
A COMPLETE MODAL PROOF SYSTEM FOR A SUBSET OF SCCS *

Colin Stifling
Dept. of Computer Science

Edinburgh University
Edinburgh, U.K.

Abstract

Logical proof systems for concurrent programs are notoriously complex, often

involving arbitrary restrictions. One of the main reasons for this is that unlike

other major programming concepts parallelism does not appear to have a logical corr-

elate. Here using a simple semantic strategy we tentatively propose one and offer

an example modal proof system for a subset of Milner's SCCS. The proof rules are

reminiscent of Gentzen introduction rules except that there are also introduction

rules for the operators of the program language.

Introduction

Logical proof systems for concurrent programs are notoriously complex, often

involving arbitrary restrictions: a representative sample is [AFR,L,LG,OG,ZBR].

There does not seem to be a clean way of reasoning from the parts of a system to the

whole. It is very hard to deduce even a weak property of a concurrent system with-

out knowing a good deal about its subcomponents: unexpected interactions can arise

and are all too common in practice.

Suppose p is a program and p ~ A means that p satisfies (the property expressed

by) the formula A. For a standard binary commutative and associative parallel oper-

ator I~ there is little hope of finding an interesting binary function * on arbitrary

formulas which validates an unrestricted implication of the form:

if p ~ A and q ~ B then p II q ~ A * B

No general method is available for deriving information about a concurrent program

from little bits of information about its parts. Unlike other major programming

notions]parallelism does not appear to have a logical correlate. Here we tentatively

propose one and offer an example proof system. The suggestion is a rationalization

of ideas in [BK,BKP], and arises from a simple semantic strategy.

Let ~B be a semantic relation relativized to a formula B which (partially)

describes an 'environment': P ~B A is stipulated to mean

for any program q, if q ~ B then q In p ~ A

From p ~B A and q ~ B we can, therefore, derive information about pH q. An immediate

consequence of associativity of II is:

• This work was supported by the Science and Engineering Research Council of the U.K.

254

if p ~A B and q ~B C then p H q ~A C

For suppose r is any program satisfying A then (rll p)II q ~ C and so also r II(pll q)I =C.

In principle, we have a method of reasoning about concurrent programs with arbitrary

numbers of components. Again, in principle, we have a compositional semantics of II:

in terms of the pair of semantic relations the meaning of a concurrent system can be

built from the meanings of its components.

This semantic ploy suggests we introduce two proof-theoretic consequence relations

and~ B to coincide with the semantic pair. Resulting proof rules (introduction

rules) for II are then straightforward:

p ~ B q ~B C p I- A B q I- B C

p II q ~ C p II q I-A C

Such rules, unlike most logics for parallel programs, will not presuppose (as a proof

proceeds) either a fixed or a bounded number of potential concurrent subcomponents.

They allow one to treat II as a first class program operator on a par with sequential

composition ';' From a program point of view the formula B in I= B suggests an envir-

oament description. Logically, it suggests an assumption : p ~B A could be written

as B,p ~ A. The proposed proof rules for

cut rule [G] in the form:

A, r I- B

A, F ,

II are, therefore, analogous to Gentzen's

B, A ~-C

c

(They are also analogous to the sequential composition rule of Hoare logic.)

Using this strategy we offer a sound and complete modal proof system for a subset

of Milner's Synchronous Calculus of Communicating Systems, SCCS [Mi3]. The binary

parallel operator is a synchronous parallel, a tight coupling. The modal language

used is Hennessy-Milner logic [HMI,HM2] which has the virtue, unlike more standard

program logics, that its expressiveness is tied to a logic independent criterion,

namely bisimulation equivalence. This together with the theoretical simplicity of

SCCS considerably aids the development of the modal proof system: the proof rules are

introduction rules not only for the logical operators but also for the combinators of

the program language. The parallel introduction rules include the pair offered

above. This work extends results presented in [Stl].

The paper is in five sections followed by a conclusion. Proofs of the results

will be contained in a fuller version. The first three sections are introductory:

sections i and 2 describe Hennessy-Milner logic and its logic independent criterion

of expressibility; section 3 outlines the subset of SCCS we build a proof theory for.

In section 4 we examine the kind of proof rules we would like and in section 5 the

proof system together with example proofs is given.

