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ABSTRACT. After reviewing the concept of module specification with import and 

export interfaces introduced by H. Ehrlg for the modular development of 

software systems, precise definitions of submodule and union of modules 

specifications are given along with some basic results on their eompatibility 

and semantics. The notion of amalgamated sum is used for the semantics of 

unions of modules and some connections are made with parametrized 

specifications. The results are restricted to the basic algebraic case. 

I. INTRODUCTION 

In [2], a new algebraic specification concept, called a "module", was 

introduc~ed for the modularizatlon of software systems. A module Is an 

abstract data type equipped with an import interface and an export 

interface: the import interface represents the operations available (and 

previously specified) inside the module while the export interface consists of 

the operations available to the user of the module. The two Interfaces are 

combined in the body of the module, whose operations not in the export 

interface are considered "hidden". The interfaces are allowed to share a 

common parameter part. 

The focus in [2] is on operations of composition of modules and 

actualization of parameterlzed modules and their interaction. It is obvious 

that these operations do not suffice for the construction of more complicated 

modules from simpler ones and that , in practical languages such as Ada, the 

union operation is an important one. The mere formation of the union of two 
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disjoint modules poses no algebraic difficulties, nor does the formation of 

the union of modules which share a common part, provided we are willing to 

duplicate this common part. In many situations, however, having two copies of 

a common part leads to difficulties in using the union module in a wider 

context requiring importing or exporting the common part. Therefore, we need 

a kind of union which allows us to avoid such duplication. 

In this paper, we describe, in increasing order of generality, the union 

of modules which share the parameter part, a subparameter part and finally a 

complete submodule. This last situation requires the precise definition of 

submodule specification and its semantics, which are given in Section 4. The 

results, in Section 5, relating the semantics of the union module to those of 

its components are described in terms of amalgamated sums of algebras. This 

notion is introduced in Section 2, where we present a constructive definition 

of the amalgamated sum AI + AoA2 of two algebras AI and A2 with respect to a 

third algebra A0. The amalgamated sum Is then related to pullback constructs 

in the category of SPEC-algebra categories and to pushouts in a new category 

UAIg. In Section 3, we briefly illustrate the connection between amalgamated 

sums and loose semantics of standard parameter passing in parameterlzed data 

types. Further developments pointing the way to an algebra of modules are 

outlined in Section 6. 

2 .  AM~P.A~D SUM 

In this section, we introduce the concept of amalgamated sum and relate 

its constructive definition to other well known constructions In the framework 

of category theory. Let SPECI, i = 0,1,2,3, be algebraic specifications and 

SPECI the corresponding categories of SPECi-algebras. Also let 

fi: SPECO + SPECI and gi: SPECI ÷ SPEC3, for i = 1,2, be specification 

morphlsms and Ui and Vi the forgetful functors associated with the 

specification morphlsms gl and fi respectively, such that (I) is a pushout 

diagram in the category of algebraic specifications and (2) Is a pullback 

diagram in the category of SPEC-algebras categories and forgetful functors. 

Vl I 
SPEC 0 ~ > SPEC I $1'ECO < , SI~C 1 

f2~ (I) ~gl V2 T (2) Tul 
SPEC2 --WW---> SPEC3 SPEC2 < , SPEC3 

U2 
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2.1 Deflnltloa (Amalgamated Sum) 

Given algebras Ai ~ SPKCi for i = 0,1,2 with the property that VI(AI) = 

AO = V2(A2), the amalgamated sum AI+AoA2 of AI and A2 with respect to AO is 

the unique SPEC3-algebra A3 satisfying the following conditions on sorts 

s ~ $3 and operators ~ 6 E3 

Alsl if gl(sl) = s 

(A3) s = 

A2s2 if g2(s2) = s 

OlA1 if gI(~1) = o 

O2A2 if g2(o2) = 

The algebra A3 is well-defined, since SPEC3 is the pushout of SPECI and SPEC2. 

