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ABSTRACT 

The subject of the paper is the connection between the typed 
~,-calcuius and the cartesian closed categories, pointed out by 
several authors. Three languages and their theories, defined by 
equations, are shown to be equivalent I the typed hc-calculus (i.e. 
the ~,-caleulus with explicit products and projections) ~,c/~ the free 
cartesian closed category CCCz and a third intermediary 
language, the typed categorical combinatory logic CCLK, intro- 
duced by the author. In contrast to CCCK, CCLK.has the same types 
as ~,cz and roughly the terminal object in CCCK is replaced by the 
application and couple operators in CCLK. In CCLK E-reductions as 
weU as evaluations w.r.t, environments (the basis of most practical 
implementations of h-calculus based languages) may be simulated 
in the well-known framework of a same term rewriting system. 
Finally the introduction of CCLK allowed the author to understand 
the untyped underlying calculus, investigated in a companion 
paper. Another companion paper describes a general setting for 
equivalences between equational theories and their induced 
~:emantic equivalences, the equivalence between CCL~r and CCCIcis 
am instance of which. 

1. Introducing categorical combinators 

Ceitegories and ;k-calculus are alternative theories of functionality, based on 
composition of functions (more abstractly arrows), substitution of actual param- 
eters to formal ones respectively. A part from the interest in itself to be able to 
connect two different formalisms, and to let benefit one from the other (see the 
end of section 2 for an example), there is an operational significance: roughly 
k-calcu:[us is well-suited for programming, and combinators (of Curry, or those 
introduced here) allow for implementations getting rid of some difficulties in the 
scope of variables, indeed we intend to develop implementations of functional 
programming languages based on categorical combinators, which we introduce 
now, letting them arise from the known principle that  a formal semantic 
description yields a compilation. 
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Suppose tha t  x has value .q (3 is under l ined to s tress  that_3 is the represen-  
ta t ion of 3), and that  we want to e x p r e s s t h e  funct ion associating y(.q) (also writ- 
t en  simply y,q) with every  funct ion y .  The h-calculus provides the elegant  nota- 
t ion hy.yx (M in the sequel) for tha t  function. 

Hence N=hf. f ( iF z )  will designate the  funct ion associating with iF the 
resul t  of applying f to f (3). One may  like to re la te  those two so-called h- 
expressions and to point out some modular i ty  by showing tha t  the second 
express ion may  be built f rom the first one and a third expression. 

Indeed two const ruct ions  are  involved in the informal definition of N: first 

we associate  with iF = zt--->f(x) the  funct ion f o f  = x~-:->f ( f  (x)), and then  we 
apply the funct ion descr ibed  by M. This can  be summarized  by 

N' = Mo (h f . f  o f )  

where we have mixed the  h-notation with the nota t ion  for composing functions, 
the basic concept  of the theory  of categories .  We may  t u rn  N'  into a pure  A- 
express ion (i.e. code the  composi t ion in t e rms  of h-notation): we obtain 

P = hi .  (hy.yz )( (hyz.y (yz ) ) f  ) 

It is an interes t ing exercise  for r eade r s  not familiar with h-calculus to experi- 
ment  with the fl-reduction, which is the  formal  application of a funct ion to  its 
argument ,  involving subst i tu t ion of the  formal  a rgument  at each  occu r rence  of 
the formal  pa ramete r .  Repeated applicat ion of this rule yields N back f rom P: 

17 ---> h f  . (hy.yx)(hz.f  ( f z ) )  ---> h f  . (hz.f  ( f z ) ) x  ---> h f  . f  ( f x )  

It will be clear  f rom the res t  of the  sect ion that  we could have made the o ther  

choice, i.e. express  N'  in a pure  categor ical  notation. 

Now we t u rn  back to  the initio] goal: the formal  descr ipt ion of the meaning 
of say hy.yz which we shall give in t e rms  of the meanings of the  sub-expressions 
z, y,  yz.  Those expressions clear ly  depend on  the value of at  least  x,  The values 
of the variables are kept  in an environment  (a pile if one thinks of an  implemen- 
tation). We r ep re sen t  the  envi ronment  as follows: one considers one more  vari- 
able z, D~, D r, Dz are  the  sets of possible values of x , y  and z,  and ".." is the res t  
of the  environment  which needs  not be detai led for the p resen t  description, and 
x denotes  the usual ca r tes ian  p roduc t  of set theory.  

