
THE SEMa.k'TICS OF SHARED SUS~DULES SPECIFICATIONS*

E.K. Blum and F . P a r l s i - P r e s l c c e

Department o f N~thematlcs

U n i v e r s i t y o f Southern C a l i f o r n i a

Los A n g e l e s , CA 90089-1113

ABSTRACT. After reviewing the concept of module specification with import and

export interfaces introduced by H. Ehrlg for the modular development of

software systems, precise definitions of submodule and union of modules

specifications are given along with some basic results on their eompatibility

and semantics. The notion of amalgamated sum is used for the semantics of

unions of modules and some connections are made with parametrized

specifications. The results are restricted to the basic algebraic case.

I. INTRODUCTION

In [2], a new algebraic specification concept, called a "module", was

introduc~ed for the modularizatlon of software systems. A module Is an

abstract data type equipped with an import interface and an export

interface: the import interface represents the operations available (and

previously specified) inside the module while the export interface consists of

the operations available to the user of the module. The two Interfaces are

combined in the body of the module, whose operations not in the export

interface are considered "hidden". The interfaces are allowed to share a

common parameter part.

The focus in [2] is on operations of composition of modules and

actualization of parameterlzed modules and their interaction. It is obvious

that these operations do not suffice for the construction of more complicated

modules from simpler ones and that , in practical languages such as Ada, the

union operation is an important one. The mere formation of the union of two

*This research was supported in part by the National Science Foundation under
Grant M~S 82-03666.

360

disjoint modules poses no algebraic difficulties, nor does the formation of

the union of modules which share a common part, provided we are willing to

duplicate this common part. In many situations, however, having two copies of

a common part leads to difficulties in using the union module in a wider

context requiring importing or exporting the common part. Therefore, we need

a kind of union which allows us to avoid such duplication.

In this paper, we describe, in increasing order of generality, the union

of modules which share the parameter part, a subparameter part and finally a

complete submodule. This last situation requires the precise definition of

submodule specification and its semantics, which are given in Section 4. The

results, in Section 5, relating the semantics of the union module to those of

its components are described in terms of amalgamated sums of algebras. This

notion is introduced in Section 2, where we present a constructive definition

of the amalgamated sum AI + AoA2 of two algebras AI and A2 with respect to a

third algebra A0. The amalgamated sum Is then related to pullback constructs

in the category of SPEC-algebra categories and to pushouts in a new category

UAIg. In Section 3, we briefly illustrate the connection between amalgamated

sums and loose semantics of standard parameter passing in parameterlzed data

types. Further developments pointing the way to an algebra of modules are

outlined in Section 6.

2 . AM~P.A~D SUM

In this section, we introduce the concept of amalgamated sum and relate

its constructive definition to other well known constructions In the framework

of category theory. Let SPECI, i = 0,1,2,3, be algebraic specifications and

SPECI the corresponding categories of SPECi-algebras. Also let

fi: SPECO + SPECI and gi: SPECI ÷ SPEC3, for i = 1,2, be specification

morphlsms and Ui and Vi the forgetful functors associated with the

specification morphlsms gl and fi respectively, such that (I) is a pushout

diagram in the category of algebraic specifications and (2) Is a pullback

diagram in the category of SPEC-algebras categories and forgetful functors.

Vl I
SPEC 0 ~ > SPEC I $1'ECO < , SI~C 1

f2~ (I) ~gl V2 T (2) Tul
SPEC2 --WW---> SPEC3 SPEC2 < , SPEC3

U2

361

2.1 Deflnltloa (Amalgamated Sum)

Given algebras Ai ~ SPKCi for i = 0,1,2 with the property that VI(AI) =

AO = V2(A2), the amalgamated sum AI+AoA2 of AI and A2 with respect to AO is

the unique SPEC3-algebra A3 satisfying the following conditions on sorts

s ~ $3 and operators ~ 6 E3

Alsl if gl(sl) = s

(A3) s =

A2s2 if g2(s2) = s

OlA1 if gI(~1) = o

O2A2 if g2(o2) =

The algebra A3 is well-defined, since SPEC3 is the pushout of SPECI and SPEC2.