Thus if s 6 $3, then gl(sl) = s for some sl 6 SI or g2(s2) = s for some 

s2 C $2 and if both are true, then there exists sO C SO such that fi(sO) = sl, 

i = 1,2 in which case (Al)sl = (A0)s0 = (A2)s2" A similar argument shows that 

OA3 is also well defined and that, in fact, AI+AoA2 is a SPEC3-algebra. 

The amalgamated sum AI+AoA2 can also be defined implicitly in terms of the 

pullback diagram of the SPECi-algebra categories. 

2.2 Lemma (Pullback Property) 

Given Ai ~ SPECi, i = 0,1,2, with VI(AI) = AO = V2(A2), the amalgamated 

sum A3 = AI+AoA2 is the unique SPEC3-algebra such that UI(A3) = AI, U2(A3) = 

A2 and if B 6 SPEC for an algebraic specification SPEC with (forgetful) 

functors Fi: SPEC + SPKCi, i = 1,2, VI.FI = V2.F2 and Fi(B) = Ai, then there 

exists a unique (forgetful) functor F: SPEC + SPEC3 such that Fi = Ui - F, 

i = 1,2, and F(B) = A3. 

2.3 Corollary 

SPEC3 = SPECl + SPEcoSI~KC2 = {AI +AoA2: Ai 6 SPECl, VI(AI) = A0 = V2(A2)} 

The amalgamated sum A1 + AoA2 can also be viewed as the pushout of A1 and A2 

w.r.t. AO in the appropriate category. In order to define this category, we need 

the notion of "generalized homomorphlsm". 
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2.4 Deflnltlon(Generallzed ~momorphlsm) 

Let SPECi be algebraic specifications and Ai be SPECi-algebras for 

i = 0, I. A generalized homomorphism from (AO, SPEC0) to (AI, SPECI), 

denoted by (h,f): (AO, SPECO) + (AI, SPECI) is a pair of functions (h,f) where 

f: SPEC0 + SPECI is a specification morphism and h is a family hs: A0s+ Alf(s) 

of functions indexed by the set SO of sorts in SPECO such that, for every 

~: six ... xsn ÷ s in Z0, the following diagram commutes: 

=A0 > A0 A0 sI x ... x A0sn s 

x i 
f(~)A1 

Alf(sl ) x ... x Alf(sn ) > Alf(s) 

Given f: SPECO + SPECI, we denote by GENHOMf(A0,AI) the set of all functions h 

such that (h,f): (A0, SPEC0) ÷ (AI, SPEC i) is a generalized homomorphlsm. 

Notice that any h 6 GEN}{OMf(AO,AI) is also a SPEC0-morphlsm from A0 to 

Vf(AI) since hs: A0s+ Alf(s)= Vf(AI) s and UVf(AI) is defined as f(~)Al" 

Conversely, if h 6 SPKCO(AO,Vf(AI)), then hs: AOs+ Vf(Al)s= Alf(s) and the 

above diagram commutes since Vf is a functor. We have just proved the first 

part of the following result. 

2.5  Prgposlzion 

GENHOMf (A0,A I) SPKCO(A0, Vf (A I)) SPEC l(Ff (A0) ,A I) • 

The second isomorphism follows from general properties of the forgetful 

functor Vf and its left adjolnt, the free functor Ff. 

2.6 Def in i t ion  

Given generalized homomorphlsms (h0,fO): (AO,SPECO) + (AI, SPECl) and 

(hl,fl): (AI,SPECI) ÷ (A2,SPEC2), the composition is given by the pair 

(hi • hO, fl • f0) and it is clear, either directly from Definition 2.4 or 

using Proposition 2.5, that it is again a generalized homomorphlsm. It is 

also clear that the composition of generalized homomorphlsms, when defined, is 

associative. We denote by UAIg the category with objects the pairs (A, SPEC) 

with A E SPKC and morphlsms the generalized morphisms (h,f): (AO,SPECO) + 

(AI, SPECI). We can now state the main result of this section. 
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2.7 Proposition 