Env = ((..xD.)xD.)xD~ 

(Represented  as a t ree ,  Env looks like a comb.)  

The meaning of an express ion depends on Env.  For instance the meaning of z 
(y) is obtained by having access  to the Dz (D r )  par t  of the environment,  which 
may  be clone through the  first and second projections,  denoted  by Fst and Snd.  
Whence the  meanings of x and y ,  deno ted  by  ~x~ and [ y ]  (more  general ly  I /d ]  
denotes  the semant ics  of M): 

[ ~ x ]  = s n c t  o F s t  

~v ] sna 
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The behaviour  of o ,Fst and  Snd m a y  be desc r ibed  by equations: 

= 

( y s t )  = = 

snd) Snd(x,y) = y 

(applying a funct ion to its a rgum en t  is deno ted  by  s imple  juxtaposition; of 
course  = ,y,z are f resh  var iables  and have nothing to do with those in Ay.yx) 

Now we define [yx] f rom [y~  and [ x ] ,  which a re  funct ions f rom Env to  Dy, f rom 

Env to Dx respect ively.  Firs t  we m a y  fo rm the pa i r  <~y~J[x~>, which is a func- 

t ion f rom Env to DyxD~. To f ~  ideas we set  D~=W and Dy=~=>~, the  se t  of 

functions f rom/~g t o / N  (which is cohe ren t  with the  above value of x) .  Remark-  

ing tha t  the semant i c s  of yx has to be  a funct ion f r o m  Env to  W we obta in  

where App is the application function from ( /~ r~ )x /~V  to 2V. The following 
equations describe the behaviOur of @ ,  < >: 

(-.pp) App (z,y) ~y 
< = , y > z  = ( = z , y , )  

The meaning  of ~,y.yz depends  on Env for x ,  bu t  not  for  y which is bound (see 

below'). It  is a funct ion f rom Env to Dy =>/V whereas  [yx ]] is a funct ion f rom 
Env'xD~ to 2V, where Env'= (..xDz)xDx. We are  t e m p t e d  to use the  currying 

which t r a n s f o r m s  a funct ion f with two a r g u m e n t s  a and  b into a funct ion h ( f )  
of a having as resul t  a funct ion of b such  t ha t  

= f 

or in equational  form 

{ (dA) (A(x)y)z = x ( y , z )  

So we would like to write 

[Xy.y= l = A(~V= l )  

relying on the  intui t ion t h a t  ~yz] is the  funct ion  associat ing yz with x and y ,  

and  t ha t  [ky.yx] is the  funct ion associat ing with x the funct ion associat ing yz 
with y .  But  t hen  we loose s y m m e t r y  since h ( [ y x ] )  is not  a funct ion f r o m  Env to 

2V, but  f rom E n v '  to $V. So we have to take  some  care  to ensure  t h a t  the  seman-  
tics t akes  always its a r g u m e n t  in Env.  We define [ky.yz] as the currying of a 

funct ion in EnvxDv=>~ which itself is the  compos i t ion  of I[yx] and a funct ion 
Substy f rom EnvxDy to  Env which assoc ia tes  with a couple (p,a) a modified 

env i ronment  p[y~a], where only the c o m p o n e n t  y has  b e e n  changed (to a).  We 
leave the r e a d e r  check  tha t  in the p r e s e n t  case  

Substy = <Fsto  Fst ,Snd> 

yielding 
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[xy.y=] h([vz]o ~bst~,) h((~p o o >)o o _ ~ t , S ~ > )  <Snd Fst <Fst 

Obviously the last expression may be simplified using the following equations 
(which the reader may "check" by applying both members to a same formal 
argument): 

) 

(As~) (~ov)°z = ~ o  (voz) 

iDP~r) <z,y>oz : <z.z,yoz> 
(S.a) Sndo <z,y> = y . 

(Fst) ~t ° <z,y> = z 

Using these rules we obtain 

[[xv.y=] = A ( . ~ o  <s,,,d.s~° (~t  o ~t)> 
We have in t roduced  all the  ca tegor ica l  combina to r s  but  the  iden t i ty  constant ,  

which will ar ise  below. 

