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Abstract 

Logical proof systems for concurrent programs are notoriously complex, often 

involving arbitrary restrictions. One of the main reasons for this is that unlike 

other major programming concepts parallelism does not appear to have a logical corr- 

elate. Here using a simple semantic strategy we tentatively propose one and offer 

an example modal proof system for a subset of Milner's SCCS. The proof rules are 

reminiscent of Gentzen introduction rules except that there are also introduction 

rules for the operators of the program language. 

Introduction 

Logical proof systems for concurrent programs are notoriously complex, often 

involving arbitrary restrictions: a representative sample is [AFR,L,LG,OG,ZBR]. 

There does not seem to be a clean way of reasoning from the parts of a system to the 

whole. It is very hard to deduce even a weak property of a concurrent system with- 

out knowing a good deal about its subcomponents: unexpected interactions can arise 

and are all too common in practice. 

Suppose p is a program and p ~ A means that p satisfies (the property expressed 

by) the formula A. For a standard binary commutative and associative parallel oper- 

ator I~ there is little hope of finding an interesting binary function * on arbitrary 

formulas which validates an unrestricted implication of the form: 

if p ~ A and q ~ B then p II q ~ A * B 

No general method is available for deriving information about a concurrent program 

from little bits of information about its parts. Unlike other major programming 

notions ]parallelism does not appear to have a logical correlate. Here we tentatively 

propose one and offer an example proof system. The suggestion is a rationalization 

of ideas in [BK,BKP], and arises from a simple semantic strategy. 

Let ~B be a semantic relation relativized to a formula B which (partially) 

describes an 'environment': P ~B A is stipulated to mean 

for any program q, if q ~ B then q In p ~ A 

From p ~B A and q ~ B we can, therefore, derive information about pH q. An immediate 

consequence of associativity of II is: 
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if p ~A B and q ~B C then p H q ~A C 

For suppose r is any program satisfying A then (rll p)II q ~ C and so also r II(pll q)I =C. 

In principle, we have a method of reasoning about concurrent programs with arbitrary 

numbers of components. Again, in principle, we have a compositional semantics of II: 

in terms of the pair of semantic relations the meaning of a concurrent system can be 

built from the meanings of its components. 

This semantic ploy suggests we introduce two proof-theoretic consequence relations 

and~ B to coincide with the semantic pair. Resulting proof rules (introduction 

rules) for II are then straightforward: 

p ~ B q ~B C p I- A B q I- B C 

p II q ~ C p II q I-A C 

Such rules, unlike most logics for parallel programs, will not presuppose (as a proof 

proceeds) either a fixed or a bounded number of potential concurrent subcomponents. 

They allow one to treat II as a first class program operator on a par with sequential 

composition ';' From a program point of view the formula B in I= B suggests an envir- 

oament description. Logically, it suggests an assumption : p ~B A could be written 

as B,p ~ A. The proposed proof rules for 

cut rule [G] in the form: 

A, r I- B 

A, F , 

II are, therefore, analogous to Gentzen's 

B, A ~-C 

c 

(They are also analogous to the sequential composition rule of Hoare logic.) 

Using this strategy we offer a sound and complete modal proof system for a subset 

of Milner's Synchronous Calculus of Communicating Systems, SCCS [Mi3]. The binary 

parallel operator is a synchronous parallel, a tight coupling. The modal language 

used is Hennessy-Milner logic [HMI,HM2] which has the virtue, unlike more standard 

program logics, that its expressiveness is tied to a logic independent criterion, 

namely bisimulation equivalence. This together with the theoretical simplicity of 

SCCS considerably aids the development of the modal proof system: the proof rules are 

introduction rules not only for the logical operators but also for the combinators of 

the program language. The parallel introduction rules include the pair offered 

above. This work extends results presented in [Stl]. 

The paper is in five sections followed by a conclusion. Proofs of the results 

will be contained in a fuller version. The first three sections are introductory: 

sections i and 2 describe Hennessy-Milner logic and its logic independent criterion 

of expressibility; section 3 outlines the subset of SCCS we build a proof theory for. 

