnotskfy.

o s5<a>f if there exists a path p€R{«) starting in s such that s }=, f.

For path formulas satisfaction in a state s; on-a path p=(sp, ..., 5, .. .) is defined as in £TL:
o forastate formula f, 5 =, f iff s; = 1.

o sk, i\ friff sk, frand 58, fo.

o 5k, fiffnotsE, f.

For the automata connectives we have:

o sikp, AUy ... S0

if and only if there is a word w=g; g -+ @ (1<i;<n} accepted by A such that, for all

0$j§m, S+ f i:p f:j

3. Translation from YAPL to AAPDL and Decision Procedures

Qur goal is to show that every state formula of YAPL can be translated into an equivalent
formula of AAPDIL. The translation i3 done in two steps. First, we translate YAPL into a res-
tricted version of Hself. This version, called YAPL,, does not contain any path formulas except for
the formula frue, which is satisfied by all paths. Then, we show that YAPL,, can be translated into

AAPDL.

To give the translation, we neced to show how a YAPI formula of the form €oPg, where a
is a program and .g isan FTL formula can be transtated inte a formula of the form €e®rrue. The
path formula g can describe both finite and infinite paths. Our first step is to separate these two
cases. In [WVS83] it is shown how one can construct, given g, a ba A;, whose size is at most
exponential in the length of g, that accepts the infinitec models of g. In a similar manner one caﬁ
construct, given g, a nfa 4y, whose size is at most exponential in the length of g, that accepts the
finite models of g. Thus if « is a halting program and £ is a repeating program, then €a®g is
equivalent to a4, and €B%g is cquivalent to B> 4;. (Strictly speaking, these are not formulas

of the language, since Ay and 4; ar¢ not path formulas, Hewever, they can be viewed as such,

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1009/014

-9 .

since they describe paths.) Since nfa and ba have a similar structure, it suffices 1 consider formulas

of the form €a¥ A4, where a and 4 can either both be nfa or both be ba.

Recall that the words accepted by a are alternations of tests and atomic programs, starting
with a test. Thus, we will assume that « is of the form a=(51US4,50,8,.8). The states in §; are
what we call the test states and the states in &y are what we call the atomic program states. The
distinction between the two types of states is that all edges leaving a test state are labeled by a test
and lead to an atomic program state and all edges leaving an atomic program state are labeled by
an atomic program and lead to a test state. The initial state is a test state. If ¢ is a nfa, then the
accepting states R are also test states.

Consider now the path automaton 4. It is defined over the state subformulas of g. In other
words it can be viewed as defined over tests. Let 4 be (Q,g0.8,.P). What we want to do now is
to combine the automata e and A into a single automaton. If the resulting automaton is a', then

the translation of €a®/f into YAPL, will be €a"»rrue.

The idea of the combination of the two automata, is that we want to incorporate into the
automaton « the conditions imposed by the automaton 4. The construction proceeds as follows.
The states of o' are

O X(S:USy)
To define the transitions, we consider separately members of O XS5, and Q¢ XS, We denote by 51

a generic element of §; and similarly for s,.

e There is a transition from a state {g,sy) 10 a state (g'.5,) labeled by tesr; /\ test; iff there is a

transition from ¢ to ¢ labeled by fest; and a transition from s; to s labeled by fests.

e There is a transition from a state (g,5y) to a state {g,5;) labeled by an atomic program a iff

there is a transition from s, to 57 labeled by a.
. There are no other transitions,

We still have to make sure that the accepiance conditions for o and A are satisfied. Consider

first the case that both « and A are nfa. In this case the sets R and P are sets of accepting states.

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €1010/014

-10 -

Thus, the set of accepting states for a’ is PXR. Consider now the case that « and 4 are ba, For
a, the acceptance condition for a word w is that the intersection of R with the set of states appear-
ing infinitely often when w is fed to the automaton (inf{(w)) is nonempty. Thus, for a' we require
that the intersection of w with the set of states Ry ={{g,5}|g€Q /\ s€R} is non-empty. We also
have to check that the acceptance condition for 4 is satisfied. Thus we require that the intersection
of inf(w) with Ry={(g.5}|g€P /\ s€5,1US,} is non-empty. So, the acceptance condition for &'
is that the intersection of inf(w) with Ry and R, is non-empty.