Now we p r e s e n t  ano the r  way of associat ing a ca tegor ica l  t e rm,  i.e. of the  

kind bu~t  above, with any h-expression,  i.e. a t e r m  built  f r om var iables  by  appli- 

ca t ion  (MN) and abs t r ac t ion  (Az.M). We shall  use  the following notation.  

S ~ d o  F~t  n = n !  

(By Ass this is unambiguous. )  

,~zrp o <A,B> = S(A,B) 
So we have 

(1) [Xy.V=] = A(S(0~,20) 

Now we manipula te  a more  involved term:  
P 

[Q = (hz. (hz.zz )y )( (ht.t )z ) 
Q has  a disguised fo rm of M as a sub te rm,  name ly  hz.zz (exercise:  define 

~hz.zz~ as above and check  [hz.zx] = [ k y . y z ]  using the  above equations).  

This observa t ion  t ha t  the  name  of bound var iables  is indifferent  is the  basis  of a 

var iable  n a m e  free  nota t ion  due do N. De Bruljn, which we descr ibe  now. 

N. De Bruijn 's  idea is to  r ep lace  bound variable  n a m e s  by  a n u m b e r  record-  

ing where they  are  bound in an  expression,  which is the  only i m p o r t a n t  informa-  

t ion abou t  them.  Free  var iables  are included in this t r e a t m e n t  by  consider ing in 
our  example  

R = kzzy. Q (hzzy. Q is an  abbrevia t ion  for kz. (hz. (by. Q))) 
where the  order  z , z , y  is cons is ten t  with the  discussion above. The n u m b e r  
assoc ia ted  with any o c c u r r e n c e  u of a variable,  a leaf in the  t r ee  r e p r e s e n t a t i o n  

of R,  is the n u m b e r  of nodes labelled kv, with v # u ,  which a re  m e t  in the  p a t h  
f rom tha t  leaf to the  roo t  until  a node ku is encounte red .  The re su l t  of tha t  
t r an s fo rma t ion  is 
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[R'= (A.(A.OO1)((X.O)@) 
Now we make only a textual tranformation and replace h by A, "." by S, n by n! 

and obtain what we shall call the De Bruijn translation of Q and denote by 

QDB(z,z.,y): 
[ODB(.,x.~,) = S(A(S(A(S(O!,I!)),I!)),S(A(O!),8!)) 

The reader may check that (I I above indeed defines 

We end this introduction by suggesting that one may compute with the 

categorical expressions (that they may be called so ~dll result from the precise 

connection ~th cartesian closed categories established in the next section). 

Q reduces by E-reduction to yz, which is 5 if y is s~cc (the successor func- 
tion) rand z is 4. But first the outermost/~-reduction yields 

q' = (Xu.u ((Xt. t )z ) )y  
(The bound variable z was renamed to avoid the free occurrence of z becoming 

bound after substitution,) 

We show that QDs(z,z,y) reduces to Q'gB(~,z,y); we shall need some more equations. 

We decompose @gB(z,z,u) as follows 
09B(z;...u) = App o <A(A),B> where 
B = App o < A ( S n d ) , S n d o  Fst  o Fs t>  

A = App ~ <A(C),Snd~ F s t >  where 

C = A1~2o < S n d , S n d o  Fs t>  

Firs t  we use the  following rule, which m a y  be "checked"  as above 

(Bet=)  App o <A(z) ,y> = xo  <Id ,y> 

We get. 

QgB(z.=~.u) = A o E where 

E = <Id ,B> 

Now we lift E down to the  leaves of the t r ee  r e p r e s e n t a t i o n  of A. Combining Ass 

and DPuir  allows to dis t r ibute  E along an S node: 

Ao E = Appo <A(C)o E , ( S ~ d o  F ~ ) o  E> 

The leaf cor responding  to  the free occur rence  of y in Q has  a l ready  b e e n  

reached;  we m a y  use Ass ,DPair,Fsg and the r ight  ident i ty  equat ion 

( tdR)  x o I d  = x 

We obta in  

4opo <A( C) o E,  (S,~d o F~t)o E>  = 4~PO <A( C) o E, S~d > 
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Now we need  an equat ion allowing to distr ibute E inside A(C): 