In section 4 we examine the kind of proof rules we would like and in section 5 the 

proof system together with example proofs is given. 
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I. Transition Systems and Bisimulation Equivalence 

A nondeterministic or concurrent program may commumicate repeatedly with its 

environment. A simple input/output function is, therefore, too austere as a model 

of such a program: two programs determining the same input/output function may behave 

very differently in the same environment. Transition systems have long been recog- 

nized as a richer model [K,PI,Sil]. More recently they have been used extensively 

as models of concurrent programs within the framework of tense (temporal) logic [EH, 

HS,MPI,MI'2,QS]. Here our interest is transition systems whose transitions are lab- 

elled. 

Definition I.i A transition system is a triple <P, Act, -->> where 

i. P is a set (of processes) 

ii. Act is a set (of actions) 

iii. ---> is a mapping which associates with each a E Act a relation ~c P × P. 

A transition system T is finite branching provided that each relation ~, a 6 Act, is 

image finite: ~ is image finite if for each p 6 P the set (qlP ~q} is finite. 

In [HMI,HM2] the authors offer, in effect, a very intuitive understanding of a 

transition system. The set Act is viewed as a set of atomic experiments. An atomic 

experiment on a process (program) p 6 P is understood as an attempt to communicate with 

p. Communication may change a process depending on its internal structure. The 

relations ~ a 6 Act, are intended to capture the effect of experimentation : p ~q 

means that p can evolve to q in response to an a experiment, or q is the result of a 

successful a experiment on p. A computation can be viewed as a successful sequence 

of experiments (communications). Similar ideas are also contained in [DeH,HBR,Ho,Mo]. 

Hennessy and Milner propose that two processes (programs) should be equivalent 

(have the same meaning) when no amount of finite experimentation distinguishes them. 

A formal criterion is offered which is the same as bisimulation equivalence when T is 

finite branching. 

Definition 1.2 A relation R c P × P on T is a bisimulation just in case 

pRq iff i. VaVp'. if p ~p' then 3q'. q ~q' and p'Rq' 

ii. VaVq'. if q ~q' then -313'. p -->p' and p'Rq' 

This definition characterizes a property a relation may or may not have on T. (The 

identity relation, for instance, is a bisimulation.) Such relations give rise to a 

natural equivalence, bisimulation equivalence, on processes in T: 

P~T q iff t/qere exists a bisimulation R such that pRq 

It is straightforward to check that ~ T is an equivalence and, moreover, that it is 

also the maximal bisimulation under inclusion. Bisimulation equivalence is a very 

fine equivalence. For instance, consider the transition system given by example 1.3. 



Example 1.3 

256 

b c 

Note that P2 ~T q2 and p2 ~T q3 because P2 can respond successfully to both b and c 

experiments whereas q2 and q3 each fail one of the pair. Consequently, Pl ~T ql " 

Thus, if two processes have the same computations (may respond to the same sequences 

of experiments) this does not guarantee their equivalence. Strong connections be- 

tween their respective intermediate states are also required. It is precisely these 

sorts of connections which are, in genera~ needed for comparing the behaviours of 

concurrent programs. 

Bisimulations have been investigated in [Mi3,Pa,Si2]~ Alternative equivalences 

based on experimental indistinguishability can be found in [Ab,DeH,He2,HBR,Mo,RB]. 

There is a need to allow infinite experiments when modelling fairness. Bisimulation 

equivalence is then no longer sufficient. The result is even finer equivalences 

[Hel,Mi2]. However, fairness does not arise in the process language we examine later 

because its parallel operator is that of tight coupling. 

2. Hennessy-Milner Logic 

Hennessy and Milner present a modal logic which characterizes bisimulation equiv- 

alence on finite branching transition systems [HMI,HM2]. We offer here a negation 

free version of their logic: the avoidance of negation aids the development of the 

modal proof theory provided in the sequel. Let T = (P,Act -->) be a transition 

system and L T the modal language: 

A ::= Tr IFalse IA AA IA VA I<a>A I [a]A where a E Act 

L T is reminiscent of propositional dynamic logic [Ha]. Here, however, only 

atomic actions appear within the modal operators. Furthermore, unlike dynamic logic, 

the satisfaction relation ~ is defined between processes and formulas. 

is the least relation such that: 

p ~ Tr for all p 6 p 

p ~ False for all p 6 p 

p ~ A A B iff p ~ A and 

p ~ A V B iff p ~ A or 

p ~ <a>A iff 3q,p -~ 

p ~ [a]A iff Vq. 

p~B 

p~B 

and q ~ A 

if p ~ q then q ~A 

~cp × L T 

The only atomic formulas are Tr and False: Tr stands for true which every process 

satisfies whereas False does not hold of any process, p ~ <a>A means that p can 

evolve under some successful a experiment to a process satisfying A. Likewise, 

p ~ [a]A means that every process which is the result of a successful a experiment on 
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p satisfies A. In particular, p ~ [a]False means that p is a-deadlocked: no a ex- 

periment on p can be successful. This modal language is, therefore, expressively 

rich; it can say of processes not only what they can do but also what they can't do. 