Thus if s 6 $3, then gl(sl) = s for some sl 6 SI or g2(s2) = s for some

s2 C $2 and if both are true, then there exists sO C SO such that fi(sO) = sl,

i = 1,2 in which case (Al)sl = (A0)s0 = (A2)s2" A similar argument shows that

OA3 is also well defined and that, in fact, AI+AoA2 is a SPEC3-algebra.

The amalgamated sum AI+AoA2 can also be defined implicitly in terms of the

pullback diagram of the SPECi-algebra categories.

2.2 Lemma (Pullback Property)

Given Ai ~ SPECi, i = 0,1,2, with VI(AI) = AO = V2(A2), the amalgamated

sum A3 = AI+AoA2 is the unique SPEC3-algebra such that UI(A3) = AI, U2(A3) =

A2 and if B 6 SPEC for an algebraic specification SPEC with (forgetful)

functors Fi: SPEC + SPKCi, i = 1,2, VI.FI = V2.F2 and Fi(B) = Ai, then there

exists a unique (forgetful) functor F: SPEC + SPEC3 such that Fi = Ui - F,

i = 1,2, and F(B) = A3.

2.3 Corollary

SPEC3 = SPECl + SPEcoSI~KC2 = {AI +AoA2: Ai 6 SPECl, VI(AI) = A0 = V2(A2)}

The amalgamated sum A1 + AoA2 can also be viewed as the pushout of A1 and A2

w.r.t. AO in the appropriate category. In order to define this category, we need

the notion of "generalized homomorphlsm".

362

2.4 Deflnltlon(Generallzed ~momorphlsm)

Let SPECi be algebraic specifications and Ai be SPECi-algebras for

i = 0, I. A generalized homomorphism from (AO, SPEC0) to (AI, SPECI),

denoted by (h,f): (AO, SPECO) + (AI, SPECI) is a pair of functions (h,f) where

f: SPEC0 + SPECI is a specification morphism and h is a family hs: A0s+ Alf(s)

of functions indexed by the set SO of sorts in SPECO such that, for every

~: six ... xsn ÷ s in Z0, the following diagram commutes:

=A0 > A0 A0 sI x ... x A0sn s

x i
f(~)A1

Alf(sl) x ... x Alf(sn) > Alf(s)

Given f: SPECO + SPECI, we denote by GENHOMf(A0,AI) the set of all functions h

such that (h,f): (A0, SPEC0) ÷ (AI, SPEC i) is a generalized homomorphlsm.

Notice that any h 6 GEN}{OMf(AO,AI) is also a SPEC0-morphlsm from A0 to

Vf(AI) since hs: A0s+ Alf(s)= Vf(AI) s and UVf(AI) is defined as f(~)Al"

Conversely, if h 6 SPKCO(AO,Vf(AI)), then hs: AOs+ Vf(Al)s= Alf(s) and the

above diagram commutes since Vf is a functor. We have just proved the first

part of the following result.

2.5 Prgposlzion

GENHOMf (A0,A I) SPKCO(A0, Vf (A I)) SPEC l(Ff (A0) ,A I) •

The second isomorphism follows from general properties of the forgetful

functor Vf and its left adjolnt, the free functor Ff.

2.6 Def in i t ion

Given generalized homomorphlsms (h0,fO): (AO,SPECO) + (AI, SPECl) and

(hl,fl): (AI,SPECI) ÷ (A2,SPEC2), the composition is given by the pair

(hi • hO, fl • f0) and it is clear, either directly from Definition 2.4 or

using Proposition 2.5, that it is again a generalized homomorphlsm. It is

also clear that the composition of generalized homomorphlsms, when defined, is

associative. We denote by UAIg the category with objects the pairs (A, SPEC)

with A E SPKC and morphlsms the generalized morphisms (h,f): (AO,SPECO) +

(AI, SPECI). We can now state the main result of this section.