255

I. Transition Systems and Bisimulation Equivalence

A nondeterministic or concurrent program may commumicate repeatedly with its

environment. A simple input/output function is, therefore, too austere as a model

of such a program: two programs determining the same input/output function may behave

very differently in the same environment. Transition systems have long been recog-

nized as a richer model [K,PI,Sil]. More recently they have been used extensively

as models of concurrent programs within the framework of tense (temporal) logic [EH,

HS,MPI,MI'2,QS]. Here our interest is transition systems whose transitions are lab-

elled.

Definition I.i A transition system is a triple <P, Act, -->> where

i. P is a set (of processes)

ii. Act is a set (of actions)

iii. ---> is a mapping which associates with each a E Act a relation ~c P × P.

A transition system T is finite branching provided that each relation ~, a 6 Act, is

image finite: ~ is image finite if for each p 6 P the set (qlP ~q} is finite.

In [HMI,HM2] the authors offer, in effect, a very intuitive understanding of a

transition system. The set Act is viewed as a set of atomic experiments. An atomic

experiment on a process (program) p 6 P is understood as an attempt to communicate with

p. Communication may change a process depending on its internal structure. The

relations ~ a 6 Act, are intended to capture the effect of experimentation : p ~q

means that p can evolve to q in response to an a experiment, or q is the result of a

successful a experiment on p. A computation can be viewed as a successful sequence

of experiments (communications). Similar ideas are also contained in [DeH,HBR,Ho,Mo].

Hennessy and Milner propose that two processes (programs) should be equivalent

(have the same meaning) when no amount of finite experimentation distinguishes them.

A formal criterion is offered which is the same as bisimulation equivalence when T is

finite branching.

Definition 1.2 A relation R c P × P on T is a bisimulation just in case

pRq iff i. VaVp'. if p ~p' then 3q'. q ~q' and p'Rq'

ii. VaVq'. if q ~q' then -313'. p -->p' and p'Rq'

This definition characterizes a property a relation may or may not have on T. (The

identity relation, for instance, is a bisimulation.) Such relations give rise to a

natural equivalence, bisimulation equivalence, on processes in T:

P~T q iff t/qere exists a bisimulation R such that pRq

It is straightforward to check that ~ T is an equivalence and, moreover, that it is

also the maximal bisimulation under inclusion. Bisimulation equivalence is a very

fine equivalence. For instance, consider the transition system given by example 1.3.

Example 1.3

256

b c

Note that P2 ~T q2 and p2 ~T q3 because P2 can respond successfully to both b and c

experiments whereas q2 and q3 each fail one of the pair. Consequently, Pl ~T ql "

Thus, if two processes have the same computations (may respond to the same sequences

of experiments) this does not guarantee their equivalence. Strong connections be-

tween their respective intermediate states are also required. It is precisely these

sorts of connections which are, in genera~ needed for comparing the behaviours of

concurrent programs.

Bisimulations have been investigated in [Mi3,Pa,Si2]~ Alternative equivalences

based on experimental indistinguishability can be found in [Ab,DeH,He2,HBR,Mo,RB].

There is a need to allow infinite experiments when modelling fairness. Bisimulation

equivalence is then no longer sufficient. The result is even finer equivalences

[Hel,Mi2]. However, fairness does not arise in the process language we examine later

because its parallel operator is that of tight coupling.

2. Hennessy-Milner Logic

Hennessy and Milner present a modal logic which characterizes bisimulation equiv-

alence on finite branching transition systems [HMI,HM2]. We offer here a negation

free version of their logic: the avoidance of negation aids the development of the

modal proof theory provided in the sequel. Let T = (P,Act -->) be a transition

system and L T the modal language:

A ::= Tr IFalse IA AA IA VA I<a>A I [a]A where a E Act

L T is reminiscent of propositional dynamic logic [Ha]. Here, however, only

atomic actions appear within the modal operators. Furthermore, unlike dynamic logic,

the satisfaction relation ~ is defined between processes and formulas.

is the least relation such that:

p ~ Tr for all p 6 p

p ~ False for all p 6 p

p ~ A A B iff p ~ A and

p ~ A V B iff p ~ A or

p ~ <a>A iff 3q,p -~

p ~ [a]A iff Vq.

p~B

p~B

and q ~ A

if p ~ q then q ~A

~cp × L T

The only atomic formulas are Tr and False: Tr stands for true which every process

satisfies whereas False does not hold of any process, p ~ <a>A means that p can

evolve under some successful a experiment to a process satisfying A. Likewise,

p ~ [a]A means that every process which is the result of a successful a experiment on

257

p satisfies A. In particular, p ~ [a]False means that p is a-deadlocked: no a ex-

periment on p can be successful. This modal language is, therefore, expressively

rich; it can say of processes not only what they can do but also what they can't do.