This power of distinguishing is required for the characterization of bisimulation 

equivalence. 

Let LT(P) = {Alp ~ A} then Hennessy and Milner (in effect) prove the following 

theorem: 

Theorem 2.1 If T is finite branching then LT(p) = LT(q) iff p~T q 

The properties expressible in L T are tied to the distinguising powers of bisimulation 

equivalence: the logic L T cannot differentiate processes which are bisimulation equi- 

valent and vice versa. For instance, the processes pl,q I of example 1.3 are disting- 

uishable by L T formulas: 

Pl ~ [a](<b>Tr A <c>Tr) ql ~ [a](<b>Tr A <c>Tr) 

Pl ~ <a>[b]False ql ~ <a>[b]False 

Thus, a virtue of LT, unlike programming logics in general, is that its criterion for 

expressiveness lies completely outside logic. However, we may wonder how this ex- 

pressiveness can be translated into expression of particular process properties. If 

Act in T is finite than A [a]False expresses deadlock or termination, and its dual 
a6Act 

V<a>Tr may be said to express a form of liveness. More generally, the formula or 
a6Act 
set of formulas expressing a particular property like absence of deadlock will depend 

upon the particular process under consideration. The assumption that T be finite 

branching in theorem 2.1 can be discarded if infinite disjunctions and conjunctions 

are allowed in L T [HS,Mil]. Further modal characterizations of equivalences can be 

found in [BR,GS,HS,Mil]. 

The description of Hennessy-Milner logic, LT, here is semantic. Our aim is to 

develop a proof system on L T for a particular process language containing a binary 

commutative and associative parallel operator. The process languages we choose is 

a subset of Milner's @CCS. 

3. A Subset of SCCS 

Milner developed the Synchronous Calculus of Communicating Systems, SCCS, as a 

tractable model of systems which interact synchronously [Mi3]. It is a transition 

system T = (P,Act,---->) whose set of processes P is built up from as few combinators 

or operators as possible, each of which is intended to capture a distinctive intuitive 

concept. This makes SCCS ideal for the sort of proof system we wish to develop. 

Here we only consider a subset of SCCS, namely SCCS with only finite summation, and 

without restriction and renaming. 
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Processes in SCCS evolve relative to some universal discrete time. If p -->p' 

and q -~q' then the synchronous parallel of p and q responds to the product of the 

experiments a and b, a x b, and evolves to the parallel of p' and q'. Product of 

actions is captured by a structure on Act. Milner assumes that (ACt,×,1) is an abel- 

ian monoid: x is both commutative and associative with i as identity. For simplicity 

we further assume the left cancellation law: 

if a x b = c × b then a = c 

The right cancellation law also holds because x is commutative. We abbreviate a x b 

to ab. If ab = c then we let c~a = b (and c~b = a) : by the cancellation laws if 

d'-e exists it is unique. 

The set of processes P of SCCS we consider is given by the closed expressions 

of the following process language where Z ranges over process variables 

p ::= Z I 0 la.p I fix Z.p Ip + p I p × p with a 6 Act 

@ stands for 'disaster': it is a process which cannot respond to any experiment. 

The process a.p responds to a, and evolves to p. Potentially infinite computations 

are allowed by the recursion combinator fix Z which binds free occurrences of Z in p 

in the process fix Z.p. We impose a syntactic restriction on fix Z.p, that z is 

guarded in p: that is, every free occurrence of Z in p is within a subexpression a.q 

of p° Without this restriction the resulting transition system would not be finite 

branching. The operator + represents external nondeterministic choice: the exper- 

imenter may resolve the choice. Finally, x represents synchronous parallelism. 