I DA) h(x)o y = A(xo <yo Fst ,Snd>)  

We get  

App o <h(C) o E , S n d >  

= App o <A(App o <Snd o <E o Fst ,  Snd >, (Snd o Fst)  o <E o Fst,  Snd  >>), Snd > 

After some dressing 

App o <h(C)o E , S n d >  = App o <A(App o <Snd,Sndo  (Eo Fs t )>) ,Snd> 
= Zpp ° <A(App o < S n d . B o  Fst  > ) , S n d >  

r emember ing  E = <[d,B>. Now we compute  B o F s t  by distributing Fst  in the  
same way: 

B o Fst  = App o <A(Snd o <Fst o Fst ,Snd>) ,Snd  o ~ s t .  Fst  o Fst > 
= ~ .  A ( ~ d , S n d  ° F~t s) = s(a(o!) ,3!)  

Finally 

Q~BC~,~.~) = S(A(S(0!,S(A(0!) ,3!))) ,0!)  = Q'~BC~.~.~) 

We have s imulated a E-reduct ion by categorical  rewritings. These rewritings 
have been  able to r ecompu te  the number  associated with the free occu r rence  of 
y in Q which is i in QDB(~,.v.,y) and O in PnB(z,z,y) because  the node h.z has disap- 
peared;  t hey  also recompose  the fact  tha t  the free occu r r ence  of z becomes  2 in 

Q/)B(~,~,~) and 3 in Q'l)B(z..:c,y) because a node kz is inser ted  in the sequence  of 
nodes Xv up to the root. 

Now we compute  Q comple te ly  in the environment  suggested above, using 
the rules with only lower case le t te rs  (ass r a the r  t han  Ass, etc..). This looks 
very  m u c h  like usual implementat ions  of applieaUve languages. We s ta r t  f rom 

S(A(A) ,B)p  where 

p = ( ( ( p ' ~ . ) , : ~ ) , ~ )  

We get by ass,dpa.ir and app 

S(A(A) ,B)p  = (A(A)p)(Bp) 

We use dA and set  

p' = (p,Bp) 

We get  

(A(A)p)(Bp) = Ap' 

We manipula te  A similarly and get  

Ap' = Cp" where 

p" = (p',l~p') 

Then 

Cp"= (O!p")(l!p") 
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Makir~] the lef tmost  reduct ions ,  and remember ing  the definitions of of p", p', we 

get  

(O!p")(l!p") = (l !p')( l !p") = (O!p)(l!p") = s'ucc (l!p") 

NOW wie r educe  the argument of sue t .  

suet ( l !p" )  =suec  (O!p ' )  = s u c c  (Bp) = s u c c  (O ! (p ,2 !p ) )  = s u c c  (2!p) = s u c c  (.4.) = 5  

Summarizing, we have in t roduced  categorical  combinators  and we have sug- 
ges ted  tha t  the i r  world was full of computat ions  corresponding to  those known in 
the  k-calculus world (E-reduction, abs t rac t  in te rpre ta t ion  machines  based  on 
envi ronment  m a n i p t a t i o n s ) .  Moreover all these  computat ions  are descr ibed  in 
the  unified f ramework o f a  first o rder  rewriting system, whereas  the formalisms 
of/~-conversion and P. ~ n d i n ' s  SECD machine  [Lan] are quite different.  The res t  
of the pape r  descr ibes  the  typed  categor ical  combinators  formally. 

2. Ty[md categorical combinators 
First we define kc x and CCL K formally. 

2.1. Def ini t /on 

The /~:typed kc-calculus kc K and the K-typed categorical combinatory logic 

CCLzare defined as follows: 

Kis a set of basic types; each term has a type, which is a term of Tx.~(/O,.and if 

/d has the type a, we write 

/ga or M: #. 

We agree that x has precedence over =>, and we write 

= 

The structure of terms is as follows: 

For kcK, 

- If x is a variable and a is a type, then z: a is a term 

- if M: ~=>~- and N: a, then MN: 

- if z: a and/¢/: r, then Lz.M: a:>T 

if M: # and N: ~-, then (M,N): axr 

- if M: axv, t h en  l s t  (M): 

- ff M: axT, t h e n s n d ( M ) :  1- . . . . . . . .  