363

2.7 Proposition

Given specification morphisms fi: SPEC0 + SPECI and SPECi-algebras Ai, i =

0, 1,2, satisfying VI(AI) = A0 = V2(A2), the amalgamated sum AI+AoA2 is the

pushout of AI and A2 w.r.t. AO, that is, the diagram

(hl, fl)
(A0,SPEC0) ~ (AI,SPECI)

(h2,f2) ~ ~ (kl,gl)

(A2,SPEC2) > (AI+AoA2,SPEC3)
(k2,g2)

is a pushout diagram in the category UAIg, where hi and ki are the obvious in-

clusion maps satisfying hi s(AOs) = Aifi(s) and ki si(Ai) = (Al+AoA2)gi(si) .

Remark Notice that if SPEC0 = ~ in diagram (i), then SPEC3 is the disjoint

union of SPECI and SPEC2 and every algebra A3 ~ SI~EC3 is the disjoint union of

an algebra AI (SPKCl and an algebra A2 (SPKC2.

3. PARA~RI@D DATA TYPES AND A~%LC, A@TED SU~

The notion of parameterized data type is an important one in the

hierarchical design of large programming systems. While several authors

([1,4,6]) have considered the problems of abstract data type specifications

and implementations, the problem of parameter passing has not received as much

attention ([3,5]). Here, we look at amalgamated sums of algebras as a

"constructive" parameter passing technique. We take the following definition

from [5].

3.1 Deflnltlon (Parameterized Data Type)

A parameterized data type PDT = (SPECO, SPECI, T) consists of two

algebraic specifications SPECO and SPECI with SPEC0 C SPECI (componentwlse)

and a functor T: SPECO ÷ SPECI which is assumed to be strongly persistent,

i.e. V(T(A)) = A for every A (SPKCO, where V is the forgetful functor

associated with the inclusion specification morphism j: SPEC0 + SPECI.

In the case of initial algebra semantics [5,6], the functor T is taken to

be the free functor F: SPECO + SPECl. In order to pass an actual parameter

specification SPEC2 for the parameter part SPEC0 of a parameterized specifi-

cation PSPEC = (SPEC0,SPECI), a "parameter passing" morphism h: SPEC0 + SPEC2

is specified and a new specification SPEC3 is constructed as in the following

pushout diagram:

$64

J
SPECO > SPEC 1

SPEC2 > SPEC3

(In [5], the construction of the new specification is explicit).

The semantics of this standard (i.e. non-parameterized) parameter passing is

taken to be (F,TsPEc2,TsPEC3) , where TSPEC i is the initial algebra in SPECI

and F: SPECO ÷ SPECI is the free functor of the parameterlzed specification

PSPEC. The assumption that F be strongly persistent is then sufficient to

guarantee the semantical conditions:

i) actual parameter protection: Vj,(TsPEC3) = TSPEC 2

2) passing compatibility: F(Vh(TsPEC2)) = Vh,(TsPEC3).

In the loose semantics case, the result of passing a SPEC2-algebra as

actual parameter can be expressed as an amalgamated sum of algebras. Let

again PSPEC, SPEC2, h: SPECO + SPEC2 and SPEC3 be given as above. Let

A2 ~ SPEC2 and define A0 = Vh(A2). Then AI = T(A0) is a SPECl-algebra with

the property that V(AI) = AO (by strong persistency of T). Since AO, AI and

A2 satisfy the assumptions of Definition 2.1, we can define their amalgamated

sum A3 = AI+AoA2. Then A3 = T(Vh(A2)) + Vh(A2)A2 is the result of passing A2

to the parameterlzed data type PDT = (SPECO,SPECI, T). It is easy now to check

that by the properties of the amalgamated sum, similar semantical conditions

are satisfied. The actual parameter A2 is protected since

Vj,(A3) = Vj,(T(A0) +AoA2) = A2

and the parameter passing in "compatible", i.e. it reflects the behavior

of the functor T, since T(Vh(A2)) = T(AO) = AI = Vh,(A3). Hence

SPECI + SPEcoSPEC2 (see Corollary 2.3) can be taken as the loose semantics

of (standard parameter) passing SPEC2 for SPECO in PDT.

