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Some Notation and Abbreviations 
Defined or First Used 
In Section(s) (see 

Notation Meaning,Comments also Index) 

A algorithm 19,23 

ar(A);ar(P) number of arithmetical operations 19,23 
involved in A; required in order 
to solve a problem P 

as(A) number of additions/subtractions 32,33 
involved in A 

AAPR accumulation of the accelerating 6 
power via reeursion 

b~(x~y) bilinear form in X,Y 2 

BA(n) bilinear algorithm for nXn MM 2,22,23 

BA(n,A) bilinear k-algorithm for nXn MM 23 

BBM Boolean MM 18 

bs(A) bit-space used by A 23 

bt(A) bit-time used by A 23 

bt(s),bt(*,s),bt(~,s) 18 

bs(P),bt(P) bit-time and bit-space of a 23 
computational problem P 

C the field of complex numbers 2 

c~ commutative rank 32 

C~o commutative A-rank 33 

C(g,h) g!/(h!(g-h)!) 8,9 

cond condition 25 

D domain of definition of Part 2-(Summary); 
problem or algorithm 23 

d degree of A-algorithm 6 

d shortest distance 18 only 
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det(W) determinant of a matrix W 19 

Det(n) the problem of the evaluation Part 2 (Summary); 
of the determinant of an nXn matrix 19 

DFT(n) discrete Fourier transform, 38,39 

E extension of a ring (field) 5 

E,E(n),e(n),E(A,D,h), error bounds Part 2 (~,mm~ry); 
E(Z(V),D,h) 23-30 

F rlng,field 2 

F[A] ring of polynomials over F 6 

f(i,J,q), f'(j,k,q), constant coeficients (from F) 2 

f''(k,i,q), 
f(c~,q),f'(p,q), 

f''(y,q) 

of bilinear algorithms 

f(i,j,q,A), 

f'(~,k,q,A), 

f"(k,i,q,A), 

f(c~,q,A), 

f'(p,q,A), 

f"(Y,q,A) 

coefficients (from F[A]) 

of bilinear A-algorithms 

f,f',f'',f,f',f'' 23 

FFT fast Fourier transform Intr.,2,38 

h(s) 21"s 23 

uH,w H complex conjugate of number u, 19 
conjugate transpose of matrix W 

I (also In) ) identity matrix (of size nXn) 19 

~h ( ~2, ~) ~-no~ of 
a matrix or of a vector 24 

log u logarithm to the base 2 of u I 



IX 

! 

Lq,Lq 2 

)! 

Lq 10 

M rank of algorithm, A-rank of A-algorithm 2,4,6 

MA,MS matrix addition,subtraction 20 

MI matrix inversion Part 2 (Summary); 
19 

MM matrix multiplication Intr., I 

(m,n,p); the problem of mXn 
also m×nXp MM by nXp MM 2 

O(g(s)),o(g(s)) see Notation 18.1 Intr.,1,18 

0,0 n null matrix 19,20 

PM polynomial multiplication 2 

Q field of rational numbers 2 

Q unitary matrix (a QR-factor) 20 

Q(s) computed approximation to Q 26-30 

~ * 

QR,QR,QR 20 

R upper triangular matrix 20 
(a QR-factor) 

R(s) computed approximation to R 26-30 

R field of real numbers 2 

set of vectors in the proof 9 only 
of Theorem 7.2 

SLE the problem of solving a system Part 2 (Summary); 
of linear equations 19 

sm(A) number of scalar 32,33 
multiplications in A 

T trilinear form 10 

TA trilinear aggregating Intr.,3,11 



Tr(W) trace of a matrix W 10 

TMI triangular matrix inversion 21 

t tensor 2,10 

U,V,W,X,Y,Z matrices 1,2,4,6,10 

Z ring of integers 2,5 

Z(~) ring of integers 2,5 
modulo 

Z(V) output matrix 24-30 

~(i,j) 6(i,J):0,1 ~ j;~(i,i)=1 2 

A,A' error value,error matrix 23-30 

A see A-algorithms 496 

P 'PF rank, rank over a ring F 2 

~(m,n,p) rank of mXnXp MM 2 

bp A-rank 36 

exponent of MM 2 

~F exponent of MM over a 2 
ring F of constants 

~,~ symbols of sums, products 

diagonal mmtrix 20 only 

L u J, F u 3 see Notation 18.1 18 

@ direct sum of disjoint problems 8 

direct sum of identical 
disjoint problems 

(tensor) product of bilinear 
.... pr°b!ems 

direct (Kronecker) product of 
vectors, matrices, tensors, and of 
linear, bilinear, or polylinear 
forms 

2,5,8 

2,5,8 

10,14,16 



Xf 

......... generalized MM 

li~il,liwil norms of vector ~, matrix W 

......... 18 ,only 

24 

t ~ t' mapping (algorithm) 5,8 

IS} cardinality of a set S 

lul absolute value (modulus) 
of a number u 

C 9 ~ inclusion of one set into another 5 

inclusion of an element into a set 9 

U union of sets 5 

• end of clause, of proof, of algorithm 