This power of distinguishing is required for the characterization of bisimulation

equivalence.

Let LT(P) = {Alp ~ A} then Hennessy and Milner (in effect) prove the following

theorem:

Theorem 2.1 If T is finite branching then LT(p) = LT(q) iff p~T q

The properties expressible in L T are tied to the distinguising powers of bisimulation

equivalence: the logic L T cannot differentiate processes which are bisimulation equi-

valent and vice versa. For instance, the processes pl,q I of example 1.3 are disting-

uishable by L T formulas:

Pl ~ [a](Tr A <c>Tr) ql ~ [a](Tr A <c>Tr)

Pl ~ <a>[b]False ql ~ <a>[b]False

Thus, a virtue of LT, unlike programming logics in general, is that its criterion for

expressiveness lies completely outside logic. However, we may wonder how this ex-

pressiveness can be translated into expression of particular process properties. If

Act in T is finite than A [a]False expresses deadlock or termination, and its dual
a6Act

V<a>Tr may be said to express a form of liveness. More generally, the formula or
a6Act
set of formulas expressing a particular property like absence of deadlock will depend

upon the particular process under consideration. The assumption that T be finite

branching in theorem 2.1 can be discarded if infinite disjunctions and conjunctions

are allowed in L T [HS,Mil]. Further modal characterizations of equivalences can be

found in [BR,GS,HS,Mil].

The description of Hennessy-Milner logic, LT, here is semantic. Our aim is to

develop a proof system on L T for a particular process language containing a binary

commutative and associative parallel operator. The process languages we choose is

a subset of Milner's @CCS.

3. A Subset of SCCS

Milner developed the Synchronous Calculus of Communicating Systems, SCCS, as a

tractable model of systems which interact synchronously [Mi3]. It is a transition

system T = (P,Act,---->) whose set of processes P is built up from as few combinators

or operators as possible, each of which is intended to capture a distinctive intuitive

concept. This makes SCCS ideal for the sort of proof system we wish to develop.

Here we only consider a subset of SCCS, namely SCCS with only finite summation, and

without restriction and renaming.

258

a

Processes in SCCS evolve relative to some universal discrete time. If p -->p'

and q -~q' then the synchronous parallel of p and q responds to the product of the

experiments a and b, a x b, and evolves to the parallel of p' and q'. Product of

actions is captured by a structure on Act. Milner assumes that (ACt,×,1) is an abel-

ian monoid: x is both commutative and associative with i as identity. For simplicity

we further assume the left cancellation law:

if a x b = c × b then a = c

The right cancellation law also holds because x is commutative. We abbreviate a x b

to ab. If ab = c then we let c~a = b (and c~b = a) : by the cancellation laws if

d'-e exists it is unique.

The set of processes P of SCCS we consider is given by the closed expressions

of the following process language where Z ranges over process variables

p ::= Z I 0 la.p I fix Z.p Ip + p I p × p with a 6 Act

@ stands for 'disaster': it is a process which cannot respond to any experiment.

The process a.p responds to a, and evolves to p. Potentially infinite computations

are allowed by the recursion combinator fix Z which binds free occurrences of Z in p

in the process fix Z.p. We impose a syntactic restriction on fix Z.p, that z is

guarded in p: that is, every free occurrence of Z in p is within a subexpression a.q

of p° Without this restriction the resulting transition system would not be finite

branching. The operator + represents external nondeterministic choice: the exper-

imenter may resolve the choice. Finally, x represents synchronous parallelism.

The remaining undefined feature of the transition system T is the transition

relation ---> . It is defined as the least set such that:

a
a.p --> p

fix Z.p a>p, whenever p[fix Z.p/Z] a-->p ' where [°/-] denotes substitution
a a a

p + q --> r whenever p -->r or q --> r

p × q ~p' × q' whenever P b__>p, and q C>q,

The process a.p can only respond to an a experiment and in so doing evolves to p.

In a.p + b.q, where a ~ b, the experimenter may resolve the choice: the offer of an

a experiment results in p whereas the offer of a b experiment results in q. This is

not true of a°p + a.q : the experimenter has no control on whether p or q is the re-

sult of an a experiment. The number of concurrent subprocesses may increase in re-

sponse to an experiment. This only happens when the concurrent combinator x occurs

within the scope of a fix Z; for instance, if p = fix Z(aZ × bZ) then p ab_._~p x p.