4. M~DULE AND SUB}f)DULE SPECIFICATIONS

In this section, we first review the basic notions of module specification

with import and export interfaces as introduced by Ehrig ([2]) briefly

mentioning the operations of composition and actualization and their

semantics. We then introduce the notion of submodule specification and

semantics to be used in the next section in the context of unions of modules

sharing a common part.

365

4.1 Definition (~bdule Specification)

A module specification FDD consists of four algebraic specifications PAR,

IMP, EXP, BOD along with specification morphisms e, s, i and v (e and s

injective) making the following diagram commute:

e

PAR ~ EXP

L
IFP) BOD

IMP and EXP are the import and export interfaces, respectively, and PAR is the

parameter part shared by IMP and EXP. We will assume that e and s are

actually inclusions.

• .2 Deflnltlon(Semntlcs o f ~dules)

Given a module specification NOD as in Definition 4.1, denote by Vs,

V v and V e the forgetful functors induced by s, v and e, respectively, and

by FREE: IMP + BOD the free functor associated with V s .

The (unrestricted) semantics SEM of NOD is the functor

SEM = V v • FREE: IFP + EXP.

The restriction semantics RSEM of NDD is the functor

RSEM = R • SEM: INP + KXP

where, for A ~ EXP, R(A) =n{B 6 EXP: B C A, Ve(B) = Ve(A)} .

Assumptions Using the unrestricted semantics SEM, we will assume that

FREE is strongly persistent (i.e. V • FREE is the identity on I~P). Using
s

RSEM, we will add the assumption that FREE preserves injectlve homomor-

phisms. For a discussion of the interpretation of both definitions, see [2].

In the composition of two modules the import interface of one module is

"matched" with the export interface of the other one.

4.3 Definition (Composition of ~vles)

Given two modules specifications bODi : (PARI, EXPi, IFPi, BODi) with a

specification morp~ism h: IMP I ÷ EXP2, the composition of NOD1 and H)D2 w.r.t.

h, denoted by NOD2 • hH)DI, is the module specification NOD3 = (PAR3, EXPI,

IMP2, BOD3) with PAR3 and BOD3 defined as in the diagram

PAR3 ~> PAR1 ~ EXPI

(I) I ~ I ,,, B~I

PAR2~ > E~2, (2) i

BOD2 > BOD3 IMP2 >

where (i) and (2) are a pullback and a pushout diagram respectively.

366

4.4 Theorem (Semantics of Composition)

i) SEM3 = SEMI - V h. SEM2

ii) If h: IMP I + EXP2 is "parameter consistent", i.e. there exists

p: PAR1 + PAR2 such that e 2- p = h • il, then RSEM3 = RSEMI • V h- RSEM2.

The other operation on modules mentioned in the introduction is that of

actualization, where the parameter part PAR0 of a parametrlzed module M)D0 is

replaced by a specification ACT (actual parameter) to yield a parameterless

module speciflcatlon. The actualization of POD0 by ACT w.r .t a specification

morphism h: PAR0 + ACT is the parameterless module ACTh(M3D0) = (~, EXP,

IMP, BOD) where EXP (resp. IMP) is the pushout of ACT and EXPO (resp. IMP0)

w.r .t. PARO and BOD is obtained by "gluing" IMP and BOD0. For the precise

definition and results dealing with the induced semantics of actualization and

compatibility properties of composition and actualization, see [2].

We now introduce the concept of submodule specification. As in [2], we

restrict our attention to the basic algebraic case, without logical or

algebraic constraints on the interfaces.

4.5 Definit ion (Submodule Specif ication)

Given two module specifications MgDi = (PARi, EXPi, IMPi, BODi) for

i = 1,2, M)DI is a s ubmodule specification of MOD2 if there exist four speci-

fication morphlsms mp: PAR1 + PAR2, me: EXPI + EXP2, mi: IMP1 + IMP2

and mb: BODI + BOD2 such that the following four diagrams commute:

