TYPED CATEGORICAL COMBINATORY LOGIC

P-L. Curien

CNR3-Université Paris VII, LITP, Tour 55-56 ler étage,
3 Place Jussieu, 756221 PARIS CEDEX 05

ABSTRACT

The subject of the paper is the connection between the typed
A-calculus and the cartesian closed calegories, pointed out by
geveral authors. Three languages and their theories, defined by
equations, are shown to be equivalent: the typed Ac-calculus (ie.
the A-calculus with explicit products and projections) Aeg, the free
cartesian closed category CCCx and a third intermediary
language, the typed categorical combinatory logic CCLg, intro-
duced by the author. In contrast to CCCx, CCLx has the same types
as Acg, and roughly the terminal object in CCCg is replaced by the
application and couple operators in CCLg. In CCLy f-reductions as
well as evaluations w.r.t. environments (the basis of most practical
implementations of A-calculus based languages) may be simulated
in the well-known framework of a same term rewriting system.
Finally the introduction of CCLy allowed the author to understand
the untyped underlying calculus, investigated in a companion
paper. Another companion paper describes a general setting for
equivalences between equational theories and their induced
semantic equivalences, the equivalence between CCLy and CCCk is
an instance of which.

1. Introducing categorical combinators

Categories and A-calculus are alternative theories of functionality, based on
composition of functions {more abstractly arrows), substitution of actual param-
eters to formal ones respectively. A part from the interest in itself to be able to
connect two different formalisms, and to let benefit one from the other {see the
end of section 2 for an example), there is an operational significance: roughly
A-calculus is well-suited for programming, and combinators (of Curry, or those
introduced here) allow for implementations getting rid of some difficulties in the
scope of variables. Indeed we intend to develop implementations of functional
programming languages based on categorical combinators, which we introduce
now, letting them arise from the known principle that a formal semantic
description yields a compilation.

158

Suppose that z has value 3 (3 is underlined to stress that 3 is the represen-
tation of 3), and that we want to express the function associating ¥ (3) {also writ-
ten simply y3) with every function %. The A-calculus provides the elegant nota-
tion Ay.yz (M in the sequel) for that function.

Hence N=Af.f(fz) will designate the function associating with f the
result of applying f to f(3). One may like to relate those two so-called A-
expressions and to point cut some meodularity by showing that the second
expression may be built from the first one and a third expression.

Indeed two constructions are involved in the informal definition of N: first
we associate with f =z +>f (z) the function fof = z+>f (f(z)), and then we
apply the function described by M. This can be summarized by

v =me 7o)

where we have mixed the A-notation with the notation for composing functions,
the basic concept of the theory of categories. We may turn N' into a pure A
expression {i.e. code the composition in terms of A-notation): we obtain

P =27 Owy=) (0w o)1)

It is an interesting exercise for readers not familiar with A-calculus to experi-
ment with the f-reduction, which is the formal application of a function to its
argument, involving substitution of the formal argument at each occurrence of
the formal parameter. Repeated application of this rule yields N back from P:

P —>N.(\yyz)(Az.f(f2)) => Af. (A\2.f (F2))z = Af.f (fz)
It will be clear from the rest of the section that we could have made the other
choice, i.e. express N'in a pure categorical notation.

Now we turn back to the initial goal: the formal description of the meaning
of say Ay.yx which we shall give in terms of the meanings of the sub-expressions
z, Y, yz. Those expressions clearly depend on the value of at least z. The values
of the variables are kept in an environment (a pile if one thinks of an implemen-
tation). We represent the environment as follows: one considers one more vari-
able z, I;, D, D, are the sets of possible values of z,y and z, and ".." is the rest
of the environment which needs not be detailed for the present description, and
x denotes the usual cartesian product of set theory.

Env = ((.xD,)xD,)XD,

(Represented as a tree, Fnw looks like a comb.)

