
DECOMPILATION OF CONIROL STRUCTURES

BY MEANS OF GRAPH TRANSFORMATIONS *

Ulrike Lichtblau

Lehrstuhl Informatik IT

Universit~t Dortmund

Postfach 500500

D-4600 Dortmund 50

ABSTRACT

Decompilation denotes the translation from lower level into higher level programming

languages. Here we deal with the aspect of detecting higher level control structures,

including loops with any number of exits, in line-oriented programs.

The detection is carried out on the control flow graph of the source program by means

of so called wellstructuring transformations. We show that the iteration of these

transformations always terminates in a time linearly depending on the number of ver-

tices of the underlying control flow graph.

1. INTRODUCTION

Decompilation denotes the reverse of the compilation process, i.e. the translation

from lower level into higher level programming languages. Simply embedding the source

language into the target language is not considered to be sufficient. Rather, the

higher target language should be exhausted. Therefore, the main problem of decompila-

tion is the detection of high level structures in - at first sight - unstructured

programs.

Decompilers are investigated in the literature since the middle of the sixties.

Hopwood gave a survey of the subject [4].

Here we deal merely with one aspect of decompilation, namely the analysis of the con-

trol flow of source programs and its translation into semantically equivalent higher

control structures of the target language.

The target languages which we consider are higher procedural ones like Ada or Modula-2.

Their control structures include loops with any number of exits. The source ianguages

* This work was supported by Deutsche Forschungsgemeinschaft (grant CI 53/3-2).

W

are line-oriented such as assembler languages or BASIC.

Programs written in one of these source languages can easily be represented by con-

trol flow graphs. We use this representation here.

The detection of higher control structures is described in terms of graph transforma-

tion rules. By application of a transformation rule a pattern of vertices and edges

is replaced by a single vertex. Each pattern corresponds directly to a control struc-

ture of the target languages. Fig. 1 illustrates the idea of these transformation

rules.

285

IF-ELSE
,m.

(v,w,x,y) Iv

Fig. I

l else c

| end if;

Iteration of transformations based on such rules causes a control flow graph to de-

crease in size. The more higher structures it contains, the smaller it becomes.

We show that the process of reducing a control flow graph as far as possible always

terminates in a time linearly depending on the number of vertices of the graph. Note

that this holds although the size and the number of the patterns to be detected grow

with the size of the input graph. The result can be obtained because it is possible

to recognize the nesting of structures before starting the reduction process and be-

cause the system of wellstructuring transformation rules has the finite Church-Rosser

property.

We do not explain the generation of target code here. However, this task can easily

be solved by assigning labels to the vertices and edges of control flow graphs. In

Fig. 1 such a labeling was assumed to exist. The edge labels should indicate 'true'-

and 'false'-branches. The vertex labels should consist of simple conditions or simple

statements at the beginning, and later on of target code which corresponds to the

structure already detected. It is important to note that the transformation rules

introduced here support the generation of code.

There are, of course, control flow graphs that by means of these transformation rules

cannot be reduced to a single vertex. For code generation purposes they can be treated

in the following way. Whenever there is no rule applicable, an edge is removed from

the graph and a goto-statement is generated at the appropriate position. Afterwards,

the process of reduction is restarted.

286

Rosendahl and Mankwald [8] use a similar idea of decompiling control structures by

reducing the control flom graph and constructing the target program in the labels of

its vertices. However, they only support the detection of loops with one exit. Fur-

ther, they do not construct an efficient transformation algorithm.

The set of graph transformation rules introduced by Farrow, Kennedy and Zucconi [1]

considers multiple exits from loops in an even more general way than is done in this

paper. The derived reduction algorithm is of linear time complexity. These rules,

however, do not support the translation of the recognized structure as they do not

directly correspond to control structures of a higher programming language.

This paper states results from [5] and [6]. All proofs can be found there, as well as

the details of target code generation.

2. PRELIMINARIES

A graph is a pair G=(V,E), where V is a finite set of vertices and EcVxV is a set of

directed edges.

Let G=(V,E), H=(V',E') be graphs.

For each vertex v~V we call pred(v):={wEVl(w,v)~E } the set of all predecessors and

suc(v):={weVl(v,w)~E } the set of all successors of v.

d+(v):=#pred(v) is the in-degree and d-(v):=#suc(v) is the out-degree of v.

A finite sequence of vertices (Vo,...,Vn), n~O, is a path in G if v cVi for O~i~n and

(vi,vi+l)~E for O;i<n.

A vertex rcV is called a root of G if there exists a path (r,...,v) in G for every

vEV.

vEV dominates ~V with respect to a root r of G if v occurs in every path (r,...,w)

in G.