m
P

e 1
PARI > E~I PARI if> I~PI I~PI--~BODI EXPI v!> BODI

~ (i) ~m e mp & (2)~m i mil (3)~m b mel (4)~,

PAR2 e2)E~2 RAR2 i2> I~P2 I~P2 s--~BOD2 EI~2 v2 ~BOD2

Assumptions We have already assumed that, in module specifications, the free

functor FREEi: IMPI ÷ BODI is strongly persistent (when using unrestricted

semantics) or strongly conservative (with restriction semantics). In the case

of submodule specification, we will add the condition that the free functors

FREE I and FREE2 commute with the vertical forgetful functors of diagram 3,

i.e. Vmb FREE2 = FREEI • Vml This formalizes our intuitive notion that, for

MODI to be a submodule of MgD2, the free construction in M)DI should reflect

the free construction in MDD2. When using the restriction semantics, we will

367

also add the assumption that, for every E~2-algebra A, V m (R2(A)) = RI(V m (A)).
e e

These assumptions are sufficient to relate the semantics of NDDI and MDD2.

4.6 Proposition (SuSm~ule Semantics)

Given module specifications FODI and MDD2 with M3DI a submodule

specification of NDD2 and the above assumptions on the behavior of the

forgetful functors, we have

i) V • SEM2 = SEMI • V
m m.
e i

ii) V • RSEM2 = RSEMI • V
m m°
e i

where SEMi, RSEMi: IMPi + EXPi, V : E~2 + EXPI and V : IMP2 + IMP1.
m m.
e 1

Remarks If in Definition 4.5 we take PARI = PAR2, then the notion of MDDI

being a submodule specification of M)D2 is equivalent to MDD2 being a

"refinement" of M3DI with the additional specification morphism

mb: BODI + BOD2 (see [2] sec. 4.5). In view of Proposition 4.6, our

assumptions on submodule specifications imply Ehrig's notions of "correct" and

"R-correct" refinements. If in addition we take IMP I = I~2 and diagram (4)

as a pushout, then we obtain a special case of an "extension" of module

specification as in 4.6 of [2].

5. UNION OF MDDULES WITH SHARD SUBMDDULES

As mentioned already in the Introduction, composition and actual~zation

are but two of the operations that can be used to build up complex modules

from simpler ones. Another possible construction, allowed, for example, in

Ada, is that of a union of two (or more) modules. A larger module can be

obtained whose import and export interfaces are formed by combining the import

and export interfaces of the component modules, respectively. The simplest

possible combination is that of a union of two disjoint modules or,

equivalently, of two modules which share a common part, may it be a submodule

or just part of an interface, and we are willing to duplicate that part in the

composite module. There are instances, however, where two modules share a

common part, say the parameter part, which should not he duplicated since PAR

is intended to be instantiated, at a later stage in the development, with the

same actual parameter. This is the situation we analyze next.

5 . 1 D e f i n i t i o n (U n i o n o f F o d u l e s w i t h Shared P a r a m e t e r)

The union of two modules specifications ~DDI = (PAR, EXPi, IMPi, BODi) for

i = 1,2, which share the parameter part PAR, is denoted by YODI + PARNDD2 and

368

is the module specification M)D3 = (PAR, EXP3, IFP3, BOD3) where the last

three specifications are given by the pushout diagrams:

i v 2
PAR 29 IMP2 s2"~ BOD2 PAR e2.> E~P2 > BOD2

v I
. > BOD3 (p0) BODI bl > BOD3(p0) BODI bl

By definition of FDDI and ~DD2, the two outer diagrams are the same and they

define BOD3 as a pushout w.r.t. PAR. Since (i) and (2) are pushouts, s 3 and

v 3 exist and are unique. They are also injective and v 3. e3= b 2. v 2. e2=

b 2" s 2" i2= s 3" i 3.

The following Lemma is needed to prove Theorem 5.3.

5.2

Given the diagram
s 2

~I~P2 .> BOD2

PAR IFP3 -> BOD3

I t , F I > B O D I

with IMP3 and BOD3 as in Definition 5.1, let Vl be the forgetful functor

associated with sl and Fi be the corresponding free functor. Define

F = FI + PARF2:I~P3 + BOD3 by letting F(II + p12) = FI(II) + pF2(12)

Then F = FREE3 is the free functor associated with s 3 and if FI and F2 are

strongly persistent (resp. conservative), then so is F.