The meaning of an expression depends on Fnw. For instance the meaning of x
(y) is obtained by having access to the D, (D)) part of the environment, which
may be done through the first and second projections, dencted by Fst and Snd,
Whence the meanings of = and ¥, denoted by [z] and [y] (more generally [M]
denotes the semantics of #);

[z] = Sndo Fst

[y]=Snd

159

The behaviour of ¢ ,Fst and Snd may be described by equations:

(ass) (zoy)z =z(yz)
(fst) Fst{zy) ==z
(snd) Snd{z,y)=y

(applying a function to its argument is dencted by simple juxtaposition; of
course z,y,2 are fresh variables and have nothing to do with those in Ay.yz)

Now we define [yz] from [y] and [z], which are functions from Env to D, from
Fnv to D, respectively. First we may form the pair <[y].[z]>, which is a func-
tion from Env to DyXD,. To fix ideas we set D;=IV and D,=IN=>NN, the set of
functions from IV to IV (which is coherent with the above value of £). Remark-
ing that the semantics of yz has to be a function from Fnv to IV we obtain

l[v=1 = 4pp - <Iy1.121>

where App is the application function from (IN=>I)xIV to V. The following
equations describe the behavicur of 4pp.< >

(opp) App(z.y) = zy

(dpoir) <z.y>z = (zz,y2)

The meaning of Ay.yx depends on Enw for z, bul not for y which is bound (see
below). It is a function from Fnv to D,=IN whereas [yz] is a function from
Enu'xDy to IN, where Enu' = (.xD,)xD,. We are tempted to use the currying

which transforms a function f with two arguments o and & into a function A(f)
of a having as result a function of b such that

(A Ya))(®) = J (a,b)

or in equational form
{(dA) (Mz)y)z = z(y 2)

So we would like to write

Dyy=] = My= D)

relying on the intuition that [yz] is the function associating yz with z and ¥,
and that [Ay.yz] is the function associating with = the function associating yz
with y. But then we loose symmetry since A{[yz]) is not a function from Fnw to
I, but from Fnv' to IN. So we have to take some care to ensure that the seman-
tics takes always ifs argument in Fnv. We define [Ay.yz] as the currying of a
function in EnvxD, =V which itself is the composition of [yz] and a function
Subst, from EnuxD, to Env which associates with a couple {p,a) a modified

environment p[y+«a], where only the component ¥ has been changed (to a). We
leave the reader check that in the present case

Subst, = <Fsto Fst, Snd>
yielding

160

[[[Ay.yz]} = A[yz Jo Subst,) = A(4pp o <Snd ,Snd o Fst >}o <Fst o F5t,Snd>)

Obviously the last expression may be simplified using the following equations
{(which the reader may "check"” by applying both members to a same formal
argument):

[

(dss) (zoy)ez =zo(yoz)

3

(DPair) <z, y>ez = <zoZ,yoz>

(Snd) Sndo<z,y>=1y -
(Fst) Fsto<z,y>=1=x

Using these rules we obtain

[M\y.yz] = AMApp o <Snd,Snd e (Fst o Fst)>

We have introduced all the categorical combinators but the identity constant,
which will arise below.

Now we present another way of associating a categorical term, i.e. of the
kind built above, with any A-expression, i.e. a term built from variables by appli-
cation {MN) and abstraction {(Az.¥). We shall use the following notation.

Sndo Fst™ =n!
(By 4ss this is unambiguous.)
Appo <A,B> = S{A.B)

So we have

(1) [ay.y=z] = A(S(01.21))
Now we manipulate a more involved term:

@ = (Az. (Az.2z)y)((AL.1)2)
@ has a disguised form of M as a subterm, namely Az.zz (exercise: define
[Az.zz] as above and check [Az.zz] = [A\y.yz] using the above equations).

This observation that the name of bound variables is indifferent is the basisof a
variable name free notation due do N. De Bruijn, which we describe now.

N. De Bruijn’s idea is to replace bound variable names by a number record-
ing where they are bound in an expression, which is the cnly important informa-
{ion about them. Free variables are included in this treatment by considering in
our example
E = \zzy.Q {\zzy.Q is an abbreviation for Az. (Az. (Ay. §)))
where the order z,z,y is consistent with the discussion above. The number
associated with any oceurrence « of a variable, a leaf in the tree representation
of K, is the number of nodes labelled A, with v#w, which are met in the path
from that leaf to the root until a node Aw is encountered. The result of that
transformation is

161

& = (oD D(10)2)
Now we make only a textual tranformation and replace A by A, "." by S, n by n!
and obtain what we shall call the De Bruijn translation of @ and denote by

QDB(z,::,y):
|@05(e.c) = SA(S(A(S(0119).11)).5(A01).2)
The reader may check that (1) above indeed defines
(M. Y2) 0BGz y) = (NY.YZ)DB(z.2.9)-
We end this introduction by suggesting that one may compute with the

categorical expressions {that they may be called so will result from the precise
connection with cartesian closed categories established in the next section).