H is a subgraph of G if V'¢V and E'=E~(V'xV').

For each V'~V the graph (V",En(V"xV")) is called the subgraph of G induced by V".

An isomorphism i from G to H, denoted by i: G + H, is a bijective mapping i: V + V'

with the property (i(v),i(w))cE' iff (v,w)cE for all v,w~V.

Let X be a set and RcXxX a binary relation on X.

We denote by R m, md~o, the m-fold iteration of R and by R* the reflexive transitive

closure of R.

3. CONTROL FLOW GRAPHS

In this section we introduce control flaw graphs. We use them to carry out the detec-

tion of higher control structures since they are normal forms of line-oriented pro-

287

grams.

Definition :

A control flow graph is a 4-tupel k=(V,E,r,s)~ ~here

(i) (V,E) is a graph

(ii) V={r} or V=VA+Vc+{r,s } and VA~

(iii) r is a root of (V,E)

(iv) d+(r)=O and d-(s)=O

(v) ~VEVAU{r}: d-(v)~l

(vi) ~v~V C : d-(v):2

K denotes the set of all control flow graphs and SK the subset of all graphs in K con-

sisting of exactly one vertex.

There are four kinds of vertices in a control flow graph: a vertex r representing the

start-statement of a program, a vertex s representing the stop-statement, vertices V A

corresponding to other statements and vertices V C corresponding to conditions.

Example :

Fig. 2 shows a control flow graph k~K.

i 2

3

4

Fig. 2

4. A GRAPH TRANSFORMATION SYSTEM FOR STRUCTURE RECOGNITION PURPOSES

Here we introduce a system of transformation rules on the set of all control flow

graphs. Each of these rules is applicable if and only if the given graph contains a

pattern of vertices and edges that corresponds to a boolean operation on conditions

or to one of the control structures 'sequence', 'if-then', 'if-then-else', 'loop' or

'while-loop', where a loop may have any number of exits. On application of a trans-

formation rule the detected pattern is reduced to a single vertex.

288

Definition :

The system of wellstructuring transformation rules T is the collection of rules de-

picted in Fig. 3.

Notation :

Each transformation rule t~T consists of two graphs, the left hand side of t

L(t)=(VL(t),EL(t)) and the right hand side R(t)=(VR(t),EL(t)) and two sets of vertices

I(t)¢VL(t~.. and O(t)CVL(t) ,. . the in-vertices and the out-vertices of t.

In Fig. 3 the arrow-heads mark the in-vertices and the circles symbolize the out-ver-

tices.

The in-vertices and the out-vertices describe the allowed embedding of the left hand

side of a rule into a control flow graph. In-vertices are the only vertices which may

be connected to the outside by incoming edges, out-vertices are those which may be

connected by outgoing edges.

Note that the out-vertices of a transformation rule do not belong to the pattern of

the detected control structure. Rather, they are used to define the context.

Definition :

Let be k:(V,E,r,s)~K.

A transformation rule taT is said to be applicable to k in Vl,...,VmtEV if there ex-

ists an isomorphism i: L(t) ÷ G, where G is the subgraph of (V,E) induced by

{V l , . . . ,Vmt } and
(i) ~vj, l~j~mt: Yx~V\{v I Vmt}:

(i i) @vj, l~j~mt:

(x ,v j)~E => i - l (v .) ¢ l (t)
1 J

and (v j ,x)~E => i - (v j)~O(t)
vj=r <=> i-l(v.)=r

and v =s <=> i-l(vJj):s .
J

Applying a transformation rule means replacing the left hand side with the right hand

side and embedding the latter. The replacing is done by removing certain vertices a~d

adding certain edges. This is possible because VR(t)~VL(t) for each t~T. The embedding

is straightforward since for every toT I(t)uO(t)CVR(t).

Definition :

Let be k=(V,E,r,s)~K and taT such that t is applicable to k in Vl,...,Vmt~V via the

isomorphism i: L(t) ÷ G.

,v_ is defined by t(v-,...,v m)(k):= The r esu l t of apply ing t to k i n V l , . . . wt 1 t
(V',E',r',s'), where - V'=(VX{Vl, ,Vmt})u{i(x)l XCVR(t)}

E'=(En(V'xV'))v{(i(x),i(y))l (x,y)CER(t)}

- r'=r

s'=~r' if t=BLK

I s else

The binary relation on K induced by T is denoted by TR.

°"

i

~
x m

~
J

c=

I,t

×

c~

m

~
F

× Q

F

~J

G
O

C

D

290

Notation :

If a transformation rule is applicable to a control flow graph, the vertices corre-

sponding to those marked by '.' in Fig. 3 are called the handles of the rule; the set

of all handles of t~T is denoted by hart(t).

