
Lecture Notes in
Computer Science
Edited by G. Goos and .I. Hartmanis

183

The Munich Project CIP
Volume I: The Wide Spectrum Language CIP-L

By the CIP Language Group:
E L Bauer, R. Berghammer, M. Broy, W. Dosch,
E Geiselbrechtinger, R. Gnatz, E. Hangel, W. Hesse,
B. Krieg-Br~ckner, A. Laut, T. Matzner, B. MSiler, E Nickl,
H. Partsch, R Pepper, K. Samelson (t), M. Wirsing
and H. WSssner

Springer-Verlag
Berlin Heidelberg New York Tokyo

Editorial Board

D. Barstow W. Brauer P. Bdnch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. SeegmLiller J. Stoer N. Wirth

Authors

E L. Bauer B. M~ller
R. Berghammer H. Partsch
W. Dosch R Pepper
R. Gnatz K. Samelson (~r)
E. Hangel H. W6ssner
Institut f{Jr Informatik der TU Menchen
Postfach 20 24 20, 8000 M~inchen 2

M. Broy
E Nickl
M. Wirsing
Fakult~t f~Jr Mathematik und Informatik, Universit~t Passau
Postfach 2540, D-8390 Passau

E Geiselbrechtinger
Department of Computer Science, University College Dublin
Belfield, Dublin 4, Ireland

W. Hesse
Softlab GmbH
Arabellastr. 13, D-8000 M~inchen 81

B. Krieg-Breckner
Fachbereich 3, Informatik, Universit~t Bremen
Postfach 330440, D-2800 Bremen 33

A. Laut
PCS GmbH, Periphere Computer-Systeme
Pf~.lzer-Wald-Str. 36, D-8000 M(Jnchen 90

T. Matzner
sd&m GmbH, Software Design & Management
FL~hrichstr. 70, D-8000 MLinchen 80

CR Subject Classification (1982): D.1.0, D.2.1, D.2.4, D.3.1, D.3.3, E3.1,
E3.2, E3.3

ISBN 3-54045187-7 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15187-? Springer-Vedag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1985
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145t3140-543210

PREFACE

This book is the f i rs t of two volumes that present the main results having emerged from the
project CIP - Computer-Aided, intuition-Guided Programming - at the Technical University of
Munich. The central theme of this project is program development by transformation, a

methodology which is fel t to become more and more important.
Whereas Volume I I will contain the description, formal specification, and transformational
development of a system, CIP-S, that is to assist a programmer in this methodology, the
present volume gives the description and formal definition of a program development language
CIP-L designed particularly for use in transformational development of programs from formal
specifications. Many sources have influenced the development of this language over the past
eight years, and we feel that i t has now matured and consolidated to a degree that its study

will be profitable to others.
Three aspects of this language appear to be of special interest:

First, the language is a coherent wide spectrum language. This means that i t comprises a
number of expressive levels ranging from predicative and algebraic specifications over
applicative and procedural constructs (including parallelism) down to a machine-oriented level

using jumps and pointers. However, these levels do not just form a loose collection of
features; rather they are closely linked by formal transformation rules that relate the various
constructs to give a coherent semantics to the entire language. Besides, these rules also give
a guideline for the overall structure of the transformational development process. Since CIP-L
comprises most of the essential concepts of today's programming languages in more or less
similar form, the rules also provide some insight into the general structure of programming

languages and programming.
The second major aspect of interest in this book is the definition of the language by the new
method of ~ransfo~national s'emantics. In this approach, a kernel language is distinguished
as that part of the language which contains the essential semantic concepts. All other language

constructs are then mapped into this kernel by formal transformation rules that allow reducing
every program to an equivalent one of the kernel language. I t seems remarkable that the set of
rules needed for the particular language CIP-L is quite small and easy to survey; in most cases
just one rule per additional language construct suffices. Thus, a transformational definition of
a well-designed language is as concise as, say, a denotational one; moreover, in our opinion, i t

is much easier to comprehend.
As a third major aspect, CIP-L is an abstract scheme language. This means, f i rs t , that i ts
formal definition works on the abstract syntax of the language. As a consequence, CIP-L allows
various concrete syntactic representations, two of which, viz. an ALGOL-like and a PASCAL-like

form, are given in syntax charts in an appendix. Second, CIP-L is a scheme language in that i t
is independent of any particular set of data structures (except the truth values); rather i t

comprises elaborate means for defining new data structures.