@ reduces by S-reduction to yz, which is 5 if ¥ is suce {the successor func-
tion) and # is 4. But first the ocutermost f-reduction yields

Q' = (Meu((M.f)z))y
(The bound variable z was renamed to avoid the free occurrence of z becoming
bound after substitution.)

We show that Gpp(; z) reduces to &'pp(; z 4y We shall need some more equations.
We decompose @pp(z .z y) a5 follows

OpB(z.zy) = APP o <A(A),B> where

B = App ¢ <A{Snd},Snde Fste Fst>

A = App e <A(C),Snd e Fst> wherc

C = Appoe <Snd Sndoe Fst>

First we use the following rule, which may be "checked"” as above
{Betn) Appo <iz)y>=zo<idy>

We get
EpB(z.zy) = Ac E where
E =<id B>

Now we lift £ down to the leaves of the tree representation of A. Combining 4ss
and DPgir allows to distribute £ along an S node:

Ao F = App o <A(C)o E’,(Sndo Fst)e E>

The leaf corresponding to the free occurrence of ¥ in & has already been
reached; we may use Ass,DPuair Fsi and the right identity equation

{(Iﬂf}?) zold =x

We obtain
App o <A(C)o E (Sndo Fst)o E> = App o <A(C)o E,Snd>

182

Now we need an equation allowing to distribute £ inside A(C):
(DA) AMz)oy = Mz o <yo Fst,Snd>)

We get
App o <A(C)o E,Snd>
= App o <A(App o <Snd s <Eo Fst,Snd>,(Snd o Fst)o <Eo Fst,Snd >>),Snd>
After some dressing
App o <A(C)o E,Snd> = App o <A{App o <Snd ,Sndo (Ee Fst)>),Snd>
= App ¢ <A(4pp o <Snd ,Bo Fst>),Snd>

remembering £ = <J/d,B>. Now we compute Bo Fsf by distributing Fst in the
same way:
Be Fst = Appo <A(Snd e <Fsto Fst,Snd>),Sndo Fsto Fsto Fst>

= App o A(Snd,Snd o Fst%) = S(A(0!),3!)
Finally
B(z.2.y) = S(A(S(0L,S(A(0),31))).0) = @'B(s.2)
We have simulated a f-reduction by categorical rewritings. These rewritings
have been able to recompute the number associated with the free occurrence of
¥ in @ which is 1 in @pp(z z4) and 0 in Ppp(s z 4) because the node Az has disap-
peared; they also recompose the fact that the free occurrence of z becomes 2 in
GpB(zzy) and 3 in @'pp(z z4) because a node Az is inserted in the sequence of
nodes Av up to the root.

Now we compute § completely in the environment suggested above, using
the rules with only lower case letters {ass rather than Ass, etc..). This looks
very much like usual implementations of applicative languages. We start from

S(A(A),B)p where

p = ({((p'4).x),succ)

We get by oss,dpwir and app
S(A(4).B)p = (A(A)p)(Bp)
We use dA and set

p' ={p.Bp)

Ve get

(A(A)p)(Bp) = Ap'

We manipulate A similarly and get
Ap' = Cp" where

p" = (p'\1lp")

Then

Cp" = (0lp")(10")

163

Making the leftmost reductions, and remembering the definitions of of p", p', we

get

(01p")(11p") = (1ip")(1ip") = (Olp)(11p") = suce (11p")

Now we reduce the argument of succ.

suce {11p") = succ (0lp') = suce (Bp) = succ (01{p,21p)) = succ (Blp) = suce(4) =5
Summarizing, we have introduced categorical combinators and we have sug-

gested that their world was full of computations corresponding to those known in

the A-caleulus world {f-reduction, abstract interpretation machines based on

environment manipulations). Moreover all these computations are described in

the unified framework of a first order rewriting system, whereas the formalisms

of f-conversion and P. Landin's SECD machine [Lan] are quite different. The rest

of the paper describes the typed categorical combinators formally.