T~is possibility of growth must be reflected in any logical proof system for this

language of processes. For a full discussion of SCCS with examples see [Mi3].

Bisimulation equivalence is not only an intuitively natural equivalence on the

transition system T it is also a congruence: process contexts preserve equivalence

[Mi3]. The following implies that T is finite branching.

259

Fact 3.1 Vp. (ql3a. p ~ q} is finite

By theorem 2.1 we know that the modal logic L T characterizes bisimulation equivalence,

~T' on T. The following fact states that the parallel operator × is both commutative

and associative up to ~T [Mi3].

Fact 3.2 i. P × q ~T q × p

ii. p x (q × r) ~T (p × q) x r

This means that formulas of L T cannot distinguish between these equivalent processes.

The process © cannot respond to any experiment. It is, therefore, deadlocked:

~ [a]False for every a 6 Act. Moreover so is 8 x p for any p. As remarked in

section [processes which may respond to the same sequences of experiments need not

be bisimulation equivalent. The following example illustrates this where a is the

inverse of a; that is aa = i.

Example 3.3 Pi × q ~T Pj × q for i ~ i < j ~ 3 where

q = fix Z. a. Z

Pl = fix Z. a. Z

P2 = a(a.~ +fix Z.a.Z)

P3 = fix Z.(a.@ +a.Z)

The three processes Pi × q, i < i < 3 satisfy every formula in the set ~<1>Tr,

<l><l>Tr,... }. (Note the only experiment they can ever respond to is i.) However,

they are not bisimulation equivalent because of differences in possibilities of dead-

lock. The process Pl x q is deadlock free whereas P2 × q can only deadlock in one

circumstance unlike P3 x q which can always deadlock. The process P3 x q satisfies

every fo:cmula in the set {<l>[l]False, <l><l>[l]False,... } whereas P2 × q only

satisfies <1><1>[l]False and fails the rest; Pl x q, on the other hand, fails them

all.

4. Towards a Modal Proof Theory: A Relativized Satisfaction Relation

Our aim is to offer a sound and complete modal proof system on L T for the subset

of SCCS outlined. We want, therefore, to define a proof-theoretic consequence relation

which coincides with ~ . Ideally, the proof rules will be Gentzen style introduction

rules [G]. But, we also need to take account of the structure of processes. The

theoretical simplicity of the process language suggests that we also offer introduction

rules for the combinators. The question then arises as to what, if anything, is the

logical correlate of the combinators. In [St1] we provided proof rules for an even

more restricted process language, a language devoid of both concurrency and recursion.

Introduction rules for . in a.p. are straightforward. The following schemas

suffice:

260

p~A p~A

a.p ~ <a>A a.p ~ [a]A

Their justification is that a.p. evolves to p under any a experiment. The logical

correlate of . is, therefore, modal iteration. Consequently, these are also <a> and

[a] introduction rules.

A global + introduction rule of the form

p~A q~B

p + q ~ f(A,B)

where f is truth-functional and not the constant true function is always unsound: this

is shown in [Stl]. Restricted versions of such a rule, however, which depend on the

form of A and B can be found:

p ~ <a>A q ~ <a>A p ~ [a]A q ~ [a]A

p + q ~ <a>A p + q ~ <a>A p + q ~ [a]A

Their justification is that p + q only evolves to a process which either p evolves to
s %

or q evolves to. A restricted metalogical or or'and~is the correlate of * : if <a>A

is true of p or of q it is true of p + q; if [a]A is true of p and of q it is true of

p + q.

A global × introduction rule suffers the same fate as a + global rule. Unlike

the + case, however, restricted versions which depend on the forms of A and B are in-

adequate. Such rules would also need to take into account most, if not all, the modal

subformulas of A and B. Even if such rules could be found they would be in opposition

to the style of proof rules we are suggesting. An alternative approach, a rational-

ization of [BK,BKP], which fits in with the style of rules suggested already, is now

offered. This approach was outlined in the introduction.

We complicate the semantics of L T, when T is the subset of SCCS outlined, by

introducing a relativized satisfaction relation ~A where A is a formula of L T. We

stipulate that

P ~A B iff Vq. if q ~ A then q × p ~ B

The pair of semantic relations, ~, ~A gives a compositional semantics for concurrency:

the samentics of a concurrent system are built up from the semantics of the components.