Since a handle uniquely determines the set of vertices in which a transformation rule

t~T is applicable we sometimes say that t is applicable to k~K with handle v and de-

note the result of the application by t<v>(k).

After a rule has been applied to a control flow graph the vertices corresponding to

those appearing on the right hand side of the rule are referred to as its resulting

vertices, res(t) standing for the set of all resulting vertices of tcT.

Control flow graphs which by means of wellstructuring transformations can be reduced

to a graph consisting of exactly one vertex are the interesting ones here. They re-

present line-oriented programs, the control flow of which can properly be expressed

in terms of higher control structures.

Definition :

A control flow graph kcK is wellstrueturable if there exists skcSK such that

(k,sk)eTR*.
Example :

The control flow graph k shown in Fig. 2 is wellstructurable since on application of

the sequence of transformation rules

SEQ(3,4) • OR(6,7,9,8)(I)LOOP-EXITl(5,6,8,9)(~)IF-ELSE(2,3,5,9) " BLK(2)

i t i s reduced to a c e r t a i n sk~SK.

The p r e l i m i n a r y r e s u l t s a t the marked p o s i t i o n s are shown in F ig . 4.

(1) t ~

5

(z)]

Fig. 4

A comparison of the transformation system I with known sets of rules for transforming

control flow graphs yields the following results.

291

Each wellstructurable control flow graph is collapsible with respect to the definition

of Hecht and Ullman [5]; the reverse does not hold.

The set of aeyclic wellstructurable control flow graphs is properly covered by the

set of aeyelie SSFG-reducible ones defined by Farrow, Kennedy and Zucconi Ill. Con-

sidering arbitrary control flow graphs the inclusion does no longer hold.

The fully well structured control flow graphs of Rosendahl and Mankwald [8] are a

proper subset of the wellstructurable ones.

5. PROPERTIES OF THE TRANSFORMATION SYSTEM

Here ~e collect some properties of the system of ~ellstructuring transformation rules

T ~hich prove to be useful in designing a linear time reduction algorithm based on T.

We start with the finite Church-Rosser property. It says that any sequence of trans-

formation rules applicable to a control flo~ graph is of bounded length, and that the

limit graph which can be derived from a given control flo~ graph is uniquely deter-

mined - and thus not dependent on the decision ~hich of several applicable rules is

chosen in a given situation.

The following formulation of the finite Church-Rosser property is due to Rosen [7].

Definition :

Let X be a set and RcXxX a binary relation on X.

(X,R) is finite Chureh-Rosser (FCR) if

(i) ~xeX 3mx~]~ 0 ~yeX,m~o: (x,y)eR m => mSm x

(ii) ~x,y,y'eX: ((x,y)cR and (x,y')cR) => 3zeX: (y,z)cR* and (y',z)~R*

Lemma 1 :

(K,T R) i s FCR.

Proof :

By considering all possible interferences of any two wellstructuring transformation

rules (cf. [5]). @

It is an easy consequence of lemma 1 that one is free to assign priorities to the

wellstructuring transformation rules. We do this in the following way.

Definition :

Let be prio_l := {BLK, SEQ, IF, IF', IF-ELSE, IF-ELSE', OR} c T,

prio 2 := {LOOP, LOOP'}

U {LOOP-EXITnJnCI~ } u {LOOP-EXITn'InEt4 }
! u {WHILE-EXITnln~} U {WHILE-EXIT n tn~l~} C T

Prio_i, i=i,2, is called the class of Nellstrueturing Iransfommation rules of prior-

ity i.

292

When testing whether a transformation rule is applicable it is reasonable to try to

find a handle first. Therefore, we next state easy to check conditions which are nec-

essary for a vertex being a handle of a transformation rule of a certain priority.

Lemma 2 :

Let be k=(V ,E , r , s)~K and tcT such t ha t t i s a p p l i c a b l e to k w i t h handle vcV.

If tcprio l, then d+(v)=l.

If t~prio 2, then d+(v)>l.

Proof :

By definition. •

We now turn to the question how the set of vertices which are potential handles of

transformation rules changes during the reduction process.

Concerning transformation rules of priority 1 we get the following result: at most

the resulting vertices of the rule applied last are new potential handles.

Lemma 3 :

Let be k=(V,E,r,s), k'=(V',E',r',s')cK, vcVnV', t~T and t'cprio_l such that t is ap-

plicable to k, t(k)=k' and t' is not applicable to k with handle v.

If t' is applicable to k' with handle v, then han(t')ares(t)~ .