2. Typed categorical combinators
First we define Acgand CCLg formally.

2.1. Definition

The K+typed Ac—caleulus Acyg and the K-typed categorical combinatory logic
CCLy are defined as follows:

Kis a set of basic types; each term has a type, which is a term of Ty »(K)..and if
M has the type o0, we write

Mfor M:o.

We agree that x has precedence over =, and we write
01%03..%0,, = (..(01X02)..X0,,)

The structure of terms is as follows:

For Acg

- Il =z is avariable and o is a type, thenz: ¢ is a term
- M o>rand N: o, then MN: 7

- #zioand ¥: 7, then Az M: o>71

- if M:cand N: 7, then (M ,N): oxT

- if M. oxT,then fst(M). o

- if M. oxT, thensnd(¥M): T

For CCLyg

164

- Iz is avariable and o is a type, thenz: ois aterm
- it A: veD>0ogand B: 0,20, then Ao B: 0,=>03

- Id:g=>0

- if A: o7, and B: 0=>7y, then <4,B>: a=>7,X73

- Fst: oxt=>0 {(we shall often write Fst%")

- Snd:oxr=>7 {we shall often write Snd?")

- it A: oyXge=>03, then A(A): 0,2 (02=>03)

- App (o>7)xe=>T1 (we shall often write A4pp®T)

- if A: a:>+and5’:a, then AB: T

- ifA:cand B: T, then (4,B): oXT

Hence CCLgis an algebra of first order terms. The theories are:
BnSPy

(beta) (Az%.M")N® =M[z«N]

(m) Nz Mz = M if z & FV(M)
(fst) fst(M°N) =M

{snd) snd(M°NT) =N

(SP) (fst(H™"),snd(H)) = H
AAg:

165

(4ss) (= "% yuzs%)" 217 = g0 (yez)
(IdL) Id™7o g7 = g727

(JdR) 2% Id">7 =z

(Fst) Fst™2 <z">M
(Snd) Snd 172, <xo=="rl.yo$ra> =y

(DPajg-) (xmb’rz‘ycr-”‘rz)o zu»ﬁi =<Zoy,zo2>

(Beta) App"®™% <Az 7279y 7% = zo <17y >
(DAY A" ")0 47> = Az o <yo Fst™, Snd®%e>)
(AT) A(4pp°™) = [dle=m1>(=m)

(FSI) <Fst®T,Snd?7> = [do*T=07

Uy=>0p

o>,
Y =z

01$01
[

(ass) (7% y ")z = z(yz)
(Fst) thvi’cz(zsl,ycz) =z
(snd) Snd"*(z"1y*) =y

U$Tl,y0$"l'g>zu = (xz 'yz)

(dpair) <z
(app) App™™(z7®7y°%) = zy

(Quote 1) A(Fst®"®)z% y % = A Fst™)z

(Quote2) App"* % <z 722y AFSEO)y? 571D = pyo 2
Some of these equations must be applied with caution. For instance we only can
replace Id by A(App), <Fst,Snd> if Id is of type (o=>7)=>(0=>7) , oxT=>oxT
respectively.

The following lemma states some equational consequences of A4y

2.2. lemma
The following equations are consequences of Adg

(Quote3) AMzT1™8)yo = zo <A(Fst™ Ny, 1d">

(id) "% =z

(@A) A"y "2 = 2(y,2)

The system AAgis equivalent to the system obtained by replacing Quofe 2 by the
two following equations:

(Quote2a) A(Fst™™°2%)z"1% = A(z 0 Snd”")
(Quote2b) A{Fst®®%)(z"1™ %) = z o A(F5t*%)y
Proof: We only prove Guote b from Guote?.

A(Fst)(zy) =qss (M(Fst)oz)y =ppome Az o Fst)y
= ouotes L 0 Fst o KA(Fst)y Jd> =py z o A(F5t)y .