The remaining undefined feature of the transition system T is the transition 

relation ---> . It is defined as the least set such that: 

a 
a.p --> p 

fix Z.p a>p, whenever p[fix Z.p/Z] a-->p ' where [°/-] denotes substitution 
a a a 

p + q --> r whenever p -->r or q --> r 

p × q ~p' × q' whenever P b__>p, and q C>q, 

The process a.p can only respond to an a experiment and in so doing evolves to p. 

In a.p + b.q, where a ~ b, the experimenter may resolve the choice: the offer of an 

a experiment results in p whereas the offer of a b experiment results in q. This is 

not true of a°p + a.q : the experimenter has no control on whether p or q is the re- 

sult of an a experiment. The number of concurrent subprocesses may increase in re- 

sponse to an experiment. This only happens when the concurrent combinator x occurs 

within the scope of a fix Z; for instance, if p = fix Z(aZ × bZ) then p ab_._~p x p. 

T~is possibility of growth must be reflected in any logical proof system for this 

language of processes. For a full discussion of SCCS with examples see [Mi3]. 

Bisimulation equivalence is not only an intuitively natural equivalence on the 

transition system T it is also a congruence: process contexts preserve equivalence 

[Mi3]. The following implies that T is finite branching. 
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Fact 3.1 Vp. (ql3a. p ~ q} is finite 

By theorem 2.1 we know that the modal logic L T characterizes bisimulation equivalence, 

~T' on T. The following fact states that the parallel operator × is both commutative 

and associative up to ~T [Mi3]. 

Fact 3.2 i. P × q ~T q × p 

ii. p x (q × r) ~T (p × q) x r 

This means that formulas of L T cannot distinguish between these equivalent processes. 

The process © cannot respond to any experiment. It is, therefore, deadlocked: 

~ [a]False for every a 6 Act. Moreover so is 8 x p for any p. As remarked in 

section [ processes which may respond to the same sequences of experiments need not 

be bisimulation equivalent. The following example illustrates this where a is the 

inverse of a; that is aa = i. 

Example 3.3 Pi × q ~T Pj × q for i ~ i < j ~ 3 where 

q = fix Z. a. Z 

Pl = fix Z. a. Z 

P2 = a(a.~ +fix Z.a.Z) 

P3 = fix Z.(a.@ +a.Z) 

The three processes Pi × q, i < i < 3 satisfy every formula in the set ~<1>Tr, 

<l><l>Tr,... }. (Note the only experiment they can ever respond to is i.) However, 

they are not bisimulation equivalent because of differences in possibilities of dead- 

lock. The process Pl x q is deadlock free whereas P2 × q can only deadlock in one 

circumstance unlike P3 x q which can always deadlock. The process P3 x q satisfies 

every fo:cmula in the set {<l>[l]False, <l><l>[l]False,... } whereas P2 × q only 

satisfies <1><1>[l]False and fails the rest; Pl x q, on the other hand, fails them 

all. 

4. Towards a Modal Proof Theory: A Relativized Satisfaction Relation 

Our aim is to offer a sound and complete modal proof system on L T for the subset 

of SCCS outlined. We want, therefore, to define a proof-theoretic consequence relation 

which coincides with ~ . Ideally, the proof rules will be Gentzen style introduction 

rules [G]. But, we also need to take account of the structure of processes. The 

theoretical simplicity of the process language suggests that we also offer introduction 

rules for the combinators. The question then arises as to what, if anything, is the 

logical correlate of the combinators. In [St1] we provided proof rules for an even 

more restricted process language, a language devoid of both concurrency and recursion. 

Introduction rules for . in a.p. are straightforward. The following schemas 

suffice: 
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p~A p~A 

a.p ~ <a>A a.p ~ [a]A 

Their justification is that a.p. evolves to p under any a experiment. The logical 

correlate of . is, therefore, modal iteration. Consequently, these are also <a> and 

[a] introduction rules. 

A global + introduction rule of the form 

p~A q~B 

p + q ~ f(A,B) 

where f is truth-functional and not the constant true function is always unsound: this 

is shown in [Stl]. Restricted versions of such a rule, however, which depend on the 

form of A and B can be found: 

p ~ <a>A q ~ <a>A p ~ [a]A q ~ [a]A 

p + q ~ <a>A p + q ~ <a>A p + q ~ [a]A 

Their justification is that p + q only evolves to a process which either p evolves to 
s %  

or q evolves to. A restricted metalogical or or'and~is the correlate of * : if <a>A 

is true of p or of q it is true of p + q; if [a]A is true of p and of q it is true of 

p + q. 