For  CCLK 
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- I f z  is a variable and a is a type,  t h e n x :  a i s  a t e r m  

- irA: a2=>as and B: ax=>a~, t h e n  Ao/?: ax=>a.~ 

Id: a=>a 

ff A: a=>~- 1 and B: a=>~- 2, t hen  <A,B>: a~'rlx7 ~ 

Fst: ax?=>a (we shall often write FsU 'r) 

Snd: ax~':=>T (we shall of ten write Snd ~;,r) 

ff A: alxae=>c%, thenA(A): al=>(~=>aQ 

App : (a=>T)xa=>T (we shall of ten  write App ~x) 

if A: a:>~" andB: a, then AB: ? 

if A: a and B: ?, then (A,B): axT 

Hence CCLKiS an algebra of first order terms. The theorles are: 

9~SPK 

(b~t,z) ( ~ . ~ ) N  ~ =U[x,-N] 
(~7) mq.Mq-->rx = M if x ¢ FV(M) 

( f s t )  f s t ( U % N ' )  = M 

( ~ d )  ~ a ( i ~ , N  ~) = N 

(SP) (g~t ( M ~ ) , ~ ( M ) )  = M 

AA~ 



(IdL) I d ~ %  x ~'~" = x q~r 

( ldR) x~#'% ld  q°~ = x 

(Snd') ~drl'Ve° <x*:~rl,y ~:~r~'> -" y 

(Beta.) App~8'%o <h(xa~uqe~qS),yU~> = x o < I d ~ q ~ , y  > 

( ~ )  A(4~p~.-) = ~.(o*.)*co~.) 

(FSI)  <Fst~'~,Snd~'~> = Id ~X~X~ 

(fst) l~xt"~a(x~' ,y" ) = x 

(Quote i) A(Fste'e')z% y " ~ "  = A(Fste'e')x 

(Quote 2) App'a"% <z ' * ( ' * ' g °  h(Fs t ' " ' )y ' , z ' t* ' z>  = z y o  z 

Some of these equations must be applied with caution. For instance we only can 
replace Id by h(App), <Fst ,Snd> if Id is of type (a :~v ) :~ (a :~ )  , a×~':~ax~ 

respectively. 

The following lemma states some equational consequences of A~. 

2.2. b--mma 

The foUowir~ equations are consequences of 

(Q~ote3) A(z"x'~%)y" = xo <A(P-kt' ')y,Id"l> 

(~) Id"~'z" = x 
(d^) ^(=°.'°,~°3)v°',°' = =(v.*)  

The system AAKis equivalent to the system obtained by replacing Quote 2 by the 
two following equations: 

(QUot, 2a) A(F~t"~"')~ ''~°' = h(~ ° S ~ ' " ' )  

(Q~ote 80 ) ^(F~t°"%(=°'*'~ °') = = .  AiF~t°'")V 
Proof: We only prove Quote 80 from Quote 2. 

A(rst)(zy) =ass (A(~Ist) ° x)y =D .̂Fst A(x ° _~st)y 
=ti~t, sxo Fst° <h(Fst )y , Id> = ~  xo  h (Fs t ) y  . 

Now we define formally last section's De Bruijn's translation as well as the 
translations between ~kn K and CCL~. 



166 

2.3. DefiniUozl 

Let M: a E AcK, and xo: ao .... zn: an be s.t. FV(M) ~ Izo,..,zn~. We define 
MDB~xo,..,~) as follows: 

• •. x~+ I ~ ~ ~xa~ •. • xat,a~_lo o Fst vx~n " " ' Xal'~O 

DBxgXo .... % ) 

where i is minimu_rn s.t. x=x~ 

(/d~*~N~)~BK = APP ~'~o <MDB~N~BK> 

(M,N)/~¢ = <M1)BxN~Bx,> 

) ' s t  (m~x~)o~ = Fst".% tg~BK 

sn4  (m~x~)DB~ = sna", 'o M,~Bx 

One has 

M~" % ~'n : ° ' x f f n  " ' " x f f ° : = > T  
~B~x o .... x n ) 

(~o .... a n,T are determined by M,zo,..,x n while a is any type). 