5.3 Theorem ,, ~S,~t!C s of Union with Shared Parameter)

Given the module specification hOD3 = ~DI +PARMDD2 as in Definition 5. I,

its semantics are given by

i) SEM3 = SEMI +PARSEM2

ll) RSEMB = RSEMI +PARRSEM2

where (SEMI +PARSEM2)(II +p12) = SEMI(II) +pSEM2(12)

and RSEMI +PARRSEM2 is defined similarly.

The next situation we consider is that of a union of two module

specifications M3Di = (PARI, EXPi, l~Pi, BODi) for i = 1,2 where PARI and PAR2

share a common subparameter part PARO which should not be duplicated in the

369

union• The sharing of this common subparameter is indicated by two

specification morphlsms pi: PAR0 + PARi for i = 1,2.

5.4 Deflnltlon (Union of ~ b d t t t e s with Shared Subparameter)

Given module specifications M3Di = (PARi, EXPi, IFPi, BODI) for i = 1,2

and a specification PAR0 with specification morphlsms pi: PARO + PARi, the

union MDDI +PARoMDD2 of MDDI and MDD2 w.r.t. PARO is the module specification

MDD3 = (PAR3, EXP3, IMP3, BOD3) where PAR3 is defined as the pushout of PAR1

and PAR2 w.r.t. PARO, and EXP3, IMP3 and M3D3 are obtained as in Definition

5.1 with PAR0 replacing PAR, e.g.

el
PARI ~ EXP I

PAR0 (P0) PAR3 EXP3 (P0) (3)

P~PAR2 7 ') EXP2 /7

e2

If PAR0 = PAR1 = PAR2, we are back to the case of Shared Parameter, while

if PAR0 = ~ we have disjoint union. The same arguments can be used to show

that the diagram of bi3D3 commutes and that FREE3:IMP3 + BOD3 is nothing more

than FREE i +PARoFREE2 and is again strongly persistent (conservative) whenever

FREEI and FREE2 are.

5 .5 Theorem (Semant ics ~of Union wi th Shared Subparameters)

The unrestricted and restriction semantics SEM3 and RSEM3, respectively,.

of MDD3 = MDDI +PARobDD2 as in Definition 5.4 are given by

i) SEM3 = SEMI +PARoSEM2 and

ii) RSEM3 = RSEMI +PARoRSEM2.

The only situations considered so for are those involving union of either

disjoint modules or module sharing part or all of the parameter part. In the

more general situation, two modules to be combined can share part (or all) of

the import and/or export interfaces, and therefore part (or all) of the body.

5.6 Definition (Union of Ebdules with Shared Submodule)

Given a submodule hOD0 = (PAR0, EXP0, IFP0, BOD0) of two module specifi-

cations M3Dj = (PARj, EXPj, IMPj, BODj) for j = 1,2 with specification mor-

phisms mpj: PAR0 + PARJ, mej: EXP0 + EXPj, mij• IPP0 + IbPj, mbj: BODO + BODj

370

for j = 1,2 as in Definition 4.5, the union of M3DI and MOD2 with shared M3D0,

denoted by M3DI +M3DOMgD2, is the module specification M3D3 = (PAR3, EXP3,

IMP3, BOD3) where each of its specifications is given as a pushout of the

corresponding specifications in MODO, MODI and MOD2 with the appropriate

specification morphisms.

Remark In this definition of union, the parts shared by MDDI and M)D2 are

required to form a submodule of both MDDI and M)D2. According to our

assumptions in Definition 4.5, this implies not only that FREE0: IMPO + BODO

is strongly persistent (or conservative) but also that V • FREEJ = FREEO • V

for j = 1,2 and that V • Rj = R0 • V for j = 1,2. mbj mij
m . m
e3 e3

If the two modules share only a subparameter, then we can take PARO = EXPO

-- I~0 = BOD0 and this union reduces to the one given in Definition 5.4. If

only part of the export interface (and, therefore, of the body) is shared, we

can take PARO = IMPO = ~ and EXP0 = BODO, while if the shared part is in the

import interface, we let PAR0 = EXPO = ~ but we still require the free functor

from l}K~O to BODO to be strongly persistent (or conservative).