Unfortunately, the condition we have just expressed is no longer a Buchi acceptance condi-
tion, S0 our automaton e’ is not a ba. Fortunately, we can transform a' into an ba a” that is a ba
by simply doubling its size. The construction, which improves a construction in [Ch74], is actually
general and can be applied to any automaton on infinite strings where accepiance of a word w is
defined by requiring a nonempty intersection of inf{w) with many given sets.

Let us consider an autométon A =(5,50,8) with two repetition sets R, and R,. The construc-
tion builds an automaton A4'. The automaton A" has two states for every state of . We will denote
its states by SUS’ where S” is a copy of S. Let R, be the corresponding copy of R,. The transi-
tions of 4" are the same as those of A, except that a transition from a state of Ry is replaced by a
transition to a state of S' (rather than (o a state of S) and a transition from a state of R, is
replaced by a transition to a state of § (rather than a state of). A word w is then accepted by
A’ if the intersection of inf{w) and R is nonempty.

So far we have translated formulas of YAPL to formulas of YAPL,. Consider now the
YAPL, formula €a®frue, where o is a halting program. It is easy to verify that this formulas is
cquivalent to the APDL formula <a>frue. So it remains to deal with formulas €aPtrue, where o

is a repeating program. Let a be (5,50,8,R), with R={ry, ..., n}. Let a; be the infinite pro-
k

gram (S,50,6,{r:}). It is easy to see that €a>rrue is equivalent to ‘\/1<(a i >true. Furthermore, let
=

B; be the finite program, (S.sq,8.{r}), and let y; be the infinite program (5,7.8,{r1). Then

€a;>rrue is equivalent to the AAPDL formula {8;>Ay;. This completes the translation.

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €011/014

- 11 -

Let us consider now the complexity of the translation. Translating the E77. formula g into
an automaton takes exponential time, and the size of the automaton is exponential in the length of
g. Thus the translation from YAPL to YAPL, is exponcntial. The translation from YAPL, to
AAPDL is quadratic. It follows that the translation from YAPL to AAPDL is exponential. Given

proposition 2.2, we have proven:

Theorem 3.1: Validity for YAPL can be decided in O(exp(n)). &

Consider now a restricted version of YAPL, denoted YAPL,, that deals with terminating
processes. There are no repeating programs in YAPL,. Thus programs are always given as nfa.
Hence, we need to consider only finite paths. The result of this restriction is that we never have to
deal with ba. The translation given above is now an exponential translation of YAPL, into APDL. _

We have proven:
Theorem 3.2: Validity for YAPL, can be decided in O(exp¥(n)). m

4. Results on Branching Time Temporal Logics

In [EHS82] a branching time temporal logic called CTL* was introdu;ceé, In CTL* paths are
described by 71 formulas, and state formulas are obtained by quantifying over paths. That is, if f
is a TL formula that decribes patiis, then 3/ is a state formula that is satisfied in a state s if there
is a path p starting at s that satisfies /. We can generalize the definition of CTZ* and define a
new logic, ECTL*, that is similar to CTL#*, but uses E7L rather than 7/ formulas to describe
paths. ECTL* (and hence CTL*) are interpreted over Structures similar to the ones used for
YAPL. The only difference is that for the branching time temporai logics, there is only one {impli-

¢it) atomic program. Moreover, ECTL* can be casily translated into YAPL.

Let us call the implicit atomic program in the temporal formulas @. Let a be the halting pro-
gram a*, and let B be the repeating program a®. It is casy to see that the ECTL* formula 3£ is
equivalent to the YAPL formula €a®/\/&B¥f. This gives an cxponential translation from
ECTL* (0 YAPL. Combining this translation with the above transiation of YAPL to AAPDL

stifl gives us an exponential translation from FCTL* to APDI as the two exponentials do not

12/17/2007 16:39 TIFAX canon730i@rice.edu » Bel €012/014

-12-
combine. Given propoesition 2.2, it follows:

Theorem 4.1: Validity for ECTL* can be decided in O(exp(n)). ®

This also solves the validity problem for CTL*, which was left open in [EH82].

5. Concluding Remarks

Our results raise some interesting questions about PL [HKP]. Let EPL be PL with two
additions, First, instead of using 77, formulas to describe paths, we use ETL formulas. With this
addition the logic is equivalent to Harel and Peleg’s RPL [HP82], so as shown there it is more
expressive than PL. Secondly, rather than having only regular programs we have both regular and

w-regular programs, We ask:
1. Is EPL more expressive than RPL?
2. Is the validity problem for EPL decidable?

We can answer both question in the affirmative if atomic programs are interpreted as binary rela-

tions, and we believe that this is also the answer for the general case.