We define 

[Ms~ L ¢-.~ ~ an z%', K = M T  % ~n ~ y  ' n , " ,  0 1 
DBX(*o .... *n ) 

where y is different from all x, and has the type ~ in MDBx (we apply the De 

Bruijn's translation to the environment formally), 

We define the translation in the reverse direction by 

ld  ~*~ = kz%z 
Xe K 

Fst g ~  = hz~xL f s t  ( z ) 

~.~ = K z c % s n a  (*) S n d  x~ ~. 

(A"** B'%,o ~ = &o ~flxo x 
0=~7-1 ~1:.-r~ : 

<A ,B >xc x ~rL (Axcaz,Bx, x~ ) 

A¢, . O'lXe~----~O' ~ .  O" 0" 8 ~A )x=x ¢= hx ~ .Ax, x(z ,y) .  

Ctearly 

M~c~x: T and A~x: 
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~e suppose that x,y do not appear in A B • 

In [CuCCL,CuTh] the untyped version of these calculi and translations is 

defined The main difference is that in the untyped case the application and cou- 

ple operators are defined and not primitive There we proved a First equivalence 

theorem of which the Second theorem below is just a typed copy (we refer to 

[CuCCL] for a sketchy proof and to [CuTh] for a full proof) 

2,4..Second e q u i v a l e n c e  t h e o r e m  

For  any  t e r m s  M , N  e hcm A,B  ~ CCL K, t he  following holds:  

( I )  2rV]CCI, K, Xc K -- t~Spt~ 

(3) A = ~ K B  =# Ax~ K=~sP  K B ~  K 

(4) M =~vspKN -'# ,, MCCLK= ~KNCCLz¢ • 

Actually neither U nor SP are needed in (i) (see [CuTh]) 

Now we introduce CCCK 

2.5 Definition 

Let K be a set of basic objects The types are now couples written a-->r of 

terms aT of Tx~(KU}sl) where s, called terminal object is different from all 
the e]ements of K The elements of Tx,~(KUI~I) are the objects 

The free cartesian closed categor)r CCCKis defined as follows: 

if x is a va r i ab le  a n d  a ,?  a re  objects ,  t h e n  x:  a - ->?  is a t e r m  

ff f : c;~--->a~ a n d  g : al-->o2 are t e r m s ,  t h e n  f o g : ~1-->a3 is a t e r m  

Id :  a - ->a  is a t e r m  

ff I : ~7--->rl a n d  g : a--->~-~ a re  t e r m s ,  t h e n  < f  ,g >: ~-->T1×~-2 is a t e r m  

Fst  : ax~--->a is a t e r m  

Snd:  ~x?--->T is a t e r m  

1: a - ->s  is a t e r m  

if f :  atx=e-->as is a t e rm ,  t h e n  h ( / ) :  al-'->(ae~gs) is a t e r m  

App : (=~? )xc r - ->?  is a t e r m  

We use  as above the  n o t a t i o n  Fs~ =z, Sr~d a,r a n d  29rp =z, a nd  we also wri te  Id ~ for 

Id: a--->a a n d  t a for 1: a-->~. 

CCCKis t he  se t  of equa t ions  CCL[bTSP + Ter where  

(Ter) 1 ~ = z ~-->~ • 

CCL#~SP consists of the equations from Ass until FS[ included in AAK above (in 
the t}q~es some => have to be replaced by --->) (more on CCL~7SP in [CuCCL]) 
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Here  typing is cr i t ical  since Ter without types  would r educe  to: "everything 
equals 0". The difference to the definition 2.1 is the absence  of applicat ion and 
couple opera tors ,  and the p resence  of a family of constants  1, the unique arrows 
to the  te rmina l  object.  