Given specification morphisms fi: SPEC0 + SPECI and SPECi-algebras Ai, i = 

0, 1,2, satisfying VI(AI) = A0 = V2(A2), the amalgamated sum AI+AoA2 is the 

pushout of AI and A2 w.r.t. AO, that is, the diagram 

(hl, fl) 
(A0,SPEC0) ~ (AI,SPECI) 

(h2,f2) ~ ~ (kl,gl) 

(A2,SPEC2) > (AI+AoA2,SPEC3) 
(k2,g2) 

is a pushout diagram in the category UAIg, where hi and ki are the obvious in- 

clusion maps satisfying hi s(AOs) = Aifi(s ) and ki si(Ai) = (Al+AoA2)gi(si) . 

Remark Notice that if SPEC0 = ~ in diagram (i), then SPEC3 is the disjoint 

union of SPECI and SPEC2 and every algebra A3 ~ SI~EC3 is the disjoint union of 

an algebra AI ( SPKCl and an algebra A2 ( SPKC2. 

3. PARA~RI@D DATA TYPES AND A~%LC, A@TED SU~ 

The notion of parameterized data type is an important one in the 

hierarchical design of large programming systems. While several authors 

([1,4,6]) have considered the problems of abstract data type specifications 

and implementations, the problem of parameter passing has not received as much 

attention ([3,5]). Here, we look at amalgamated sums of algebras as a 

"constructive" parameter passing technique. We take the following definition 

from [5]. 

3.1 Deflnltlon (Parameterized Data Type ) 

A parameterized data type PDT = (SPECO, SPECI, T) consists of two 

algebraic specifications SPECO and SPECI with SPEC0 C SPECI (componentwlse) 

and a functor T: SPECO ÷ SPECI which is assumed to be strongly persistent, 

i.e. V(T(A)) = A for every A ( SPKCO, where V is the forgetful functor 

associated with the inclusion specification morphism j: SPEC0 + SPECI. 

In the case of initial algebra semantics [5,6], the functor T is taken to 

be the free functor F: SPECO + SPECl. In order to pass an actual parameter 

specification SPEC2 for the parameter part SPEC0 of a parameterized specifi- 

cation PSPEC = (SPEC0,SPECI), a "parameter passing" morphism h: SPEC0 + SPEC2 

is specified and a new specification SPEC3 is constructed as in the following 

pushout diagram: 
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J 
SPECO > SPEC 1 

SPEC2 > SPEC3 

(In [5], the construction of the new specification is explicit). 

The semantics of this standard (i.e. non-parameterized) parameter passing is 

taken to be (F,TsPEc2,TsPEC3) , where TSPEC i is the initial algebra in SPECI 

and F: SPECO ÷ SPECI is the free functor of the parameterlzed specification 

PSPEC. The assumption that F be strongly persistent is then sufficient to 

guarantee the semantical conditions: 

i) actual parameter protection: Vj,(TsPEC3) = TSPEC 2 

2) passing compatibility: F(Vh(TsPEC2) ) = Vh,(TsPEC3). 

In the loose semantics case, the result of passing a SPEC2-algebra as 

actual parameter can be expressed as an amalgamated sum of algebras. Let 

again PSPEC, SPEC2, h: SPECO + SPEC2 and SPEC3 be given as above. Let 

A2 ~ SPEC2 and define A0 = Vh(A2 ). Then AI = T(A0) is a SPECl-algebra with 

the property that V(AI) = AO (by strong persistency of T). Since AO, AI and 

A2 satisfy the assumptions of Definition 2.1, we can define their amalgamated 

sum A3 = AI+AoA2. Then A3 = T(Vh(A2)) + Vh(A2)A2 is the result of passing A2 

to the parameterlzed data type PDT = (SPECO,SPECI, T). It is easy now to check 

that by the properties of the amalgamated sum, similar semantical conditions 

are satisfied. The actual parameter A2 is protected since 

Vj,(A3) = Vj,(T(A0) +AoA2) = A2 

and the parameter passing in "compatible", i.e. it reflects the behavior 

of the functor T, since T(Vh(A2)) = T(AO) = AI = Vh,(A3). Hence 

SPECI + SPEcoSPEC2 (see Corollary 2.3) can be taken as the loose semantics 

of (standard parameter) passing SPEC2 for SPECO in PDT. 