A global × introduction rule suffers the same fate as a + global rule. Unlike 

the + case, however, restricted versions which depend on the forms of A and B are in- 

adequate. Such rules would also need to take into account most, if not all, the modal 

subformulas of A and B. Even if such rules could be found they would be in opposition 

to the style of proof rules we are suggesting. An alternative approach, a rational- 

ization of [BK,BKP], which fits in with the style of rules suggested already, is now 

offered. This approach was outlined in the introduction. 

We complicate the semantics of L T, when T is the subset of SCCS outlined, by 

introducing a relativized satisfaction relation ~A where A is a formula of L T. We 

stipulate that 

P ~A B iff Vq. if q ~ A then q × p ~ B 

The pair of semantic relations, ~, ~A gives a compositional semantics for concurrency: 

the samentics of a concurrent system are built up from the semantics of the components. 

Recall Fact 3.2 that × is both commutative and associative (up to~T). By commutat- 

ivity if q ~ A and P ~A B then also p × q ~ B. By associativity the following hol~s 

Fact 4.1 If p t= A B and q ~B C then p × q ~A C 

Consequently, if q is the concurrent process with components pj 0 < j < n, in any 

order and P0 ~ A0 and Pi ~A A i I < i < n then q ~ A 
i-i n 
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This semantic ploy suggests that we introduce a second proof-theoretic consequence 

relation ~A 

and 

Natural introduction rules for x then arise: 

q ~ A P ~A B q ~ A P ~A B 

q x p~B p × q~B 

P Bc p Bc 

q x p ~A C p x q ~A C 

Computationally, A in p~ B can be viewed as an environment description, a (possibly 
A 

partial) summary of any process q such that q x p satisfies B. Logically, A can be 

viewed as an assumption : p ~A B could be rewritten A, p ~ B. This suggests a log- 

ical correlate of x introduction - in fact, a logical analogy - namely Gentzen's cut 

rule [G] in the form 

A, F ~B B, ~ C  

A, F , ~ ~ C 

There is also a similarity to Hoare's (introduction) rule for sequential composition 

(when p ~A B is written A{p}B). From now on A,p ~ B (A,p ~ B) is written instead of 

P ~A B(p ~A B). 

The additional semantic relation means that introduction rules for two consequence 

relations ~ and ~B need to be offered. These relations will be connected by the 

first pair of × introduction rules above. Introduction rules for the . and + com- 

binators in the context of ~ are straightforward and not dissimilar from above: 

A, p~B 
if b~a exists 

<b~a>A, a.p ~ <b>B 

A, p ~ B 
if b~a exists 

[b~a]A, a.p ~ [biB 

A, p ~ <a>B A, q ~ <a>B 

A, p +q ~ <a>B A, p +q ~ <a>B 

Left unmentioned are introduction rules for fix. 

A, p ~- [a]B A, q ~ [a]B 

A, p +q ~ [a]B 

The behaviour of fix Z.p is 

however, fully determined by repeated 'unfolding' : an unfolding of fix Z.p is 

p[fix Z.p/Z]. (Recall that fix Z.p ~q whenever p[fix Z.p]~q.) Contextual intro- 

duction rules for fix Z are offered which appeal to this unfolding. The rules depend 

upon the modal degree of a formula A, m(A), which is inductively defined as the max- 

imumdepth of modal operators in A: 

m(Tr) = m(False) = 0 

m(A V B) = m(A A B) = max(m(A),m(B)) 

m(<a>A) = m([a]A) = I + m(A) 

If p ~ A and m(A) = n then A is a property of p's evolution through at most n processes; 

a property of computations from p of length at most n. If p = fix Z.q then A is at 
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most a property of the nth 'unfolding' of p given that Z is guarded in q. Consequen- 

tly, we can appeal to standard approximation techniques : when p = fix Z.q then 
n 

p , n > 0, is defined inductively: 

o 

n+1 
P = q[pn/z] n times 

For instance, if p fix Z. a.Z then pO ~ and pn = = = a.a .... a.8, n > 0. Hence, 
n 

p , n > 0, can respond in the same way as fix Z.q to any sequence of experimenting 

whose length is less than or equal to n: such experimenting is summed up in L T by 

formulas whose modal degree is less than or equal to n. The outcome is the following 

pair of rules for p = fix Z.q 

pn ~ A A, pn ~ B 

re(A) < n re(B) < n 

p~A A, p~B 

This method of dealing with fix was suggested by Gerardo Costa. 