Proof :

By verifying the following statement for each t'¢prio_l and each tcT:

There are certain properties of a vertex v which are relevant to the decision whether

t' is applicable with handle v. An application of t changes relevant properties of

some vertices, but only of the resulting vertices of t. (cf. [6]) @

For transformation rules of priority 2 the answer is even easier: each vertex which

may be used as a handle at any time during a reduction can be detected in the origi-

nal control flow graph. This follows from lemma 2.

Furthermore, it is possible to sort the potential handles of transformation rules of

priority 2 in such a way that for each nested loop the handle of the corresponding

transformation rule appears before the handle of the rule detecting the outer loop.

To show this we use a wellknown ordering on the vertices of a control flow graph. The

definition is taken from Hecht [2].

Definition :

Let be k=(V,E,r,s)¢K.

A mapping rPOSTORDER: V ÷ {1,...,#V} is called a vertex numbering of k if the order-

ing induced on V equals the reverse of the order in which each vertex was last vis-

ited during a depth-first search of k.

A depth-first search algorithm that computes vertex numberings is given in [2]. Note

293

that there exist different vertex numberings of a given control flow graph.

The reverse of any vertex numbering is an ordering of potential handles of transfor-

mation rules of priority 2 with the property described above.

Lemma 4 :

Let be k=(V,E,r,s), ki=(Vi,Ei,ri,si)~K , i=1,2, and tl,t2Eprio_2 such that t I is ap-

plicable to k I with handle VlCV1, t 2 is applicable to k 2 in v21,...,V2m,WeV2, m~2,

with handle v2=v21 and (k,kl) , (kl,k2)ETR*.

If there exists a subgraph G'=(V',E') of (V1,E l) such that Vl~V' and G' is transformed

into v2j , l~j~m, during the transition from k I to k2, then {Vl,V2}CV and

rPOSTORDER(Vl)~rPOSTORDER(v 2) for any vertex numbering rPOSTORDER: V + {1,...,#V}

of k.

Proof :

By two claims:

v 2 dominates v I with respect to r. (By definition of the transformation rules.)

If x dominates y with respect to r, then rPOSTORDER(x)$rPOSIORDER(y) for any vertex

numbering rPOSTORDER. (By definition of a vertex numbering.) (cf. [6]) |

6. THE TIME COMPLEXITY OF THE REDUCTION PROCESS

In this last section we are concerned with the process of reducing a control flow

graph by means of wellstructuring transformations as far as possible and, in partic-

ular, contracting each wellstructurable graph to a single vertex.

As our main result we show that this process always terminates in time linear in the

number of vertices of the input control flow graph.

The algorithm which we present is based on the fact that, since (K,T R) is FCR

(1emma i), transformation rules may be applied in any order. It uses two work-lists,

each corresponding to a priority class and containing all vertices of the current

control flow graph which can possibly be used as handles of transformation rules be-

longing to that class. These potential handles are determined by means of 1emma 2.

The potential handles of rules of priority 2 are ordered in such a way that handles of

inner loops appear in the work-list before handles of outer loops (see lemma 4).

During each iteration of the algorithm the first entry - say vertex v - is removed

from the current work-list. The lists are treated in order of the priorities they

correspond to. If there exists a transformation rule in the corresponding priority

class that is applicable to the current control flow graph with handle v, then this

rule is applied. After a successful application the work-lists are updated according

to lemmas 3, 2 and 4.

294

Theorem :

Let be k=(V,E,r,s)cK.

The problem of reducing k as far as possible by means of wellstructuring transforma-

tions can be solved in time O(#V).

Proof :

Consider the following algorithm REDUCE .

Input :

Output :

Method :

k=(V,E,r,s)cK

k'=(V',E',r',s')cK such that

(i) (k,k')~TR*

(ii) wriT: t is not applicable to k'

(iii) ~k"=(V",E",r",s")~K: if k" fulfills (i) and (ii), then #V"~#V'

Compute a vertex numbering rPOSTORDER: V ÷ {I,...,#V};

prio 1 handl~l := list of all xsV with d+(x)=l,

in any order;

prio 2 handle_l := list of all xeV with d+(x)>l,

in order of decreasing values of rPOSIORDER;

kk := k;

while there exists l~i~2 such that prio i handle_l is nonempty

loop if prio_lhandlel is nonempty

then perform actions on kk corresponding to priority l;

else perform actions on kk corresponding to priority 2;

end if;

end loop;

k' := ~k .