Recall Fact 3.2 that × is both commutative and associative (up to~T). By commutat-

ivity if q ~ A and P ~A B then also p × q ~ B. By associativity the following hol~s

Fact 4.1 If p t= A B and q ~B C then p × q ~A C

Consequently, if q is the concurrent process with components pj 0 < j < n, in any

order and P0 ~ A0 and Pi ~A A i I < i < n then q ~ A
i-i n

261

This semantic ploy suggests that we introduce a second proof-theoretic consequence

relation ~A

and

Natural introduction rules for x then arise:

q ~ A P ~A B q ~ A P ~A B

q x p~B p × q~B

P Bc p Bc

q x p ~A C p x q ~A C

Computationally, A in p~ B can be viewed as an environment description, a (possibly
A

partial) summary of any process q such that q x p satisfies B. Logically, A can be

viewed as an assumption : p ~A B could be rewritten A, p ~ B. This suggests a log-

ical correlate of x introduction - in fact, a logical analogy - namely Gentzen's cut

rule [G] in the form

A, F ~B B, ~ C

A, F , ~ ~ C

There is also a similarity to Hoare's (introduction) rule for sequential composition

(when p ~A B is written A{p}B). From now on A,p ~ B (A,p ~ B) is written instead of

P ~A B(p ~A B).

The additional semantic relation means that introduction rules for two consequence

relations ~ and ~B need to be offered. These relations will be connected by the

first pair of × introduction rules above. Introduction rules for the . and + com-

binators in the context of ~ are straightforward and not dissimilar from above:

A, p~B
if b~a exists

<b~a>A, a.p ~ B

A, p ~ B
if b~a exists

[b~a]A, a.p ~ [biB

A, p ~ <a>B A, q ~ <a>B

A, p +q ~ <a>B A, p +q ~ <a>B

Left unmentioned are introduction rules for fix.

A, p ~- [a]B A, q ~ [a]B

A, p +q ~ [a]B

The behaviour of fix Z.p is

however, fully determined by repeated 'unfolding' : an unfolding of fix Z.p is

p[fix Z.p/Z]. (Recall that fix Z.p ~q whenever p[fix Z.p]~q.) Contextual intro-

duction rules for fix Z are offered which appeal to this unfolding. The rules depend

upon the modal degree of a formula A, m(A), which is inductively defined as the max-

imumdepth of modal operators in A:

m(Tr) = m(False) = 0

m(A V B) = m(A A B) = max(m(A),m(B))

m(<a>A) = m([a]A) = I + m(A)

If p ~ A and m(A) = n then A is a property of p's evolution through at most n processes;

a property of computations from p of length at most n. If p = fix Z.q then A is at

262

most a property of the nth 'unfolding' of p given that Z is guarded in q. Consequen-

tly, we can appeal to standard approximation techniques : when p = fix Z.q then
n

p , n > 0, is defined inductively:

o

n+1
P = q[pn/z] n times

For instance, if p fix Z. a.Z then pO ~ and pn = = = a.a a.8, n > 0. Hence,
n

p , n > 0, can respond in the same way as fix Z.q to any sequence of experimenting

whose length is less than or equal to n: such experimenting is summed up in L T by

formulas whose modal degree is less than or equal to n. The outcome is the following

pair of rules for p = fix Z.q

pn ~ A A, pn ~ B

re(A) < n re(B) < n

p~A A, p~B

This method of dealing with fix was suggested by Gerardo Costa.

5. A Complete Modal Proof System for T

The full proof system on L T for T, the subset of SCCS, is now given.

Axioms p ~ Tr ® ~ [a]A A,p ~- Tr False, p ~ A A,8 ~ [a]B

a.p ~ [b]A if a ~ b A, a.p ~ [b]B if b~a doesn't exist

VI p ~ A p ~ B A,p ~ B A,p ~ C A,p ~ C B,p ~ C
p~AvB p~AvB A,pI-B VC A,p~-B vC A vB,pI-C

^! p~A p~ A,pl-C B,p~C A,p~B A,p~C
p~AAB AAB,p~C AAB,p~C A,p~BAC

<a>I p ~ A ~u,P I- B a~b exists
a.p~ <a>A <a~b>A,b.p ~ <a>B

[a]I p ~ A A,p I- B
a.p ~ [a]A [a~b]A,b.p~ [a]B

a'-b exists

+I<> p ~ <a>A q ~ <a>A A,p ~ <a>B A,q ~ <a>B
p +q~<a>A p+q~<a>A A,p+ql s <a>B A,p +q~ <a>B