5. A Complete Modal Proof System for T 

The full proof system on L T for T, the subset of SCCS, is now given. 

Axioms p ~ Tr ® ~ [a]A A,p ~- Tr False, p ~ A A,8 ~ [a]B 

a.p ~ [b]A if a ~ b A, a.p ~ [b]B if b~a doesn't exist 

VI p ~ A p ~ B A,p ~ B A,p ~ C A,p ~ C B,p ~ C 
p~AvB p~AvB A,pI-B VC A,p~-B vC A vB,pI-C 

^! p~A p~ A,pl-C ......... B,p~C A,p~B A,p~C 
p~AAB AAB,p~C AAB,p~C A,p~BAC 

<a>I p ~ A ~u,P I- B a~b exists 
a.p~ <a>A <a~b>A,b.p ~ <a>B 

[a]I p ~ A A,p I- B 
a.p ~ [a]A [a~b]A,b.p~ [a]B 

a'-b exists 

+I<> p ~ <a>A q ~ <a>A A,p ~ <a>B A,q ~ <a>B 
p +q~<a>A p+q~<a>A A,p+ql s <a>B A,p +q~ <a>B 

+I[] p ~ [a]A q ~ [a]A A,p ~ [a]B A,q ~ [a]B 
p+ql- [a]A A,p +q~ [a]B 

xI 

fix I 

p ~ A A,q ~ B p ~ A A,~ ~ B A,p I- B B,q ~ C A,~ ~ B B,ql- C 
pXq~B q×p~B A,p×q~C A,qxp~C 

pn ~ A A,p n ~ B 
p~A p = fix Z.q p = fix Z.q 

n h re(A) A,pI-B n k re(B) 

The axioms and rules are reasonably straightforward. The axiom~ p ~ Tr and 

A,p ~ Tr hold because every process satisfies Tr. In contrast, the axiom False,p ~ A 
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holds because no process satisfies False. The axioms for ~ depend upon its inability 

to respond to any experiment. (Recall that p I = [a]False says that p is a-deadlocked.) 

The final three axioms are justified by noting that a.p can only respond to a. The 

vI and AI rules are as expected. Note, however, that these include introduction rules 

for the 'environment' or assumption formula. The presence of the assumption complic- 

ates the <a>I and [a]I rules as expected. Most of the rest of the rules were men- 

tioned in the previous section. We illustrate the use of some of the rules with an 

example proof where, as before, d for any d 6 Act, is the inverse of d; dd = i. 

Example 5.1 a(b.@ + c.8) x (fix Z(a.l.z) x 1.b.8) ~ [l]<l>Tr 

<b>I Tr, a.l.@~Tr 

<b>I ~Tr [ 1 ] i<b>Trm l.a.I.QI- <b>Tr <l>I Tr, ~l-Tr 

b.@~ <b>Tr [a]<b>Tr, a.l.a.l.@l- [l]<b>Tr <b>Tr, b.®~ <l>Tr 
+<>I fix I [ 1 ] I 

b® +c@~ <b>Tr [a]<b>Tr, fix Z.a.I.ZI- [l]<b>Tr [l]<b>Tr,l.b.@~ [l]<l>Tr 
[a]I x I 

a(b@ +c@) Q [a]<b>Tr [a]<b>Tr, fix Z (a.l.Z) × l.b.@~ [1]<l>Tr 
x I 

a(b.@ +c.~) x (fix Z(a.l.Z) x l.b.@) ~ [l]<l>Tr. 

In this example proof the final formula [l]<1>Tr is proved of the process l.b.~ 

relative to the assumption [l]<b>Tr. The proof, however, could have proceeded instead 

by proving the final formula of either of the other two subprocesses (relative to ass- 

umptions). For instance, it is straightforward to show the following pair° 

[a]<b>Tr, a(b.~ + c.@) ~ [l]<l>Tr 

fix Z(a.I.Z) x l.b@ ~ [a]<b>Tr 

The conclusion follows by x I. All concurrent subprocesses then are to this extent 

on an equal footing. 