4. M~DULE AND SUB}f)DULE SPECIFICATIONS 

In this section, we first review the basic notions of module specification 

with import and export interfaces as introduced by Ehrig ([2]) briefly 

mentioning the operations of composition and actualization and their 

semantics. We then introduce the notion of submodule specification and 

semantics to be used in the next section in the context of unions of modules 

sharing a common part. 
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4.1 Definition (~bdule Specification) 

A module specification FDD consists of four algebraic specifications PAR, 

IMP, EXP, BOD along with specification morphisms e, s, i and v (e and s 

injective) making the following diagram commute: 

e 

PAR .......... ~ EXP 

L 
IFP ) BOD 

IMP and EXP are the import and export interfaces, respectively, and PAR is the 

parameter part shared by IMP and EXP. We will assume that e and s are 

actually inclusions. 

• .2 Deflnltlon(Semntlcs o f  ~dules) 

Given a module specification NOD as in Definition 4.1, denote by Vs, 

V v and V e the forgetful functors induced by s, v and e, respectively, and 

by FREE: IMP + BOD the free functor associated with V s . 

The (unrestricted) semantics SEM of NOD is the functor 

SEM = V v • FREE: IFP + EXP. 

The restriction semantics RSEM of NDD is the functor 

RSEM = R • SEM: INP + KXP 

where, for A ~ EXP, R(A) =n{B 6 EXP: B C A, Ve(B ) = Ve(A)} . 

Assumptions Using the unrestricted semantics SEM, we will assume that 

FREE is strongly persistent (i.e. V • FREE is the identity on I~P). Using 
s 

RSEM, we will add the assumption that FREE preserves injectlve homomor- 

phisms. For a discussion of the interpretation of both definitions, see [2]. 

In the composition of two modules the import interface of one module is 

"matched" with the export interface of the other one. 

4.3 Definition (Composition of ~vles) 

Given two modules specifications bODi : (PARI, EXPi, IFPi, BODi) with a 

specification morp~ism h: IMP I ÷ EXP2, the composition of NOD1 and H)D2 w.r.t. 

h, denoted by NOD2 • hH)DI, is the module specification NOD3 = (PAR3, EXPI, 

IMP2, BOD3) with PAR3 and BOD3 defined as in the diagram 

PAR3 ~> PAR1 .... ~ EXPI 

( I )  I ~ I  ,,, B~I 

PAR2~ > E~2, (2) i 

BOD2 > BOD3 IMP2 > 

where (i) and (2) are a pullback and a pushout diagram respectively. 
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4.4 Theorem (Semantics of Composition) 

i) SEM3 = SEMI - V h. SEM2 

ii) If h: IMP I + EXP2 is "parameter consistent", i.e. there exists 

p: PAR1 + PAR2 such that e 2- p = h • il, then RSEM3 = RSEMI • V h- RSEM2. 

The other operation on modules mentioned in the introduction is that of 

actualization, where the parameter part PAR0 of a parametrlzed module M)D0 is 

replaced by a specification ACT (actual parameter) to yield a parameterless 

module speciflcatlon. The actualization of POD0 by ACT w.r .t a specification 

morphism h: PAR0 + ACT is the parameterless module ACTh(M3D0) = (~, EXP, 

IMP, BOD) where EXP (resp. IMP) is the pushout of ACT and EXPO (resp. IMP0) 

w.r .t. PARO and BOD is obtained by "gluing" IMP and BOD0. For the precise 

definition and results dealing with the induced semantics of actualization and 

compatibility properties of composition and actualization, see [2]. 

We now introduce the concept of submodule specification. As in [2], we 

restrict our attention to the basic algebraic case, without logical or 

algebraic constraints on the interfaces. 