IV

The book is organized as follows: Part 0 contains a general introduction to transformational

programming and to the project CIP in particular. In Part I, the various constructs of the

language are introduced informally together with examples of their place in program
development. Part I f , the heart of the book, then gives a description of the language in a
systematic way. However, readability is considered more important than complete formality; in
particular, the transformation rules are given in concrete syntax, and a number of self-evident
context conditions are omitted. Finally, Part I l l contains a complete formal definition of the

language in the same order of presentation as Part I I .
Cross-references within one part are given by section numbers only; references to other parts
are made by prefixing the respective section numbers with the (roman) part numbers.

We would like to express our thanks to the Deutsche Forschungsgemeinschaft who has sponsored
this research within the Sonderforschungsbereich 49 "Programmiertechnik" during the past nine

years. Also, we gratefully acknowledge valuable criticism of the language and of its definition
by the lecturers and participants of the Marktoberdorf Summer Schools 1978 and 1981, notably

by E.W. Dijkstra, D. Gries, and C.A.R. Hoare, as well as by the members of IFIP Working Group
2.1, notably by H.J. Boom, G. Goos, L.G.L.T. Meertens, S.A. Schuman, and M. Sintzoff.
Particular thanks are due to R.S. Bird for pointing out a severe error in an earlier version of
the semantic specification of the kernel language. Last, but by no means least, we gratefully
acknowledge many helpful remarks by our colleagues C. Delgado Kloos, H. Ehler, F. Erhard, U.

Hill-Samelson, A. Horsch, H. Hu~mann, W. Meixner, R. Obermeier, H.-O. Riethmayer, G. Schmidt,
and R. Steinbr~ggen.

Munich, December 1984

The CIP Language Group

TABLE OF CONTENTS

PART 0 : INTRODUCTION TO THE PROJECT CIP

O. History of the project CIP

I .

1.1.
1.2.

A wide spectrum language for inferential programming - survey of CIP-L
Overall-structure and concepts of the language CIP-L
Remarks on wide-spectrum languages for non-conventional architectures

2.

2.1.
2.2.
2.3.

Methodology of program development

The legal process of programming
The economical process of programming
The social process of programming

8

9
9

10

3. The technical process of inferential programming - survey of the
program transformation system CIP-S 10

PART I : INFORMAL SURVEY OF THE LANGUAGE 13

1.

I . i .
I . i . I .
i . i . 2 .
I . i .3 .
1.1.4.
I . I .5 .

1.2.
1.2.1.
1.2.2.
1.2.3.
1.2.4.

The expression language for logic and functional programming
Expressions

Guarded expressions
Function abstraction and application
Functions defined as fixpoints (recursion)
Higher-order functions
Finite choice

Descriptive constructs for specification purposes
Description
Comprehensive choice
Descriptive sets
Quanti f i ers

15
15
15
16
18
20
21
22
22
22
24
26

2.
2.1.
2.2.

2.2.1.
2.2.2.
2.2.3.

2.3.
2.4.

The fu l l applicative language
Object declarations
Function declarations

Function declarations in the lambda-calculus style
Function declarations in the style of ALGOL-like languages
Function declarations in the style of algebraic types

Object declarations with assertions
Consecutive declarations

28
28
28
28
29
30
31
31

Vl

3.

3.1.

3.2.

4,

4.1.
4.2.

5.

6o

6.1.
6.2.

6.3.

7.

The procedural language
Variables and statements

Procedures

The control-oriented language
Iteration statements

Labels and jumps

Parallel constructs

Algebraic types, modes, and computation structures
Algebraic types
Modes

Computation structures

Modules and devices, arrays, pointers

33
33

35

37
37

38

40

41

41
45

48

52

PART I I : DESCRIPTION OF THE LANGUAGE

i . A1 gebraic types

1.1. Definition of types
1. I . I . I ntroducti on
1.1.2. The constituents
1.1.3. Primitive types
1.1.4. The signature of a type
1.1.5. The laws of a type
1.1.6. The semantics of a type

1.2. Type schemes
1.2.1. Parameterized type specifications

1.2.2. Instantiations of type schemes
1.2.3. Restrictions on parameters of type schemes

1.2.4. Type schemes without constituents
1.3. Modes

1.3.1. Product
1.3.2. Sum
1.3.3. Recursive modes

1.3.4. Notational extensions
1.4. Standard types

(a) Boolean values
(b) Integral numbers
(c) Finite sets and multisets
(d) Finite mappings

(e) Sequences

53

55

55
55

56
56
57
58
60

61
61

62
65

65
66
67
67
70
73
75

75
76
77
79
80

Vii

(f) Trees
(g) Pointers and plexuses

82
83

2.

2.1.
2.1.1.
2.1.2.

The scheme language
The kernel: an expression language for logic and functional programming

Semantic notions

A1 gorithmic constructs
(a) Basic identi f ier
(b) Conditional expression
(c) Tuple
(d) Finite choice
(e) Function abstraction
(f) Function application
(g) Fixpoint
Notational extension: function composition

2.1.3. Prealgorithmic constructs
(a) Universal equality test
(b) Quantification
(c) Comprehensive choice

(d) Description
(e) Descriptive set constructs

2.1.4. Further notational extensions
2.1.4.1. Guarded expression
2.1.4.2. Partial application
2.1.4.3. Function tupling and function construction
2.1.4.4. Assertions

(a) Parameter and result restrictions
(b) Quantification over restricted domains
(c) Restriction of sets and functionalities

The ful l applicative language: declarations

Survey
Semantics of the ful l applicative language
(a) Object declaration
(b) Function declaration
(c) Section

2.2.3. Notational extensions
(a) Postponed declaration
(b) Assertion for an object declaration
(c) Function declaration in the style of algebraic types

The procedural language: program variables and procedures
Survey
Semantics of the procedural language
Context conditions and attributes

Variables and statements

2.2.

2.2.1.
2.2.2.

2.3.
2.3.1.
2.3.2.

85
88
88
93
93
93
95
96
97
98

100
101
103
103
105
106
107
108
111
111
113

115
116
117
117
118
119
119
120
120
120
121
122
122
122
123
124
124
124
124

125

VIII

2.3.3.

2.4.
2.4.1.
2.4.2.
2.4.3.

2.5.
2.5.1.
2.5.2.

2.5.3.

(a) Segment and phrase
(b) Declaration of variables
(c) Assignment
(d) Empty statement
(e) Abort statement
(f) Block
(g) Conditional statement
(h) Finite choice
Extension: Functions that read global variables
Procedures
(i) Procedure declaration

(j) Procedure call
Notational extensions
(a) Guarded statement
(b) Local assertion
(c) Non-i ni t i al i zed program vari able

Constructs for parall el programming with shared vari abl es
Survey
Context conditions and attributes
Definitional transformations

The control-oriented language: labels and jumps
Survey
Semantics of the control-oriented language
Context conditions and attributes
Definitional transfomations
Extensions
(a) Return jump
(b) Loops

125
126
126
127
127
128
128
128
129
130
130

132
133
133
134
135
136
136
136
137
139
139
139
139
140
144
144
144

3.
3.1.

3.1.1.
3.1.2.
3.1.3.

3.2.
3.3.

3.4.

Programs
Computation structures

Declaration of computation structures
Computation structures as implementations of types
Paraneterized structures

Extension: Submodes
Modules

Local instantiations
Devices

146
146
146
147
149
151
154

154
155

IX

PART I l l : FORMAL DEFINITION OF THE LANGUAGE

O.

0.1.
0.2.
0.3.
0.4.
0.5.

Fundamentals of the description
Language levels as a hierarchy of signatures
Abstract syntax of the language
Context conditions
Semantic specification
Table of identifiers

1. Algebraic types
1.1. Abstract syntax of types
1.2. Attributes and context conditions

1,2.1. Constituents
(a) Sort
(b) Operation
(c) Constant

1.2.2. Terms
(d) Free identif ier and constant
(e) Application

1.2.3. Laws
(f) Equation
(g) Logical connective
(h) Quantification

1.2.4. Facetsof a type
(i) Constituent
(j) Law
(k) Primitive facet

1.3. Semantics of non-parameterized types

2.

2.1.
2.1.1.
2.1.2.
2.1.3.

2.1.4.

The scheme Ianguage
The kernel : an expression language

Semantic domains
Abstract syntax
Specification of the algorithmic constructs
(a) Identifier
(b) Conditional expression
(c) Tuple
(d) Finite choice
(e) Function abstraction
(f) Function application
(g) Fixpoint
Specification of the prealgurithmic constructs
(a) Universal equality test
(b) Quantification

157

159
159
159
161
161
162

163
163
164
165
165
166

166
167
167
167

168
168
168

168
169
169
169
170
170

172

173
174
176
176
177
177
178

179
179
180
180

181
181
182

X

2,2.
2.2.1.
2.2.2.

2.3.
2.3.1.
2.3.2.

2.4.
2.4.1.
2.4.2.

2.5.
2.5.1.
2.5.2.

(c) Comprehensive choice
(d) Set comprehension
(e) Element relation

The ful l applicative language: declarations
Abstract syntax
Specification
(a) Object declaration
(b) Function declaration
(c) Segment

The procedural language: variables and procedures
Abstract syntax
Specification
(a) Segment
(b) Declaration of variables
(c) Assignment
(d) Empty statement
(e) Abort statement
(f) Block
(g) Conditional statement
(h) Finite choice
(i) Procedure declaration
(j) Procedure call

Constructs for paral tel programming with shared variables
Abstract syntax
Speci f i cati on
(a) Elementary statement
(b) Parallel block
(c) Guarded statement
(d) Await-statement
(e) Parallel composition
(f) Procedure with parallel statements
(g) Call of a parallel procedure

The control-oriented language: labels and jumps
Abstract syntax
Specification
(a) Elementary statement
(b) Labelled statement
(c) Goto statement
(d) Conditional statement with goto's
(e) Finite choice with goto's
(f) Block with goto's

183
183
184
185
185
185
185
186
187
188
188
188
189
189
190
190
191
191
192
192
193
194
196
196
196
199
199
200
201
201
202
204
207
207
207
207
209
209
210
211
212

3.

3.1.

3.2.

3.2.1.

3.2.2.

3.2.3.

3.2.4.
3.3.

3.3.1.
3.3.2.

Programs
Abstract syntax
Attributes and context conditions

Facets of components
Definition of parameterized components
Instantiation of parameterized components; type basing
(a) Component instantiation
(b) System of type instantiations
Programs

Semantics of programs
Normalization
Semantics of normalized programs
(a) Semantics of types
(b) Semantics of structures

REFERENCES

APPENDIX I :
APPENDIX I I :
APPENDIX I I I :

CONCRETE REPRESENTATION OF ABSTRACT PROGRAMS
BIBLIOGRAPHY OF THE PROJECT CIP
SYNTAX DIAGRAMS FORTHE ALGOL-LIKE AND THE PASCAL-LIKE
EXTERNAL REPRESENTATIONS

Xl

214
214
214
215
216
218
218
219
219
220
220
227
227
227

228

235
237

253