A more Interesting question in our opinion concerns the right interpretation of atomic pro-
grams. We have argued that atomic programs should be interpreted as binary relations. One, how-
ever, may wish to reason on several levels of granularity, and what might be atomic at one level is
not always atomic at a higher level. This motivates interpreting atomic programs as sets of paths.
Interpreting atomic programs as arbitrary sets of paths is, nevertheless, still not justified. At the
most refined level of granularity, atomic programs are binary relations. Since higher-Jevel programs
are (w)-regular combinations of atomic programs, we should consider only sets of paths that arise
from {e)-regular combinations of binary relations.

From this point of view, an atomic program in the logic is a scheme standing for all (w)-regular

programs. We think this is worth investigating further.

12/17/2007 16:39 IFAX canon730i@rice.edu - Bel

-13 -

6. References

[Bu62]

[Ch74]

[EHS2]

[FL79]

J. R. Buchi, “On a Decision Method in Restricted Second Order Arithmetic”, Proc.
Internat. Congr. Logic, Method and Philos. Sci. 1960, Stanford University Press, 1962,
pp. 1-12.

Y. Choucka, “Theories of Automata on w-Tapes: A Simplified Approach”, Journal of
Computer and System Sciences, 8 {1974), pp. 117-141,

E. A, Ememon, J. Y. Halpern,“Sometimes and Not Never Revisited: On Branching
Versus Lincar Time”, Proceedings of the 10th Sympesium on Principles of Programming
Languages, Austin, January 1983,

M. Fisher, R, ‘Ladncr, “Propositional Dynamic Logic of Regular Programs”, Journal of

Computer and System Sciences, 18(2), 1979, pp. 194-211.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, “The Temporal Analysis of Fairness”,

[Ha79]

[HKPS0]

[HP$2]
[Ni80]

[Pa78]

Seventh ACM Symposium on Principles of Programming Languages, 1.as Vegas, January
1980, pp. 163-173.
D. Harel, “Two Results on Process Logic”, Information Processing Letters, 8 (1979), pp.

195--198.

D. Harel, D. Kozen, R. Parikh, “Process Logic: Expressiveness, Decidability, Complete-
ness”, Proceedings of the 21st Symposium on Foundations of Computer Science, Syracuse,
October 1980, pp. 129-142,

D. Harel, D. Peleg, “Process logic with Regula} Formulas”, Technical Report, Bar-Tlan

University, Ramat-Gan, Isracl, 1982,

H. Nishimura, “Descriptively Complete Process Logic”, Acia Informatica, 14 (1980), pp.

359-369.

R. Parikh, “A Decidability Result for a Second Order Process Logic”, Proceedings [9th

IEEE Symposium on Foundations of Computer Science, Ann Arbor, October 1978.

0137014

12/17/2007 16:40 IFAX canon730i@rice.edu - Bel

{Pn77}

[Pr76]

[Pr78]

[Pr8l]

St81]

[WoB1}

[WVS83]

- 14 -

A. Pnueli, “The Temporal Logic of Programs”, Proceedings of the Eighteenih Symposium

on Foundations of Computer Science, Providence, November 1977, pp. 46-57.

V.R. Pratt, “Semantical Considerations on Floyd-Hoare Logic”, Proceedings 17th IEEE

Symposium on Foundations of Computer Science, Houston, October 1976, pp. 109-121.
V.R. Pratf, “A Practical Decision Method for Propositional Dynamic Logic”, Proceedings
10th ACM Symposium on Theory of Computing, San Diego, May 1979, pp. 326-337.

V.R. Pratt, “Using Graphs to understand PDL”, Proceedings of .lhe Workshop on Logics

of Programs Yorkiown-Heights, Springer-Verfag Lecture Notes in Computer Science,

vol, 131, Berlin, 1982, pp. 387-396.

~ R. Streett, “Propositional Dynamic Logic of Looping and Converse”, Proceedings of the

13th Symposium on Theory of Computing, Milwaukee, May 1981, pp. 375-383.

P. Wolper, “Temporal Logic Can Be More Expressive”, Proceedings of the Twenty-
Second Symposium on Foundations of Computer Science, Nashviiie, October 1981, pp.
340-348,

P. Wolper, M. Y. Vardi, A. P. Sistla, “Reasoning about Infinite, Computation Paths”, to
appear in Proceedings 24th IEEE Symp. on Foundation of Computer Science, Tuscon,

Nov. 1983,

0147014