4.5 Definit ion (Submodule Specif ication) 

Given two module specifications MgDi = (PARi, EXPi, IMPi, BODi) for 

i = 1,2, M)DI is a s ubmodule specification of MOD2 if there exist four speci- 

fication morphlsms mp: PAR1 + PAR2, me: EXPI + EXP2, mi: IMP1 + IMP2 

and mb: BODI + BOD2 such that the following four diagrams commute: 

m 
P 

e 1 
PARI > E~I PARI if> I~PI I~PI--~BODI EXPI v!> BODI 

~ (i) ~m e mp & (2)~m i mil (3)~m b mel (4)~, 

PAR2 e2)E~2 RAR2 i2> I~P2 I~P2 s--~BOD2 EI~2 v2 ~BOD2 

Assumptions We have already assumed that, in module specifications, the free 

functor FREEi: IMPI ÷ BODI is strongly persistent (when using unrestricted 

semantics) or strongly conservative (with restriction semantics). In the case 

of submodule specification, we will add the condition that the free functors 

FREE I and FREE2 commute with the vertical forgetful functors of diagram 3, 

i.e. Vmb FREE2 = FREEI • Vml This formalizes our intuitive notion that, for 

MODI to be a submodule of MgD2, the free construction in M)DI should reflect 

the free construction in MDD2. When using the restriction semantics, we will 
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also add the assumption that, for every E~2-algebra A, V m (R2(A)) = RI(V m (A)). 
e e 

These assumptions are sufficient to relate the semantics of NDDI and MDD2. 

4.6 Proposition (SuSm~ule Semantics) 

Given module specifications FODI and MDD2 with M3DI a submodule 

specification of NDD2 and the above assumptions on the behavior of the 

forgetful functors, we have 

i) V • SEM2 = SEMI • V 
m m. 
e i 

ii) V • RSEM2 = RSEMI • V 
m m° 
e i 

where SEMi, RSEMi: IMPi + EXPi, V : E~2 + EXPI and V : IMP2 + IMP1. 
m m. 
e 1 

Remarks If in Definition 4.5 we take PARI = PAR2, then the notion of MDDI 

being a submodule specification of M)D2 is equivalent to MDD2 being a 

"refinement" of M3DI with the additional specification morphism 

mb: BODI + BOD2 (see [2] sec. 4.5). In view of Proposition 4.6, our 

assumptions on submodule specifications imply Ehrig's notions of "correct" and 

"R-correct" refinements. If in addition we take IMP I = I~2 and diagram (4) 

as a pushout, then we obtain a special case of an "extension" of module 

specification as in 4.6 of [2]. 

5. UNION OF MDDULES WITH SHARD SUBMDDULES 

As mentioned already in the Introduction, composition and actual~zation 

are but two of the operations that can be used to build up complex modules 

from simpler ones. Another possible construction, allowed, for example, in 

Ada, is that of a union of two (or more) modules. A larger module can be 

obtained whose import and export interfaces are formed by combining the import 

and export interfaces of the component modules, respectively. The simplest 

possible combination is that of a union of two disjoint modules or, 

equivalently, of two modules which share a common part, may it be a submodule 

or just part of an interface, and we are willing to duplicate that part in the 

composite module. There are instances, however, where two modules share a 

common part, say the parameter part, which should not he duplicated since PAR 

is intended to be instantiated, at a later stage in the development, with the 

same actual parameter. This is the situation we analyze next. 

5 . 1  D e f i n i t i o n  ( U n i o n  o f  F o d u l e s  w i t h  Shared  P a r a m e t e r )  

The union of two modules specifications ~DDI = (PAR, EXPi, IMPi, BODi) for 

i = 1,2, which share the parameter part PAR, is denoted by YODI + PARNDD2 and 
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is the module specification M)D3 = (PAR, EXP3, IFP3, BOD3) where the last 

three specifications are given by the pushout diagrams: 

i v 2 
PAR ..... 29 IMP2 s2"~ BOD2 PAR .... e2.> E~P2 > BOD2 

v I 
. . . . . . .  > BOD3 (p0) BODI bl > BOD3(p0) BODI bl 

By definition of FDDI and ~DD2, the two outer diagrams are the same and they 

define BOD3 as a pushout w.r.t. PAR. Since (i) and (2) are pushouts, s 3 and 

v 3 exist and are unique. They are also injective and v 3. e3= b 2. v 2. e2= 

b 2" s 2" i2= s 3" i 3. 

