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A b s t r a c t  

Requirements of specification languages for distributed systems are considered, and 

a two level approach based on a kernel metalanguage and many application-oriented 

extensions is advocated. The method is applied to some models developed by the 

authors, organized in a tree-like refinement structure. 

I. Introduction 

Emplaasis on the specification phase within the softwa/~e life cycle has been 

suggested as a remedy against the many inconveniencies of presently available 

programming methodology. A more structured approach and a complete documentation of 

the design decisions taken in all the phases from requirements to coding should 

enable an easy modification of the resulting software product for maintenance and 

re-use. It has been also suggested that the main loop of the software life cycle be 

closed on an executable version of the program, completely specified but still not 

optimized, rather similar to a detailed specification /BCG83/. Fully optimized 

versions should be derivable either manually or semiautomatically but should not be 

the "main documents" of the software product. 

Improvements on programming methodology in the specification phase demand 

suitable specification languages. They should be formally defined, executable, and 

easy to use. In this field close collaboration between computer scientists on one 

side and software engineers on the other is badly needed. The situation is even more 

demanding in the case of concurrent distributed systems, where many theoretical 

problems are still open and where our intuition is often inadequate. A number of 

recent workshops /Spec79, 83, 84/ are evidence of the interest in specification 

languages for sequential and concurrent systems. 

This work has been partially supported by CNR - Progetto Finalizzato Informatica, 

Obiettivo Cnet. 
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2. Requirements for a specification language. 

In a specification language we can distinguish two aspects. The first is 

related to its semantic definition and the second refers to its flexiblity and 

usability in a number of practical situations. The two aspects are somewhat 

conflicting, since the former leads to elementary and orthogonal constructs, while 

the latter tends to require the contemporary presence of many, overlapping 

constructs and languages, specialized for levels of abstraction and fields of 

application. 

From a practical point of view, the presence of several languages in the 

specification of a large system will probably be a fact of life and it will be 

necessary to cope with it. In principle, it might be enough to formalise all the 

specification languages using "the" mathematical language. However, this approach 

might lead to serious practical problems, since if the specification lanEu~es 

employed can be interfaced only at a very primitive level (e.g. set theory) it will 

not be easy to reason and prove properties about the programs so specified. 

Furthermore, it will be almost impossible to efficiently implement all the languages 

used to specify the system in order to obtain early prototypes. 

The above conflict can be solved by means of a two-level approach. First, a 

basic metalanguage should be introduced containing all the concepts needed, 

organized in an elementary way but well studied and easy to understand; second, 

several specification languages should be defined in terms of the metalan~uage using 

few, simple extension mechanisms. A specification might become executable by 

providing an implementation of the metalanguage and interpreters (translators) for 

every lanKuage towards the metalanguage. 

A good example of the above two-level approach is the Pebble specification 

language /BuLa84/, where the kernel is a version of typed lambda calculus and the 

mechanisms for modularization and data abstractions are provided as applications. 

The semantics of Pebble is operational, and is given in the style of SOS /Plot83/ 

using labelled transition systems. 

Since we are interested in specification languages for concurrent, distributed 

systems, more concepts must be embedded in the metalanguage. Necessary constructs 

include at least primitives for describing nondeterminism, concurrency, 

synchronization and communication. An important step towards a metalangua£e for 
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concurrency is Milner's asynchronous and synchronous CCS /MilnSO, 83/. It has rather 

few constructs, a rich and elegant theory and an operational semantics defined in 

terms of labelled transition systems. 

A construct for parallel composition is available in CCS. However, its meaning 

can be expressed in terms of other operations, and thus it is not primitive in this 

sense. In fact, CCS, as well as all the models based on interleaving, describes the 

fact that a set of events may occur concurrently (independently from each other) by 

saying that they may occur in any order. In this way a total ordering among the 

possibly spatially separated and causally independent events is imposed. 

Although this level of detail is adequate for many applications, according to a 

number of researchers it is insufficient to describe all those aspects of distribut- 

ed, concurrent systems that have practical interest, e.g. fairness. Models have been 

proposed which use partial orderings to explicitely describe the fact that events 

may take ~ place concurrently. Among these we mention the pioneering work on Petri 

nets /Bram83/ and Cosy by Lauer et al. /LTS79/. Also the authors have followed this 

approach defining models which will be used in the sequel as a case study. 

A major motivation for formally specifying a system is to be able to prove 

properties about it. Providing a satisfactory proof system is not a simple matter, 

especially for an operationally defined metalanguage. A widely proposed approach 

takes a temporal logic as a starting point /Roev84/. 

Once a satisfactory metalanguage has been designed, among the most needed 

extensions we mention those providing the ability of structuring and composing 

pieces of specifications. The features required concern parametrization, modularity 

and abstraction. 

The use of a specification language for a sizable system is greatly improved by 

the availability of suitable tools. Many of the considerations valid for standard 

progra~ning environments also apply to specification language tools. In particular, 

the syntax- or semantic-driven techniques used for adapting generic tools (like 

editors, type checkers, interpreters, debuggers, etc.) to a particular language, 

should be more convenient in a specification language environment, due to the 

hopefully simpler structure of specification languages themselves. 

We already mentioned the convenience for a specification language to be 

executable in a reasonably efficient way. Of course the use of high parallelism 

and/er special purpose machine architectures may be of great help. However, we 
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believe that the practical possibility of executing specifications, e.g. for early 

prototyping, must be a specific concern in designing them, since otherwise the 

inefficiencies can easily, and hopelessly, increase exponentially. 