The semantics of the union of two modules with a shared submodule behaves

exactly as we expect it (or hope for it) to behave.

5.7 Theorem (Semantics of Unlon with Shared Submodule)

The semantics SEM3 of the union module specification M)D3 = M3DI +MDDOMDD2

is the amalgamated sum of the semantics of MDDI and M3D2 w.r .t. the semantics

of M3DO, i.e. SEM3 is uniquely defined by SEM3 = SEMI +SEMOSEM2.

Proof Let Vj: BODJ + EXPj denote the forgetful functor associated with the

specification morphism vj: EXPj + BODj. We first prove that V3 = Vl +voV2,

i.e. V3(BI + BoB2) = VI(BI) +V0(BO)V2(B2), where Bj f BODJ for j = O, 1,2

and BI +BOB2 6 BOD3. Since M3D0 is a submodule of both M3DI and M)D2,

VO • V = V • Vj or, equivalently, VO(BO) = Vj(BJ)EXPO for j = 1,2. Then mbj mej
(V3(BI +BoB2))EXPj = ((BI +BoB2)EXP3)EXPj = BJExPj = Vj(Bj) for j = O, 1,2 and

therefore V3(BI +BOB2.) = VI(BI) +VO(Bo)V2(B2) by uniqueness of the amalgamated

sum (Lemma 2.2 or Proposition 2.7). We now show that, if we define

F3:IMP1 +IMPoIMP2 + BODI +BoDoBOD2 by F3(II +1012) = FI(II) +FO(Io)F2(12),

where lj 6 IMPj and Fj is the free functor from IMPJ to BODj for j = O, 1,2,

then F3 is the free functor from IMP3 to BOD3 and is strongly persistent if

FO, FI and F2 are. To this extent, let

371

f3 = fl +f0f2:11+1012 + Vs3(BI +BoB2) = VsI(BI) + Vs0(BO)Vs2(BO)

be an IM23-morphism. Since Fj is the free functor, there exists a unique

BODj-morphism fj: Fj(Ij) + Bj making the diagram

fj
lj ,> Vsj(Bj)

~J ~ ~ _ Vsj(fJ)

Vsj(Fj(Ij))

Then the BOD3-morphism fl + f2 makes the diagram
fO

commute.

f3
II +1012 ~ Vs3(BI +BoB2)

 VVs3 +j2)
f0

Vs3(F i(I I) +F0(10)F2 (12))

commute. Furthermore, F3 is strongly persistent since

Vs3(Fl(ll) +F0(10)F2(12)) = V sI(FI(I1)) + Vs0(FO(10))Vs2(F2(12))

= Ii +1012 if F0, F I and F2 are strongly persistent.

Finally, SEM3 = V3.F3 -- (Vl +voV2) • (FI +FoF2) = (VI.FI) +(VO.F0)(V2.F2) =

= SEMI +SEMoSEM2.

5.8 Theorem (Restriction Semantics)

The restriction semantics RSEM3 of M3D3 = MDDI +MDDOMDD2 is uniquely given

by RSEM3 = RSEMI +RSEMoRSEM2.

Proof Since RSEMB = R3 • SEM3 the result will be established as soon as we

show that R3 = R I +RoR2.

First notice that, for Ej C EXPj, j = 0,1,2, RI(EI) +R0(E0)R2(E2)C_

E i +EoE2 and that (RI(E I) +R0(Eo)R2(E2))PAR3 = RI(E I)PARI+R0(EO)PARoR2(E2)PAR2 =

= E~ARI+EOpARoE2FAR2 = (El +EoE2)PAR3 and hence R3(EI +EoE2)C

RI(E i) +R0 (E0)R2 (E2) •

(Notice that we use here the assumption made in Definition 4.5 that

Vmej(Rj(Ej)) = RO(Vmeo(EJ)) = R0(E0) for j = 1,2).