The following Lemma is needed to prove Theorem 5.3. 

5.2 

Given the diagram 
s 2 

~I~P2 .> BOD2 

PAR IFP3 -> BOD3 

I t ,  F I  > B O D I  

with IMP3 and BOD3 as in Definition 5.1, let Vl be the forgetful functor 

associated with sl and Fi be the corresponding free functor. Define 

F = FI + PARF2:I~P3 + BOD3 by letting F(II + p12) = FI(II) + pF2(12) 

Then F = FREE3 is the free functor associated with s 3 and if FI and F2 are 

strongly persistent (resp. conservative), then so is F. 

5.3 Theorem ,, ~S,~t!C s of Union with Shared Parameter) 

Given the module specification hOD3 = ~DI +PARMDD2 as in Definition 5. I, 

its semantics are given by 

i) SEM3 = SEMI +PARSEM2 

ll) RSEMB = RSEMI +PARRSEM2 

where (SEMI +PARSEM2)(II +p12) = SEMI(II) +pSEM2(12) 

and RSEMI +PARRSEM2 is defined similarly. 

The next situation we consider is that of a union of two module 

specifications M3Di = (PARI, EXPi, l~Pi, BODi) for i = 1,2 where PARI and PAR2 

share a common subparameter part PARO which should not be duplicated in the 
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union• The sharing of this common subparameter is indicated by two 

specification morphlsms pi: PAR0 + PARi for i = 1,2. 

5.4 Deflnltlon (Union of ~ b d t t t e s  with Shared Subparameter) 

Given module specifications M3Di = (PARi, EXPi, IFPi, BODI) for i = 1,2 

and a specification PAR0 with specification morphlsms pi: PARO + PARi, the 

union MDDI +PARoMDD2 of MDDI and MDD2 w.r.t. PARO is the module specification 

MDD3 = (PAR3, EXP3, IMP3, BOD3) where PAR3 is defined as the pushout of PAR1 

and PAR2 w.r.t. PARO, and EXP3, IMP3 and M3D3 are obtained as in Definition 

5.1 with PAR0 replacing PAR, e.g. 

el 
PARI ~ EXP I 

PAR0 (P0) PAR3 EXP3 (P0) (3) 

P~PAR2 7 ....... ') EXP2 /7 

e2 

If PAR0 = PAR1 = PAR2, we are back to the case of Shared Parameter, while 

if PAR0 = ~ we have disjoint union. The same arguments can be used to show 

that the diagram of bi3D3 commutes and that FREE3:IMP3 + BOD3 is nothing more 

than FREE i +PARoFREE2 and is again strongly persistent (conservative) whenever 

FREEI and FREE2 are. 

5 .5  Theorem (Semant ics  ~of Union wi th  Shared Subparameters)  

The unrestricted and restriction semantics SEM3 and RSEM3, respectively,. 

of MDD3 = MDDI +PARobDD2 as in Definition 5.4 are given by 

i) SEM3 = SEMI +PARoSEM2 and 

ii) RSEM3 = RSEMI +PARoRSEM2. 

The only situations considered so for are those involving union of either 

disjoint modules or module sharing part or all of the parameter part. In the 

more general situation, two modules to be combined can share part (or all) of 

the import and/or export interfaces, and therefore part (or all) of the body. 