+I[] p ~ [a]A q ~ [a]A A,p ~ [a]B A,q ~ [a]B
p+ql- [a]A A,p +q~ [a]B

xI

fix I

p ~ A A,q ~ B p ~ A A,~ ~ B A,p I- B B,q ~ C A,~ ~ B B,ql- C
pXq~B q×p~B A,p×q~C A,qxp~C

pn ~ A A,p n ~ B
p~A p = fix Z.q p = fix Z.q

n h re(A) A,pI-B n k re(B)

The axioms and rules are reasonably straightforward. The axiom~ p ~ Tr and

A,p ~ Tr hold because every process satisfies Tr. In contrast, the axiom False,p ~ A

263

holds because no process satisfies False. The axioms for ~ depend upon its inability

to respond to any experiment. (Recall that p I = [a]False says that p is a-deadlocked.)

The final three axioms are justified by noting that a.p can only respond to a. The

vI and AI rules are as expected. Note, however, that these include introduction rules

for the 'environment' or assumption formula. The presence of the assumption complic-

ates the <a>I and [a]I rules as expected. Most of the rest of the rules were men-

tioned in the previous section. We illustrate the use of some of the rules with an

example proof where, as before, d for any d 6 Act, is the inverse of d; dd = i.

Example 5.1 a(b.@ + c.8) x (fix Z(a.l.z) x 1.b.8) ~ [l]<l>Tr

I Tr, a.l.@~Tr

I ~Tr [1] iTrm l.a.I.QI- Tr <l>I Tr, ~l-Tr

b.@~ Tr [a]Tr, a.l.a.l.@l- [l]Tr Tr, b.®~ <l>Tr
+<>I fix I [1] I

b® +c@~ Tr [a]Tr, fix Z.a.I.ZI- [l]Tr [l]Tr,l.b.@~ [l]<l>Tr
[a]I x I

a(b@ +c@) Q [a]Tr [a]Tr, fix Z (a.l.Z) × l.b.@~ [1]<l>Tr
x I

a(b.@ +c.~) x (fix Z(a.l.Z) x l.b.@) ~ [l]<l>Tr.

In this example proof the final formula [l]<1>Tr is proved of the process l.b.~

relative to the assumption [l]Tr. The proof, however, could have proceeded instead

by proving the final formula of either of the other two subprocesses (relative to ass-

umptions). For instance, it is straightforward to show the following pair°

[a]Tr, a(b.~ + c.@) ~ [l]<l>Tr

fix Z(a.I.Z) x l.b@ ~ [a]Tr

The conclusion follows by x I. All concurrent subprocesses then are to this extent

on an equal footing.

In the next example we offer a proof of a process whose number of subcomponents

grows as it responds to experiments.

Example !3.2 fix Z(a.Z Xa.Z) ~ <l><l>Tr

<~I @l-Tr <l>I Tr, 8l-Tr

x I a'@ ~ <~> Tr <a>Tr, a.~ ~ <l>Tr

<a>I

x I

(a.@ x a@) ~ <l>Tr

a.(a.@ ×~.~) ~ <a><l>Tr

<a>I

xl

<l>I

Tr, ~ ~ Tr <l>I Tr, ~ ~ Tr

<l>Tr, a.~ <a>Tr <a>Tr, a.@~ <l>Tr

<l>Tr, a.8 × a.0~<l>Tr

<a><l>Tr, a(a.@ x a.@)l-<l><l>Tr

fix I a" (a.@ x a.@) x a(.a.@ x a.@) ~<l><l>Tr

fix Z(a.Z x a.Z) ~<l><l>Tr

In the final example we prove, in effect, the possibility of deadlock. The

process is P2 × q of example 3.3. This process can only ever respond to 1 exper -

iments. Thus, <l><l>[l]False says that it can become deadlocked.