On the other hand, if R3(EI +EoE2) = E1 +__E2 with EJ C Ej, EJPARj = EJPAR j
EO

372

and R3(EI +EoE2)PARj= EJ , then Rj(EJ) ~ Ej and therefore

El(E1) +R0(Eo)R2(E2) C E1 + E2. Hence R3(EI +EoE2) = El(El) +RO(Eo)R2(E2).
EO

6 . CONCLUSION AND FD'RlltE~ DEVELOPNF, NTS

Let us first give a short summary of the main constructions and results of

this paper. In Section 4, after reviewing the basic concepts of module

specification and semantics (as in [2]7, we have introduced the concept of a

submodule M of module M', imposed some (natural) restrictions on the

connecting specification morphlsms and related the semantics of M and W . A

precise notion of submodule is not only worthy of independent investigation,

but also important for a precise treatment of the union of modules which share

common parts. Different possible unions of modules have been presented (in

Section 57 in increasing degree of difficulty, from the simple case of shared

parameter to the most general one of union of modules with shared submodules.

Both the unrestricted and the restriction semantics of the union modules have

been shown to relate in a natural way to the semantics of its components. In

discussing the semantics of the union of modules, we have made use of the

notion of amalgamated sum of algebras, whose basic definition and properties

have been introduced in Section 2. Connections between amalgamated sums and

parametrlzed data types have been briefly touched upon in Section 3, where

parameter passing has been formulated from a constructive point of view in

both the initial and loose semantics cases.

Several questions arise from the developments in this paper and in [2] and

are currently under investigation. Among the results that will be presented

in full details in forthcoming papers, are some compatibility conditions on

union and composition of modules that guarantee dlstrlbutlvity properties of

these two operations, such as (MI + 2) - M3 = (MI- M3) +M3~(M2 • M3) where

MB~ is the submodule of M3 given by M3~ = (~, ~, IF~3, BOD3). Similar results

can also be obtained with unions of modules with shared submodules. Composi-

tion on the left, e.g. MI • (2 +EDM3), seems to be more complicated, but we

have some encouraging preliminary results of a "pseudo-distrlbutive" nature.

Results of this type are a prerequisite to a comprehensive development of an

algebra of modules. The possibility of partial composition, i.e. the matching

of only part of the import interface of a module with the export interface of

another one, is also under investigation as a first step toward the construc-

tion of complex modules using a "recurslve-llke" interaction of simpler

ones. The compatibility of the operations of union and actualization has been

investigated in [7]. An example of shared submodules can be constructed from

the example in [2]. This will be given in an expanded version of this paper.

373

Acknowledgements. The results in this paper are part of ongoing research
being conducted jointly with H. Ehrig, Technlsche Universltat Berlin, and
initiated during his visit to the University of Southern California in the
Spring 1984. A more comprehensive account of this research will be presented
in a forthcoming joint paper. ~ny thanks to Cynthia Summerville for fast and
accurate typing.

References

[I] Blum, E.K., Parisi-Preslcce, F., Implementation of Data Types by Algebraic
Methods, J. Comput. System Sci. 27, 2 (Oct. 1983) 304-330.

[2] Ehrig, H., An Algebraic Specification Concept for Modules, Draft Version,
Techn. Report No. 84-02, TU Berlin, FB 20, ~rch 1984.

[3] Ehrlg, H., Kreowski, H.-J., Compatibility of Parameter Passing and
Implementation of Parameterized Data Types, Theoret. Comp. Sci. 27(1983)
255-286.

[4] Ehrlg, H., Kreowski, H.-J., Mehr, B., Padawitz, P., Algebraic
Implementation of Abstract Data Types, Theoret. Comp. Sci. 20(1982)
209-264.

[5] Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G., Wright, J.B.,
Parameter Passing in Algebraic Specification Languages, Proc. Aarhus
Workshop on Prog. Spec., 1981, LNCS ~4(1982) 322-369.

[6] Goguen, J.A., Thatcher, J.W., Wagner, E.G., An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types,
Current Trends in Prog. Method., IV: Data Structuring (R.T. Yeh, Ed.)
Prentlce-Hall, NJ (1978) 80-149.

[7] Parisi-Presicce, F., The operations of union and actualization of module
specifications are compatible, Extended Abstract, Univ. of Southern
California, September 1984.