Refine-

ments : (1) perform actions o n kk corresponding to priority i, i~i~2 :

v := first entry of prio_i_handle_l;

remove v from prio_i_handlel;

if there exists tcpri~i such that t is applicable to kk with

handle v

then kk := t<v>(kk);

insert all xsres(t) with d+(x)=l into prio i handle_l

at any position;

if i=2 and d+(v)>l

then insert v into prio 2 handle 1

at the new first position;

end if;

end if;

295

(2) there exists teprio_i such that t is applicable to kk with handle v,

i~i~2 :

case i is

when 1 =>

when 2 :>

(3)

verified := false;

for all tEprio_l

loop i__[f t is applicable to kk with handle v

then verified := true;

exit;

end if;

end loop;

there exists := verified;

verified := false;

if there is a vertex w that is a proper successor of

the potential loop at v

then falsified := false;

x :: V;

while not verified and not falsified

loop i_[f suc(x)\ {w}={v}

then verified := true;

elsif yesuc(x)\{w} is acceptable as a succes-

sor of x in a loop

then x := y;

else falsified := true;

end if;

end loop;

end if;

there exists :: verified;

end case;

there is a vertex ~ that is a proper successor of the potential loop

at v :

falsified := false;

if d-(v)=2

then x := v;

elsif there exists yesuc(v)

then x := y;

else falsified := true;

end if;

if not falsified

then if there exists yesuc(x) with d+(y)>l

then w :: y;

elsif there exists y~suc(x) with d-(y)#l

then w := y;

296

elsif there exists yesuc(x) with (y,v)~E

then w := y;

else falsified := true;

end if;

there is := not falsified;

Claim 1 :

Algorithm REDUCE is correct, i.e. it terminates and has the specified input/output-

behaviour.

The main ideas of the proof of claim i are contained in the remarks at the beginning

of this section.

Claim 2 :

Algorithm REDUCE can be implemented in such a way that its time complexity is D(#V).

Proof of claim 2 :

The computation of rPOSTORDER can +be done in time O(#E) (cf. [2]). Since the out-de-

gree of all vertices of a control flow graph is bounded by 2 we have O(#E)=0(#V) here.

Obviously, the initialization of the work-lists needs O(#V) steps.

Further, it is fairly clear that the number of iterations of the main while-loop ap-

pearing in REDUCE is in O(#V).

One yet has to look at the nested loops. There are two of them, both appearing in re-

finement (2).

The first is iterated a constant number of times.

For the second it is possible to show that the total number of its iterations (over

all iterations of the main loop) is in O(#V). To prove this we observe that each ver-

tex of the input control flow graph is only visited a constant number of times during

all iterations of the inspected loop. The result depends on lemma 4.

So far we have seen that the total number of executions of any test and any simple

statement appearing in REDUCE is in O(#V). The proof is completed by showing that each

of these atomic components can be executed in constant time. This requires the devel-

opment of an appropriate internal data structure, which for each vertex allows direct

access to its predecessors and to its entries in the lists of predecessors of its

successors as well as to its entry in a work-list. (cf. [6]) |

ACKNI]WLEDGEMENT

The author would like to thank Prof. Dr. V. Clsus for initiating this work and for

helpful discussions.

297

REFERENCES

i. Farrow,R., Kennedy,K. and Zucconi,L. Graph grammars and global data flow analysis.
Proceedings of the Seventeenth Annual IEEE Symposium on Foundations of Computer
Science, Houston, Texas, Oct. 1976, 42-56.

2. Hecht,M.S. Flow Analysis of Computer Programs. North-Holland, New York, 1977,
Chapt. 3.

3. Hecht,M.S. and Ullman,J.D. Flow graph reducibility. SIAM J. Comput. l, 2
(June 1972), 188-202.

4. Hopwood,G.L. Decompilation. Ph.D.. dissertation, University of California, Irvine,
Feb. 1978.

5. Lichtblau,U. Graphtransformationen zur Erkennung Ada-~hnlicher Kontrollstrukturen
in maschinennahen Programmen. Techn. Rep. 142, Abteilung InfoFmatik, Universit~t
Dortmund, 1982.

6. Lichtblau,U. Ein Algorithmus zur Erkennung h~herer Kontrollstrukturen durch Graph-
transformationen. Techn. Rep. 183, Abt. Informatik, Universit~t Dortmund, 1984

7. Rosen,B. Tree manipulating systems and Church-Rosser theorems. Journ. ACM 20, i
(Jan. 1973), 160-187

8. Rosendahl,M. and Mankwald,K.P. Analysis of programs by reduction of their struc-
ture. In Graph-Grammars and Their Application to Computer Science and Biology,
Claus,V., Ehrig,H. and Rozenberg,G. (Eds.). Springer-Verlag, Berlin, 1979, 409-417.