264

Example 5~3 a(a.g +fix Z.a.z) x fix z.a.Z~ <l><l>[l]False

<a>I @ ~ Tr <l>I Tr, g ~ [1]False

<a>I i.@~<a>Tr +<>I <a>Tr, a,@~<l>[l]False

fixI~.a.g~<a><a>Tr <l>I <a>Tr, a.@ +fixZ.aZ~<l>[l]False

fixZ.a.Z~ <a><i>Tr
xI

<a><a>Tr, a(a.@ +fixZ.a.Z)~<1><l>[1]False

a(a.Q + fix Z.a.Z) x fix Z.a.Z ~ <l><1>[l]False

Soundness and Completeness

The modal proof system above is sound. This is the content of the following

theorem:

Theorem 5.4 i. if p ~ B then p ~ B

ii. if A, p ~ B then A,p J= B

Its proof is standard: the axioms are all valid and the introduction rules preserve

validity.

Completeness can be understood in two ways:

weak completeness : if p ~ B then p ~ B

strong completeness : weak completeness and if A,p ~ B then A,p ~ B

The modal system is weak complete. Constructing a strongly complete system is prob-

lematic. One difficulty is that if A is SCCS-valid, true of every SCCS process, then

B,p ~ A for any B. In fact, there is not a simple dichotomy between weak and strong

completeness: a weak completeness result depends on a corresponding strong result to

justify pXq ~ A implies pxq ~ A. The strong completeness result we offer is modulo

formula equivalence on SCCS in the case of the relativized relation. Let

IAI = (p:p k A}.

Theorem 5.5 i. if p ~ A then p ~ A

ii. if A,p ~ B then BC. JcJ=IAJ and C,p ~ B

The most difficult part of the proof is the following expressibility (or parallel

decomposition) lemma

Lemma 5.6 i. if pXq ~ A then BC. p ~ C and C,q ~ A

ii. if A,pxq ~ B then 3C,D. ~AJ=JcJ and C,p ~ D and D,q ~ B .

Conclusion

A complete compositional modal proof system for a subset of Milner's SCCS has

been offered. The parallel introduction rules were suggested by a simple semantic

strategy. There is a number of directions for further work. The semantic strategy

involves an appeal to a notion of environment. More general work on environments

for SCCS type languages is contained in [La]. The current work is also closely

265

related to [Wi]. More generally, the strategy needs to be tested against other con-

current programming languages and other logical languages. A small step in this

direction is [St2] where we show that the strategy works for the more intractable

asynchronous parallel operator of Milner's CCS.

There is also the issue of extending the current modal proof system to cover full

SCCS. Allowing infinitary summation means the modal logic must become infinitary

[HS,Mil]. Renaming can be dealt with straightforwardly. Restriction is the operator

which causes most problems. Rreliminary results suggest that only a subset of res-

triction contexts can be dealt with by a simple extension of the logic.

Acknowledgements

I weuld like to thank Bob Constable, Matthew Hennessy, Robin Milner, Gordon

Plotkin and in particular Gerardo Costa for discussions and helpful comments on the

topic of this paper. I would also like to thank Dorothy McKie for typing.

References

LNCS abbreviates Lecture Notes in Computer Science, Springer-Verlag.

[Ab]

[AFR]

[BK]

[BKP]

[BR]

[DeH]

[EH]

[G]

[GS]

[Ha]

[HBR]

[Hel]

[He2]

S. Abramsky. 'Experiments, powerdomains and fully abstract models for applic-
ative multiprogramming', LNCS Voi.158, pp.l-13 (1983).

K. Apt, N. Francez and W.de Roever. 'A proof system for communicating sequen-
tial processes', TOPLAS pp. 359-385 (1980).

H. Barringer and R. Kuiper. 'Towards the hierarchical, Temporal logic, spec-
ification of concurrent systems',presented at STL/SERC Workshop on the Analysis
of Concurrent Systems, Cambridge. (1983).

H. Barringer, R. Kuiper and A. Pnueli, 'Now you may compose temporal logic
specifications', Proceedings STOC (1984).

S. Brookes and W. Rounds. 'Behav~nural equivalence relations induced by prog-
remmming logics', LNCS Voi.154 pp. 97-108 (1983).

R. de Nicola and M. Hennessy. 'Testing equivalences for processes', in LNCS
Vol. 154 pp. 548-560 (1983).

E. Emerson and J. Halpern. 'Sometimes and not never revisited: on branching
versus linear time', pp. 127-140 POPL Proceedings (1983).

G. Gentzen. 'Investigations into logic deduction', in 'The Collected Works of
Gerhard Gentzen' ed. Szabo, North-Holland (1969).

S. Graf and J. Sifakis. 'A modal characterization of observational congruence
on finite terms of CCS', IMAG Technical Report No. 402 (and to appear in ICALP
'614) (1983).

