Skip to main content

Key-problems and key-methods in computational geometry

  • Invited Lectures
  • Conference paper
  • First Online:
Book cover STACS 84 (STACS 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 166))

Included in the following conference series:

Abstract

Computational geometry, considered a subfield of computer science, is concerned with the computational aspects of geometric problems. The increasing activity in this rather young field made it split into several reasonably independent subareas. This paper presents several key-problems of the classical part of computational geometry which exhibit strong interrelations. A unified view of the problems is stressed, and the general ideas behind the methods that solve them are worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The design and analysis of computer algorithms. Addison-Wesley, Reading, Mass., 1974.

    Google Scholar 

  2. Brown, K.Q. Geometric transforms for fast geometric algorithms. Ph.D.Thesis, Rep. CMU-CS-80-101, Dep.Comp.Sci., Carnegie-Mellon Univ., Pittsburgh, Penn., 1980.

    Google Scholar 

  3. Cole,R., Sharir,M., and Yap,C.K. Convex k-hulls and related problems. Manuscript.

    Google Scholar 

  4. Edelsbrunner, H. Intersection problems in computational geometry. Ph.D.Thesis, Rep.F93, Inst.Inf.Proc., Tu Graz, Austria, 1982.

    Google Scholar 

  5. Edelsbrunner,H., Guibas,L.J., and Stolfi,J. Optimal point location in a monotone subdivision. Manuscript.

    Google Scholar 

  6. Edelsbrunner,H., O'Rourke,J., and Seidel,R. Constructing arrangements of lines and hyperplanes with applications. Proc. 24th Ann. Symp. Found. Comp. Sci. (1983), 83–91.

    Google Scholar 

  7. Edelsbrunner, H. and Welzl, E. Halfplanar range search in linear space and O(n0.695) query time. Rep.Flll, Inst.Inf.Proc., Tu Graz, Austria, 1983.

    Google Scholar 

  8. Graham,R.L. An efficient algorithm for determining the convex hull of a finite planar set. Inf. Proc. Lett. (1972), 132–133.

    Google Scholar 

  9. Gruenbaum, B. Convex polytopes. Pure and applied math. XVI, Interscience, London, 1967.

    Google Scholar 

  10. Kirkpatrick, D.G. Optimal search in planar subdivisions. SIAM J. Comp. 12 (1983), 28–35.

    Google Scholar 

  11. Kirkpatrick,D.G. and Seidel,R. The ultimate planar convex hull algorithm? Proc. 20th Ann.Allerton Conf. Comm., Contr., Comp. (1982), 35–42.

    Google Scholar 

  12. Knuth, D.E. Retrieval on secondary keys. Chapter 6.5 in Knuth, D.E.: Sorting and searching — the art of computer programming III. Addison-Wesley, Reading, Mass., 1973.

    Google Scholar 

  13. Lee, D.T. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comp. C-31 (1982), 478–487.

    Google Scholar 

  14. Lipton,R.J. and Tarjan,R.E. Application of a planar separator theorem. Proc. 18th Ann. Symp. Found. Comp. Sci. (1977), 162–170.

    Google Scholar 

  15. Lozano-Perez, T. Spatial planning: a configuration space approach. IEEE Trans. Comp. C-32 (1983), 108–120.

    Google Scholar 

  16. Megiddo,N. Linear-time algorithms for linear programming in R3 and related problems. Proc. 23rd Ann. Symp. Found. Comp. Sci. (1982), 329–338.

    Google Scholar 

  17. Nievergelt, J. and Preparata, F.P. Plane-sweep algorithms for intersecting geometric figures. Comm. ACM 25 (1982), 739–747.

    Google Scholar 

  18. Overmars,M.H. The design of dynamic data structures. Lect. Notes Comp. Sci. 156, Springer, 1983.

    Google Scholar 

  19. Overmars, M.H. The locus approach. Rep. RUU-CS-83-12, Dep.Comp.Sci., Univ. Utrecht, the Netherlands, 1983.

    Google Scholar 

  20. Preparata, F.P. and Hong, S.J. Convex hulls of finite sets of points in two and three dimensions. Comm. ACM 20 (1977), 87–93.

    Google Scholar 

  21. Schmitt, A. On the time and space complexity of certain exact hidden line algorithms. Rep. 24/81, Fak.Inf., Univ. Karlsruhe, Germany, 1981.

    Google Scholar 

  22. Seidel, R. A convex hull algorithm optimal for point sets in even dimensions. Rep. 81-14, Dep.Comp.Sci., Univ. British Columbia, Vancouver, 1981.

    Google Scholar 

  23. Shamos, M.I. Computational geometry. Ph.D.Thesis, Dep.Comp.Sci., Yale Univ., New Haven, Conn., 1978.

    Google Scholar 

  24. Shamos,M.I. and Hoey,D. Closest-point problems. Proc. 16th Ann. Symp. Found. Comp. Sci. (1975), 151–162.

    Google Scholar 

  25. Voronoi, G. Sur quelques proprietes des formes quadratiques positives parfaites. J. reine angew. Math. 133 (1907), 97–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Fontet K. Mehlhorn

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edelsbrunner, H. (1984). Key-problems and key-methods in computational geometry. In: Fontet, M., Mehlhorn, K. (eds) STACS 84. STACS 1984. Lecture Notes in Computer Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12920-0_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-12920-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12920-2

  • Online ISBN: 978-3-540-38805-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics