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PREFACE 

This book is the f i rs t  of two volumes that present the main results having emerged from the 
project CIP - Computer-Aided, intuition-Guided Programming - at the Technical University of 
Munich. The central theme of this project is program development by transformation, a 

methodology which is fel t  to become more and more important. 
Whereas Volume I I  will contain the description, formal specification, and transformational 
development of a system, CIP-S, that is to assist a programmer in this methodology, the 
present volume gives the description and formal definition of a program development language 
CIP-L designed particularly for use in transformational development of programs from formal 
specifications. Many sources have influenced the development of this language over the past 
eight years, and we feel that i t  has now matured and consolidated to a degree that its study 

will be profitable to others. 
Three aspects of this language appear to be of special interest: 

First, the language is a coherent wide spectrum language. This means that i t  comprises a 
number of expressive levels ranging from predicative and algebraic specifications over 
applicative and procedural constructs (including parallelism) down to a machine-oriented level 

using jumps and pointers. However, these levels do not just form a loose collection of 
features; rather they are closely linked by formal transformation rules that relate the various 
constructs to give a coherent semantics to the entire language. Besides, these rules also give 
a guideline for the overall structure of the transformational development process. Since CIP-L 
comprises most of the essential concepts of today's programming languages in more or less 
similar form, the rules also provide some insight into the general structure of programming 

languages and programming. 
The second major aspect of interest in this book is the definition of the language by the new 
method of ~ransfo~national s'emantics. In this approach, a kernel language is distinguished 
as that part of the language which contains the essential semantic concepts. All other language 

constructs are then mapped into this kernel by formal transformation rules that allow reducing 
every program to an equivalent one of the kernel language. I t  seems remarkable that the set of 
rules needed for the particular language CIP-L is quite small and easy to survey; in most cases 
just one rule per additional language construct suffices. Thus, a transformational definition of 
a well-designed language is as concise as, say, a denotational one; moreover, in our opinion, i t  

is much easier to comprehend. 
As a third major aspect, CIP-L is an abstract scheme language. This means, f i rs t ,  that i ts 
formal definition works on the abstract syntax of the language. As a consequence, CIP-L allows 
various concrete syntactic representations, two of which, viz. an ALGOL-like and a PASCAL-like 

form, are given in syntax charts in an appendix. Second, CIP-L is a scheme language in that i t  
is independent of any particular set of data structures (except the truth values); rather i t  

comprises elaborate means for defining new data structures. 



IV 

The book is organized as follows: Part 0 contains a general introduction to transformational 

programming and to the project CIP in particular. In Part I, the various constructs of the 

language are introduced informally together with examples of their place in program 
development. Part I f ,  the heart of the book, then gives a description of the language in a 
systematic way. However, readability is considered more important than complete formality; in 
particular, the transformation rules are given in concrete syntax, and a number of self-evident 
context conditions are omitted. Finally, Part I l l  contains a complete formal definition of the 

language in the same order of presentation as Part I I .  
Cross-references within one part are given by section numbers only; references to other parts 
are made by prefixing the respective section numbers with the (roman) part numbers. 

We would like to express our thanks to the Deutsche Forschungsgemeinschaft who has sponsored 
this research within the Sonderforschungsbereich 49 "Programmiertechnik" during the past nine 

years. Also, we gratefully acknowledge valuable criticism of the language and of its definition 
by the lecturers and participants of the Marktoberdorf Summer Schools 1978 and 1981, notably 

by E.W. Dijkstra, D. Gries, and C.A.R. Hoare, as well as by the members of IFIP Working Group 
2.1, notably by H.J. Boom, G. Goos, L.G.L.T. Meertens, S.A. Schuman, and M. Sintzoff. 
Particular thanks are due to R.S. Bird for pointing out a severe error in an earlier version of 
the semantic specification of the kernel language. Last, but by no means least, we gratefully 
acknowledge many helpful remarks by our colleagues C. Delgado Kloos, H. Ehler, F. Erhard, U. 

Hill-Samelson, A. Horsch, H. Hu~mann, W. Meixner, R. Obermeier, H.-O. Riethmayer, G. Schmidt, 
and R. Steinbr~ggen. 

Munich, December 1984 

The CIP Language Group 
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