D. Harel. 'First-Order Dynamic Logic' LNCS Voi.68 (1979).

C. Hoare, S. Brookes and A. Roscoe. 'A theory of communicating sequential
processes', Technical Monograph Prg-16, Computing Lab, University of Oxford
(1981).

M. Hennessy. 'Axiomatizing finite delay operators', Acta Informatica 21, pp.
61-88 (1984).

M. Hennessy. 'Modelling finite delay operators'. Technical Report CSR-153-83
Dept. of Computer Science, Edinburgh (1983).

266

[HMI]

[HM2]

[Ho]

[HS]

[El

[L]

[La]

[LG]

[I,',J.1]

[Mi2]

[Mi3]

[Mo]

[MPI]

[MP2]

[OS]

[Pa]

[P]

[QS]

[RB]

[Sil]

[Si2]

[Stl]

[St2]

[~R]

[Wi]

M. Hennessy and R. Milner. 'On observing nondeterminism and concurrency',
LNCS Voi.85, pp. 299-309 (1980).

M. Hennessy and R. Milner. 'Algebraic laws for nondeterminism and concurrency'
Technical Report CSR-133-83 (and to appear in JACM) (1983).

C. Hoare. 'A model for communicating sequential processes' Technical
Monograph, Prg-22, Computing Lab University of Oxford (1982).

M. Hennessy and C. Stirling. 'The power of the future perfect in program
logics', LNCS Voi.176 pp.301-311 (1984).

R. Keller. 'A fundamental theorem of asynchronous parallel computation' ,
in Parallel Processing ed. T. Feng, Springer-Verlag (1975).

L. Lamport~ 'The 'Hoare logic' of concurrent programs', Acta Informatica
pp. 21-37 (1980).

K. Larsen. 'A context dependent equivalence between processes' To appear.

G. Levin and D. Gries. 'A proof technique for communicating sequential proc-
esses' Acta Informatica pp. 281-302 (1981)

R. Milner. 'A modal characterisation of observable machine-behaviour', LNCS
Vol. 112 pp. 25-34 (1981).

R. Milner. 'A finite delay operator in synchronous CCS', Technical Report
CSR-I16-82, Dept. of Computer Science, Edinburgh (1982).

R. Milner. 'Calculi for synchrony and asynchrony', Theoretical Computer
Science, pp. 267-310 (1983).

E. Moore. 'Gedanken-experiments on sequential machines', in 'Automata Studies'
ed. C. Shannon and J. McCarthy, Princeton University Press, pp. 129-153 (1956).

z. Manna and A. Pnueli. 'Temporal verification of co~¢urrent programs : the
temporal framework for concurrent programs', in 'The Correctness Problem in
Computer Science', ed. R. Boyer and J. Moore, Academic Press, pp. 215-273
(198).

Z. Manna and A. Pnueli. 'How to cook a temporal proof system for your pet
language', POPL Proceedings pp. 141-154 (1983).

S. Owicki and D. Gries. 'An axiomatic proof technique for parallel programs I'
Acta Informatica pp. 319-340 (1976).

D. Park. 'Concurrency and automata on infinite sequences', LNCS Vol.104 (1981).

G. Plotkin. 'A structural approach to operational semantics' Lecture Notes,
Aarhus University (1981).

J. Queille and J. Sifakis. 'Fairness and related properties in transition
systems - a temporal logic to deal with fairness', Acta Informatica 19, pp.
195-220 (1983).

W. RQunds and S. Brookes. 'Possible futures, acceptances, refusals and comm-
unicating processes' , in Proc. FOCS pp. 140-149 (1981).

J. Sifakis. 'Uhified approach for studying the properties of transition sys-
tems', Theoretical Computer Science, pp. 227-258 (1982).

J. Sifakis. 'Property preserving homomorphisms of transition systems', Tech-
nical Report, IMAG (1982).

C. Stirling. 'A proof theoretic characterization of observational equivalence'
in Procs. FCT-TCS Bangalore (1983) (and to appear in TCS).

C. Stirling_ 'A compositional modal proof system for a subset of CCS'. To
appear.

J. Zwiers, A. de Bruin and W. de Roever. 'A proof system for partial correct-
ness of dynamic networks of processes', Technical Report RUU-CS-83-15, Dept.
of Computer Science, University of Utrecht (1983).

G. Winskel. 'Complete proof systems for SCCS with modal assertions'. Toappear.