Now we define formally last section's De Bruijn’s translation as well as the
translations between Ac g and CClLg

168

2.3. Definition

Let M: o€ Xeg and zg 0g,.., Zp: 0p be st FV(M) C {zg..2,}. We define
Mpp (z,..2,) 85 follows:

[3R TR NGy * ** ROy, 04 TXTy, - © * RT4,0
.4"',"’ “ o = Snd. n 1 iOFSt n 1.9 10 o DFSt n 10
DBylzg0...zn ™)

where 1 is minimum s.t. z=z;

(Az. M) BB Yzg,..z) = MMbB iz 2y,..2,))
(M°®"N°)pg, = App°To <Mpp, Npp >
(M.N)B¥, = <Mpp, Npp,>
Fst(M™T)pp, = Fst®To Mpg,

snd (M), = Snd?7o Hpg,

One has

R
L OXG, 0 Xop=>T
DB (a0, ™) n o

(og...,0, 7 are determined by M,zy...,z, while o is any type).
We define

o, g,
M — M'r D"x n,” ' 4
CCLg= o, (250,50 (Y°. 2™ 20°)

where y is different from all z; and has the type o in MDBK {we apply the De
Bruijn's translation to the environment formally).

We define the translation in the reverse direction by

ZN, =27

HE2T = vz

Fstis, = ™7 fst(z)
Sndfy, = ax"7.snd(z)

M= Az pot (x)snd ()
(472780 BT%),, = Azl Ay B &)
(A72TB ey = Are Brc g
<ATTTLBTTTe = M0 (Arg £ Bre)
(A% B 4 = (Ao Bre)
AATTE2),, = A"y Ay fz.y)
Clearly
Mler, Tand AL ,: 7

167

We suppose that z,y donot appearin 4,5

In [CuCCL,CuTh] the untyped version of these calculi and translations is
defined. The main difference is that in the untyped case the application and cou-
ple operators are defined and not primitive, There we proved a First equivalence
theorem of which the Second theorem below is just a typed copy {we refer to
[CuCCL] for a sketchy proof and to [CuTh] for a full proof).

2.4. Second equivalence theorem
For any terms M,N € Xeg, A, B € CCLy, the following holds:

(1) Meorpne = pnse M
(R) Axcpcor,=as A

(3) A=AAKB = AMK:ﬁ'r)SPKB}\cK

(49) M =gysp N = Mcor,=mayNea, .
Actually neither n nor SP are needed in {1) (see [CuTh]).

Now we introduce CCCx.

2.5. Definition

Let K be a set of basic objects. The types are now couples written o—>7 of
terms 0,7 of Ty (K\Ute]) where ¢, called terminal object, is different from all
the elements of X. The elements of Ty o(KUte}) are the objects.

The free cartesian closed category CCCxis defined as follows:

- if z is a variable and o,7 are objects, then z: e—>7is a term

- if f:0—>0gandg: 6;—>05 are terms, then fog: o,~—>o3is aterm

- Hd:g—>sisaterm

- if f:o0—>7; and g: 0—>73 are terms, then <f .g>: o—>T;X7zis a term
- Fst: gx7—>»0 is a term

- Snd: oX7—>7 is a term

- 1:o—>eisaterm

- if f: 0yXg~>03 is a term, then A(f): 0,~>{0>0g) is a term

- App: {e=>7)Xo->Tis a term

We use as above the notation Fst%7, Snd”" and App®”, and we also write J/d° for
Id: >0 and 17 for 1: 0—>=.

CCCyis the set of equations CCLBnSP + Ter where

(Ter) 19728 = go—>¢

CCLAnSP consists of the equations from Ass until FST included in Adg above (in
the types some = have to be replaced by —) {more on CCLEnSP in [CuCCL]).

168

Here typing is critical since Ter without types would reduce to: "everything
equals 0". The difference to the definition 2.1 is the absence of application and
couple operators, and the presence of a family of constants 1, the unigue arrows
to the terminal object.

Now we establish the equivalence of CCLy, AAx and CCCx, CCCx. First we have
to connect the types of both theories. We shall use the well-known isomorphism
between A+B and 1—>{A=B) in a cartesian closed category (4,B are any
objects, 1 is the terminal object), which is as follows in our setting:

(za—x'}-l- - A{zo Snds.a)
(ze-—->c=>'r}— = Appm‘ro <ro la—?a’{da‘>

One proves easily the following equations:

((zc——rr)+)— =CCCKx and ((xs—>u=>‘r)—)+ =CCCKZ

2.6. Definition

With every object ¢ we associate
{a’ € Tyu{K)Utel . 0:0—30" € CCCx , 0% 0'—>0 € CCCx

defined as follows:
- ‘=g,0t =0 =Id%if o € KJle}
For the product we proceed by cases:
L *
- g,,03#8:
{o,x03)° = oXa, , {0X0g)* = <oio F5t,0d0Snd> , (o,X03)” = <oy o Fst 0570 Snd>
* *
- gi#E, 0=
(oyx03)° = a7 , (oyxag)* = <Jd, 0591 >00;} , (o;x0p)" = o7 Fist
-~ o;=g, %&£ symmetric
L >
- g,02 =&
(o1%a3)* =& , (oyxo)*t = <ot.08> , (o1%0g)" =1
Now the exponentiation:
- O1,03#%
{0:202)" = 0, >0y
(0,2>05)" = AMof o App o <Fst 070 Snd>) , (0,>03)” = Moz App o <Fst,o}s Snd>)
- O.TE, Oz#E

(o:>03)°" = 0g

169

(0,202)" = AM(Fst)e 0f , (0,>05)" = a0 Appe <Id,ato 1772
- og=g

(0,205)" =& , (0,20)" = Alofo 171, (o1>ap)" = 1 .

We omitted many types, and shall do so in the sequel. ¢° can be viewed as a
canonical representent for v when identifying oXe, eXo, £=20 with o, and o=>¢
with £. This is justified by the following lemma:

2.7 lemma

For any o € Ty {Kte}) the following holds:
gtog™ =(;ch]¢1'.” and 07o gt =CCCK[da’
Proof: We only check one case.
<Jd,030 1" >0 00070 Pt % Zpec Ter <Fst, 070 170%;
Syer <Fst,0F0 1720 Snd V%>
Zpee <Fst,Snd> =M
Now we define the translations between CCLgand CCCx

2.8. Definition
With any term A: 0 of CCLg we associate a term Accoy £—>0 of CCCk defined

as follows:

loc, = 25

Acoc, = A*, it A = Id,Fst Snd App
(Ao B)ce, = (Adee, e Bice,)*
<A,B>¢pc, = <Agce Beee >t
AlA) cec, = MAcee,)*

(AB)cee, = Acoc,® Beeoy
(A.B)cecy, = <AccepBecey>

Conversely with any term f: 0—>7 of CCCxs.t. {o=>7)"#¢ {i.e. T"#2), we associ-
ate a term f g, (0=>7)" of CCLg defined by

170

T —;‘r = plo=>1*

gy, = 14"

Fst@, = Fst®' ™ it %% = Jd° % ifr'=¢
Symmetrically for Snd
Appés, = Ap® T ifo’#e = [T ifo=s

(7 % g) e, = Fomo Goe, it 01,0572
= feafor, If 0=t 05%
= A(Ftst"s"al’)_fml,x if o,%¢ , 0g=¢
= fea, ifo)05=¢
97 0, = <fompPeor,> 0T TITIRE
= (fecrpgecry) ifo°=s, i\ Te7e

= feor, if Ti%E, T2=¢

0'")71
s

<f

=gea, HTi=e, 278

A o‘x%—”:’)oc;:x =Mfea, ifoloz#E

- . LA e
= feor, Hoy=eorop=¢

Now we may state the Third equivalence theorem.

2.9. Third equivalence theorem

For all terms A,B of CCLg and f.g of CCCx of appropriate types, the follow-
ing holds:

(1) A=mB > Acce,=cecyBecey
() £ = e, 97T > Jocr, =an eer,, it '%e
(3) Acccycory, =cocy 4
(4) f&iyjeccy =a 0>7(f [Toca=21(zy), . &y ¢ 2=21(x,)])
where V(4) = {zg,..,%,] and 5F, =7 are defined by
T=T(fo>) = (170 feot)t ifo’#e =717ofoot ifog’=e
a=21 (gt)y = tta f oo™ it o'7e
=7tefog” ifo’=g

Proof: Tedious but easy. We only check (4) for App.
APp& pocc, = A
(c*#2) (4pp”"")*

171

We have to check

70 App®To (0> T)x0)* = App”T

Let

{(o=>7)" = A(B)

77e AppT 7o {{o=>TI%0)T = 7 0 fppo <A(B)o Fst oo Snd>
=177t App o <Fsf 070 Snd>e <Fst,g%te Snd>
= App o <Fst,0 ooV o Snd> = App