In the next example we offer a proof of a process whose number of subcomponents 

grows as it responds to experiments. 

Example !3.2 fix Z(a.Z Xa.Z) ~ <l><l>Tr 

<~I @l-Tr <l>I Tr, 8l-Tr 

x I a'@ ~ <~> Tr <a>Tr, a.~ ~ <l>Tr 

<a>I 

x I 

(a.@ x a@) ~ <l>Tr 

a.(a.@ ×~.~) ~ <a><l>Tr 

<a>I 

xl 

<l>I 

Tr, ~ ~ Tr <l>I Tr, ~ ~ Tr 

<l>Tr, a.~ <a>Tr <a>Tr, a.@~ <l>Tr 

<l>Tr, a.8 × a.0~<l>Tr 

<a><l>Tr, a(a.@ x a.@)l-<l><l>Tr 

fix I a" (a.@ x a.@) x a(.a.@ x a.@) ~<l><l>Tr 

fix Z(a.Z x a.Z) ~<l><l>Tr 

In the final example we prove, in effect, the possibility of deadlock. The 

process is P2 × q of example 3.3. This process can only ever respond to 1 exper - 

iments. Thus, <l><l>[l]False says that it can become deadlocked. 



264 

Example 5~3 a(a.g +fix Z.a.z) x fix z.a.Z~ <l><l>[l]False 

<a>I @ ~ Tr <l>I Tr, g ~ [1]False 

<a>I i.@~<a>Tr +<>I <a>Tr, a,@~<l>[l]False 

fixI~.a.g~<a><a>Tr <l>I <a>Tr, a.@ +fixZ.aZ~<l>[l]False 

fixZ.a.Z~ <a><i>Tr 
xI 

<a><a>Tr, a(a.@ +fixZ.a.Z)~<1><l>[1]False 

a(a.Q + fix Z.a.Z) x fix Z.a.Z ~ <l><1>[l]False 

Soundness and Completeness 

The modal proof system above is sound. This is the content of the following 

theorem: 

Theorem 5.4 i. if p ~ B then p ~ B 

ii. if A, p ~ B then A,p J= B 

Its proof is standard: the axioms are all valid and the introduction rules preserve 

validity. 

Completeness can be understood in two ways: 

weak completeness : if p ~ B then p ~ B 

strong completeness : weak completeness and if A,p ~ B then A,p ~ B 

The modal system is weak complete. Constructing a strongly complete system is prob- 

lematic. One difficulty is that if A is SCCS-valid, true of every SCCS process, then 

B,p ~ A for any B. In fact, there is not a simple dichotomy between weak and strong 

completeness: a weak completeness result depends on a corresponding strong result to 

justify pXq ~ A implies pxq ~ A. The strong completeness result we offer is modulo 

formula equivalence on SCCS in the case of the relativized relation. Let 

IAI = (p:p k A}. 

Theorem 5.5 i. if p ~ A then p ~ A 

ii. if A,p ~ B then BC. JcJ=IAJ and C,p ~ B 

The most difficult part of the proof is the following expressibility (or parallel 

decomposition) lemma 

Lemma 5.6 i. if pXq ~ A then BC. p ~ C and C,q ~ A 

ii. if A,pxq ~ B then 3C,D. ~AJ=JcJ and C,p ~ D and D,q ~ B . 

Conclusion 

A complete compositional modal proof system for a subset of Milner's SCCS has 

been offered. The parallel introduction rules were suggested by a simple semantic 

strategy. There is a number of directions for further work. The semantic strategy 

involves an appeal to a notion of environment. More general work on environments 

for SCCS type languages is contained in [La]. The current work is also closely 
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related to [Wi]. More generally, the strategy needs to be tested against other con- 

current programming languages and other logical languages. A small step in this 

direction is [St2] where we show that the strategy works for the more intractable 

asynchronous parallel operator of Milner's CCS. 

There is also the issue of extending the current modal proof system to cover full 

SCCS. Allowing infinitary summation means the modal logic must become infinitary 

[HS,Mil]. Renaming can be dealt with straightforwardly. Restriction is the operator 

which causes most problems. Rreliminary results suggest that only a subset of res- 

triction contexts can be dealt with by a simple extension of the logic. 
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