5.6 Definition (Union of Ebdules with Shared Submodule) 

Given a submodule hOD0 = (PAR0, EXP0, IFP0, BOD0) of two module specifi- 

cations M3Dj = (PARj, EXPj, IMPj, BODj) for j = 1,2 with specification mor- 

phisms mpj: PAR0 + PARJ, mej: EXP0 + EXPj, mij• IPP0 + IbPj, mbj: BODO + BODj 
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for j = 1,2 as in Definition 4.5, the union of M3DI and MOD2 with shared M3D0, 

denoted by M3DI +M3DOMgD2, is the module specification M3D3 = (PAR3, EXP3, 

IMP3, BOD3) where each of its specifications is given as a pushout of the 

corresponding specifications in MODO, MODI and MOD2 with the appropriate 

specification morphisms. 

Remark In this definition of union, the parts shared by MDDI and M)D2 are 

required to form a submodule of both MDDI and M)D2. According to our 

assumptions in Definition 4.5, this implies not only that FREE0: IMPO + BODO 

is strongly persistent (or conservative) but also that V • FREEJ = FREEO • V 

for j = 1,2 and that V • Rj = R0 • V for j = 1,2. mbj mij 
m . m 
e3 e3 

If the two modules share only a subparameter, then we can take PARO = EXPO 

-- I~0 = BOD0 and this union reduces to the one given in Definition 5.4. If 

only part of the export interface (and, therefore, of the body) is shared, we 

can take PARO = IMPO = ~ and EXP0 = BODO, while if the shared part is in the 

import interface, we let PAR0 = EXPO = ~ but we still require the free functor 

from l}K~O to BODO to be strongly persistent (or conservative). 

The semantics of the union of two modules with a shared submodule behaves 

exactly as we expect it (or hope for it) to behave. 

5.7 Theorem (Semantics of Unlon with Shared Submodule) 

The semantics SEM3 of the union module specification M)D3 = M3DI +MDDOMDD2 

is the amalgamated sum of the semantics of MDDI and M3D2 w.r .t. the semantics 

of M3DO, i.e. SEM3 is uniquely defined by SEM3 = SEMI +SEMOSEM2. 

Proof Let Vj: BODJ + EXPj denote the forgetful functor associated with the 

specification morphism vj: EXPj + BODj. We first prove that V3 = Vl +voV2, 

i.e. V3(BI + BoB2) = VI(BI) +V0(BO)V2(B2), where Bj f BODJ for j = O, 1,2 

and BI +BOB2 6 BOD3. Since M3D0 is a submodule of both M3DI and M)D2, 

VO • V = V • Vj or, equivalently, VO(BO) = Vj(BJ)EXPO for j = 1,2. Then mbj mej 
(V3(BI +BoB2))EXPj = ((BI +BoB2)EXP3)EXPj = BJExPj = Vj(Bj) for j = O, 1,2 and 

therefore V3(BI +BOB2.) = VI(BI) +VO(Bo)V2(B2) by uniqueness of the amalgamated 

sum (Lemma 2.2 or Proposition 2.7). We now show that, if we define 

F3:IMP1 +IMPoIMP2 + BODI +BoDoBOD2 by F3(II +1012) = FI(II) +FO(Io)F2(12), 

where lj 6 IMPj and Fj is the free functor from IMPJ to BODj for j = O, 1,2, 

then F3 is the free functor from IMP3 to BOD3 and is strongly persistent if 

FO, FI and F2 are. To this extent, let 
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f3 = fl +f0f2:11+1012 + Vs3(BI +BoB2) = VsI(BI) + Vs0(BO)Vs2(BO) 

be an IM23-morphism. Since Fj is the free functor, there exists a unique 

BODj-morphism fj: Fj(Ij) + Bj making the diagram 

fj 
lj ,> Vsj(Bj) 

~J ~ ~ _ Vsj(fJ) 

Vsj(Fj(Ij)) 

Then the BOD3-morphism fl + f2 makes the diagram 
fO 

commute. 

f3 
II +1012 ~ Vs3(BI +BoB2) 

 VVs3 +j2) 
f0 

Vs3(F i(I I) +F0(10)F2 (12)) 

commute. Furthermore, F3 is strongly persistent since 

Vs3(Fl(ll) +F0(10)F2(12)) = V sI(FI(I1)) + Vs0(FO(10))Vs2(F2(12)) 

= Ii +1012 if F0, F I and F2 are strongly persistent. 