- (o'=g) A=(Hd)*
We have to check

{""“ 4pp"7o (0> T)X0)* = [T

770 App® 7o ({a>T)x0)* = 770 Appo <Id 0t e 1 >0 A(Fst)o Tt
=T eAppo (A(FSf),..)O T+
=770 Fsto<id, . >o7t = [d"

We end the section by pointing out that the two equivalence theorems of the
section may be used to decide the equational equality in CCCk (and also in
CCLg). Indeed the rewriting systern obtained by orienting the rules of fnSPx
from left to right is confluent {cf. [Pot]) and noetherian. We refer to [LamSco]
for a proof of that property, which was actually established by J. Lambek and
P.J. Scott for the same purpose. For concluding on decidability, we just have to
remark

[f —>T — T—>T

=eccy 9 i f oo, =aagocty I Foctgne = pnspd ocLghe

using
>7T(0=21(x)) = coqp et a=2T(TST(T)) = ceo®

3. Conclusion

We have exhibited the connection between A-calculus and cartesian closed
categories, which goes back to [Lam,Sco] and quite independently to
[BeSy,CuTh3], in a very syntactical and computational fashion. We refer to
{CuTh,CuEq] for the semantic equivalences induced by the thecrems in this
paper.

It is very tempting to implement evaluators of categorical combinators. A
result in [CuTh,CuTh] states that the evaluator last informally described in sec-
tion 1, working by lefimost-outermost reductions, is complete with respect to
the models of the underlying theory (namely CCLx enriched with arithmetic
combinators). Moreover the author devised a categorical abstract machine
transforming categorical combinators into actual machine instructions. This
machine will be described in a forthcoming paper with G. Cousineau, who
significantly improved the original proposal.

172

Related (and independent) work appears in [PaGho,PoiDyb,LamSco].
[Poi].[LamSco] explicitely state an equivalence in the kind of this paper between
(quite) Acx and CCCk, in a syntactic, a more semantic setting respectively. The
differences of the present paper to these references are mainly the introduction
of CCLg, and the connection with De Bruijn's ideas, both contributing to an
operational setting.

4. Relerences

[BeSy] G. Berry, Some Syntactic and Categorical Constructions of Lambda-
calculus models, Rapport INRIA BO (1981).

[Bru] N.G. De Bruijn, Lambda-calculus Notation without Nameless Dummies, a
Tool for Automatic Formula Manipulation, Indag Math. 34, 381-392 (1972).
[CuTh3] P-L. Curien, Algorithmes Séquentiels sur Structures de Données
Concrétes, Thése de Troisiéme Cycle, Université Paris VII (Mars 1979).

[CuTh] P-L. Curien, Combinateurs Catégoriques, Algorithmes Séquentiels et Pro-
grammation Applicative, Thése d'Etat, Université Paris VII (Décembre B3), to be
published in english as a monograph.

[CuCCL] P-L. Curien, Categorical Combinatory Logic, submitted to ICALP 85,
[CuRq] Syntactic Equivalences Inducing Semantic Equivalences, submitted to
EUROCAL 1985,

[Dyb] P. Dybjer, Category-Theoretic Logics and Algebras of Programs, PhD
Thesis, Chalmers University of Technology, Goteborg (1983).

[Lam] J. Lambek, From lLambda-calculus to Cartesian Closed Categories, in To
H.B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, ed.
J.P. Seldin and J.R. Hindley, Academic Press (1980),

[LamSco] J. Lambek and P.J. Scott, Introduction te Higher Order Categorical
Logic, to be published by Cambridge University Press {1984).

[Lan] P.J. Landin, The Mechanical Evaluation of Expressions, Computer Journal 8,
30B-320 (1964).

[PaGhoTh] K. Parsaye-Ghorni, Higher Order Abstract Algebras, PhD Thesis, UCLA
(1981).

[Poi] A. Poigné, Higher Order Data Structures, Cartesian Closure Versus A-
calculus, STACS B4, Lect. Notes in Comput. Sci.

[Pot] G. Pottinger, The Church-Rosser Theorem for the Typed A-calculus with
Fxtensional Pairing, preprint, Carnegie-Mellon University, Pittsburgh (March
1979).

[Sco4] D. Scott, Relating Theories of the Lambda-calculus, cf. [Lam].