Now we establish the equivalence of CCLK, AAKand CCCK, CCCm First  we have 
to connec t  the types  of bo th  theories.  We shall use the well-known isomorphism 
between A-*B and 1-->(A=>B) in a car tes ian  closed ca tegory  (A,B are any 

objects, 1 is the te rminal  object),  which is as follows in our  setting: 

[(~:--->~)+ = ^(::o m , , ~ ,  ~) 

[(=~-->,,~,-)- = App~.,o ~ o lo-->~ s,~<,> 

One proves easily the following equations: 

[((~°-->')+)- =~<~  and ((~:->°*")-)+ =~,<~ 

2.6. Definit ion 

With every  object  a we associate 

{~r" e T ~ . ( K ) u ~ s l  ~r-: cr-->~" e ~+: o ' - ->o e CCCx CCC x I 

defined as follows: 

o ' = 0 .  ~ + = a  = I d  r i f 0 r e K u j ~ l  

For the product  we proceed by cases: 
• #' 

f f l , 0 .2#~ :  

(0.1x~) ° = ~;xc%" , (alx#2) + = <a~-o F~t,~ 'o S'r~> , ( a l x ~ ) -  = < a f o / ~ t  ,~{o Snd> 

(~×==)* = =; , (o~x=2) + = < [d ,=~o  P ' > o  =~ , (=~×==)- = =~-o .~t 
0.~=~ , a~*~: symmet r i c  

0"1,0" 2 = 

(0"~x0"~)" = e , (0"~x0"9 + = <0"L0"~> , (0"~x0"~)- = i 

Now the exponenUation: 

(0",~0"2)" = 0"1~0"~" " 

(~1~0.2)  + = ^ ( ~ o  ~ o < ~ t . 0 " r °  z ~ > )  . ( o 1 ~ ) -  = ^(0.~° ~ o <~st ,0"to s ~ > )  
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( ,~=>~2) + = A ( J ~ t ) o  ~+ , ( ~ 2 ) -  = ~ 0  App ° <[~,~t° 1"~-->%> 

(;2=~ 

( , 7 , ~ a ~ ) *  = ~ , ( o ~ )  + = A ( ~ o  f r o )  , ( ~ = > ~ ) -  = i • 

We omitted many types, and shah do so in the sequel. ~" can be viewed as a 

canonical representent for a when identifying ~rxs, sxa, ~=>~ with ~, and a=>~ 

with 8. This is justified by the following lemrna: 

2.7. I ~ m m a  

F o r  a n y  a E Tx .~(KU~s t )  t h e  following herds:  

0"+0 g-- =COCKICl ~ and ~;-o a ÷ =CCCKId a" 

Proof: We only check one case, 

<Id,a;~ ° 1"*>o ~o a {o Fst  ~'xa~ =r,=.T~r <Fst ,a~ o l~X%> 

=7er <Fst ,g~o 1%o SndalX~z> 

=r~= < F s t , S n d >  = Id 

Now we def ine  t h e  t r a n s l a t i o n s  b e t w e e n  CCLKand CCCK 

2.8. Definition 

With any term A: o of CCLKwe associate a term Acct.: 8-->~ of CCCKdefined 

as  foltows: 

AcOCx "- A ÷, if A = [d ,Fs t  ,Sncl,App 

(Ao B)cccK= (Ac~o B6cc~) ~ 

<A,B > ccc x = <Ac-oox,BSccK> ÷ 

A(A)ccc K = A(A~ccK) + 

(AB)cccx = ~ x o  Bccc~ 

(A,B)cccx = <AcccscBccc~> 
Conversely wi th any t e r m  f : a--->'r of CCCKs.t. (~=>'r)*~s (i.e. " r *~ ) ,  we associ- 

ate a te rm JCCL E (a:O'r) ° of CCLKdefined by 
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z ~  ~" = x C ~ )  ° 

]~tcr~x = FSt ~%" if r* ~ = Id ~" *(T" ff r*=~ 

S y m m e t r i c a l l y  for  S n d  

A p p ~  x = App '7"'~'" if a * ~  = Id  "'*~'" if a*=~ 

- -  f fa -c 'aao  O l " ~ f f ~  " 0 * * .,r g )c'vzx = I c ~  u gc'vL~ if e z , c r ~ s  

= Fst  ca'el if e ~ ez=z  
L'~L K 

=fCCL x if * * f f l , f f 2 = ~  

< .  o '-->"r t ° - - - > ' r ~ >  . , ~ . 
Y .g c'cI, x = <fccLx, gCCLx > i~ (7 .T t , ' rZ~ ,  

(f ~) ' '  = OOLvrgC'~,L if 0""=~' , TI,T2:~ 

= g ~  ff "cT=c, " c ~  

,A I  - O'IXffZ--->0"3,, =,,, . . , .  . * 
~Y )c~z x = A(Icc~x) ff ~,~re~ 

Now we m a y  s ta te  the  Third equivalence  t h e o r e m .  