Finally, SEM3 = V3.F3 -- (Vl +voV2) • (FI +FoF2) = (VI.FI) +(VO.F0)(V2.F2) = 

= SEMI +SEMoSEM2. 

5.8 Theorem (Restriction Semantics) 

The restriction semantics RSEM3 of M3D3 = MDDI +MDDOMDD2 is uniquely given 

by RSEM3 = RSEMI +RSEMoRSEM2. 

Proof Since RSEMB = R3 • SEM3 the result will be established as soon as we 

show that R3 = R I +RoR2. 

First notice that, for Ej C EXPj, j = 0,1,2, RI(EI) +R0(E0)R2(E2)C_ 

E i +EoE2 and that (RI(E I) +R0(Eo)R2(E2))PAR3 = RI(E I)PARI+R0(EO)PARoR2(E2)PAR2 = 

= E~ARI+EOpARoE2FAR2 = (El +EoE2)PAR3 and hence R3(EI +EoE2)C 

RI(E i) +R0 (E0)R2 (E2) • 

(Notice that we use here the assumption made in Definition 4.5 that 

Vmej(Rj(Ej)) = RO(Vmeo(EJ)) = R0(E0) for j = 1,2). 

On the other hand, if R3(EI +EoE2) = E1 +__E2 with EJ C Ej, EJPARj = EJPAR j 
EO 
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and R3(EI +EoE2)PARj= EJ , then Rj(EJ) ~ Ej and therefore 

El(E1) +R0(Eo)R2(E2) C E1 + E2. Hence R3(EI +EoE2) = El(El) +RO(Eo)R2(E2). 
EO 

6 .  CONCLUSION AND FD'RlltE~ DEVELOPNF, NTS 

Let us first give a short summary of the main constructions and results of 

this paper. In Section 4, after reviewing the basic concepts of module 

specification and semantics (as in [2]7, we have introduced the concept of a 

submodule M of module M', imposed some (natural) restrictions on the 

connecting specification morphlsms and related the semantics of M and W . A 

precise notion of submodule is not only worthy of independent investigation, 

but also important for a precise treatment of the union of modules which share 

common parts. Different possible unions of modules have been presented (in 

Section 57 in increasing degree of difficulty, from the simple case of shared 

parameter to the most general one of union of modules with shared submodules. 

Both the unrestricted and the restriction semantics of the union modules have 

been shown to relate in a natural way to the semantics of its components. In 

discussing the semantics of the union of modules, we have made use of the 

notion of amalgamated sum of algebras, whose basic definition and properties 

have been introduced in Section 2. Connections between amalgamated sums and 

parametrlzed data types have been briefly touched upon in Section 3, where 

parameter passing has been formulated from a constructive point of view in 

both the initial and loose semantics cases. 

Several questions arise from the developments in this paper and in [2] and 

are currently under investigation. Among the results that will be presented 

in full details in forthcoming papers, are some compatibility conditions on 

union and composition of modules that guarantee dlstrlbutlvity properties of 

these two operations, such as (MI + 2) - M3 = (MI- M3) +M3~(M2 • M3) where 

MB~ is the submodule of M3 given by M3~ = (~, ~, IF~3, BOD3). Similar results 

can also be obtained with unions of modules with shared submodules. Composi- 

tion on the left, e.g. MI • (2 +EDM3), seems to be more complicated, but we 

have some encouraging preliminary results of a "pseudo-distrlbutive" nature. 

Results of this type are a prerequisite to a comprehensive development of an 

algebra of modules. The possibility of partial composition, i.e. the matching 

of only part of the import interface of a module with the export interface of 

another one, is also under investigation as a first step toward the construc- 

tion of complex modules using a "recurslve-llke" interaction of simpler 

ones. The compatibility of the operations of union and actualization has been 

investigated in [7]. An example of shared submodules can be constructed from 

the example in [2]. This will be given in an expanded version of this paper. 
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