2 . 9 .  Thi rd  e q u i v a l e n c e  t h e o r e m  

For  all t e r m s  A,B of CCL x and f ,g of CUCK of a p p r o p r i a t e  types ,  t he  follow- 

ing ho!.ds: ....... 

(1) A =~xB ~ ~ c x = c c c x B ~ x  

(2) f~-->~ = cccxg ~->~" =~ f CCLK----~XyCC~K if r*#z  

(3) &~CC~CCLK = ~ A  

(4) f & 7 ~  : ~  ~ ( f  [=o~-~(=o),..,~ ~ - ~ ( ~ ) ] )  
where  V(A) = ~zo,..,zn~ and  ~ ,  n - - ~ -  a re  def ined by  

~ ( f ° - - > ~ ) = ( T - o f o a + )  + i f~*~*  = r - o f o a  ÷ i r a*=*  

..... = ~ '+of  o q -  if e*=* .... 

Proof:  Tedious bu t  easy.  We only  c h e c k  (4) for  App. 

.¢:,p~cX~ccc x = A 
(~,*#,) (~,pr.,')+ 
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We have to check 

[r-o A~,~"o (@=>'r)xc;) + = ~°"'" 
Let 

(o~)+ = A(B) 
T-. A~,-o ((o=>-r)x~) + = -r-o AS~o o <A(B)o ~t,~+o S,~d> 

= ~-o -f+o App o <Fst ,a-o Snd>o <Fst ,a+o Snd> 
= x%1~'IOO <Fs t ,a - ,a%Snd> = App 

(a'=~) A = ( I d ' * )  ÷ 

We have to check 

[~'-o App'.% ((a=>-r)xa) + = Id r° 

nr-o .A4c~o"% ((a~-)xa) + = ~--o ~ ~ <Id,o% i>o k(Fst) o ~r + 
= ~--o x~op o < A ( F s t ) , . . > o  r + 

= T-o ]q~t o < / d , , , > o  T + = td  ~" 
m 

We end the section by pointing out that the two equivalence theorems of the 
section may be used to decide the equational equality in CCCK (and also in 
CCLI¢). Indeed the rewriting system obtained by orienting the rules of {bTSPK 
from left to right is confluent (cf. [Pot]) and noetherian. We refer to [LamSeo] 
for a proof of that property, which was actually established by J. Lambek and 
P.J. Scott for the same purpose. For concluding on decidability, we just have to 
remark 

k e r r  =cccz~.g~-->r ICCLK=AAflC~L K ICCLK, XCK: ~Spt~CCLz,:.Xcz~ iff iff 

using 
~ ( , , ~ ( . ) )  = ~ p  et . - - > ~ ( ~ ( . ) )  = ~ p  

B. Conclusion 

We have exhibited the connection between X-calculus and cartesian closed 

categories, which goes back to [Lam, Sco] and quite independently to 

[BeSy, CuTh3], in a very syntactical and computational fashion. We refer to 

[CuTh, CuEq] for the semantic equivalences induced by the theorems in this 

paper. 

It is very tempting to implement evaluators of categorical cornbinators. A 

result in [CuTh, CuTh] states that the evaluator last informally described in sec- 

tion 1, worldng by leftmost-outermost reductions, is complete with respect to 

the models of the underlying theory (namely CCLK enriched with arithmetic 
combinators). Moreover the author devised a categorical abstract  machine 
transforming categorical eombinators into actual machine instructions. This 
machine will be described in a forthcoming paper with G. Cousineau, who 
significantly improved the original proposal. 
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Related (and independent) work appears in [PaGho,Poi, Dyb,LamSco]. 
[Poi],[LamSco] explicitely state an equivalence in the kind of tbis paper between 
(quite) kcK and CCCK, in a syntactic, a more semantic setting respectively. The 
differences of the present paper to these references are mainly the introduction 
of CCL~ and the connection with De Bruijn's ideas, both contributing to an 
operational setting. 
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