Finally, we mention the so-called human engineering issue. If a specification 

language has to he used at all i n practice, it must require only a limited knowledge 

by the programmer of the deep theoretical issues involved in its definition. It must 

also be intuitively appealing and should use all the technically available 

expedients (e.g. sophisticated graphics) for achieving an easy interaction with the 

user (see for instance the documents of the ESPRIT project Graspin /GRAB84/). 

3. A basic model and its refinements 

In this section we follow the methodoloEical guidelines surveyed in the 

previous section by presentin E in some detail several models developed by the 

authors. All formalisms consider concurrency a basic, irreducible concept and are 

based on partial orderings. The models are orEanized in a tree-like refinement 

structure, startin E from a basic model and addin E to it independent features to 

describe different aspects of distributed concurrent systems. These features are 

meant as a kernel of a more elaborated specification language, which should combine 

them in a usable way. 

3.1. Concurrent histories 

In this section we introduce our basic model, which is intended as Level I. of 

our structured presentation. 

We give an informal introduction to the notion of concurrent history and to the 

semantics of a set Z of atomic histories. A detailed definition can be found in 

/DeMo84a, b/. 

Let A be a countable set of observable actions and let E be a countable set of 

process types containing an element 0 called termination. Sets A and E are disjoint. 

A concurrent history h in Hfi n is a triple h=(S,l,~) where: 

S is a finite set of subsystems; 

1 is a labellin~ function 

I:S -->A U E and 

is a partial ordering relation on S. 
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The subsystems with labels in A are called events, while those with labels in E 

are called process states or simply processes. 

We require that events never be minimal nor maximal, the processes always be 

minimal or maximal, but not both, elements of ~. Processes which are minimal are 

called heads, and processes which are maximal are called tails. Thus processes are 

partitioned into heads and tails. Two histories are called disjoint if their sets 

of subsystems are disjoint. 

Two histories hl=(Sl,ll,gl) and h2=($2,12,~2) are isomorphic iff there is a 

bijective mapping 

g:S 1 -->S 2 such that 

ll(S)=12(g(s)) and 

SldlS 2 iff g(Sl)62g(s2). 

We define an associative nondeterministic partial replacement operation on 

histories. Given two disjoint histories hl, h 2 and a history h, we write h I before 

h 2 gives h iff h can be obtained by the following procedure. A possibly empty 

subset S h of the head processes of h is matched against a subset S t 2 2 1 of the tail 

processes of hl, and corresponding processes are identified. Of "course two 

processes can match only if their labels are identical. If the subset sh2 is the 

whole set of the head processes of B2' the operation is called full replacement or 

simply replacement, and set S t is called rewritable. 
1 

The relation ~IU~2 is then made transitively closed and the processes in the 

matching set S h =S t 2 1 are erased. Note that we have 

S=(SI-Shl)U(S2-St2). 

In Fig. 1 we see an example of replacement. Here a,b,c are in A, and El, E 2 are 

in E. Partial orderings are depicted through their Hasse diagrams, growing 

downwards. Processes (events) are represented as boxes (circles). 
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a) b) c) d) 

Fig. i. Four concurrent histories h I (in a)), h 2 (in b)), h 3 (in c)) and h 4 (in 

a)) such that h I before h 2 $ives h3, and h I before h 2 ~ives h 4. 

A history is atomic if either 

i) there are no events and each head is smaller in the partial order than all the 

tails; or 

ii) there is exactly one event Kreater than all heads and smaller than all tails. 

An atomic history represents a single synchronization, either unobservable or 

observable. 

We introduce a linear representation (up to isomorphism) for atomic histories: 

i) M 1 --~M 2 

a M ii) M 1 --9 2 

where MI,M 2 are multisets of process types and a is an observable action. 

Let Z be a set of disjoint histories. 

A computation on Z is a finite or infinite sequence D= {hi} =(ho,hl...) such 

that 

h before r i ~ives hi+ 1 i=O,l,... 
i ................. 

where ho,r i (i=O,l,...) are disjoint atomic histories isomorphic to histories in 

Z. 
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As an example consider a computation with 

ho= E 1 --->E3,E 4 

a E ,E 5 ro= E3 -"-> 1 

b E 
rl= E4 --->E6' 2 

r2= Es,E 6 --->E 2 

where h is the history in Fig is). Notice that all replacements are full. Note 
3 

also that histories r 0 and r I might be interchanged obtaining the same h 3. 

The histories belonging to a computation on Z are called derivable from Z. 

Furthermore, the result of a finite computation is its last element, if it does 

contain no rewritable set. The result of an infinite computation is its limit, if 

any, in a suitable metric space. Actually, in /DeMo84a/ (where replacement is 

required to be full) four distances on finite histories are defined, and the 

limits are obtained through standard topological completions. Remarkably enough, 

the non terminating computations converging in the four resulting complete metric 

spaces enjoy interesting liveness properties. 

The four properties are: vitality (every running process will eventually 

produce an observable event), global fairness (a synchronizable set of processes 

will eventually run), local fairness (a process which is repeatedly ready to run, 

possibly with different partners, will eventually run), partial deadlock freedom 

(every non-terminated process will eventually run). 

Moreover, the limits in the metric spaces are directly characterized in terms 

of thei~ structural properties. 

The proposed approach proves to be fruitful: a nondeterministic universal 

scheduler is defined which is capable of generating all and only computations 

being convergent in a given metric. This scheduler can be used in the four cases 

above, thus keeping only those computations which have the desired liveness 

property. The metric is a parameter of the scheduler, which is thus independent of 

the particular liveness property under consideration. 

Our notion of concurrent history expresses in an abstract fashion the idea of 

concurrent computation. In fact, events not related by the partial ordering g are 

meant to be concurrent. On the other hand, the above given notion of computation 

is purely sequential, and, since every computation step generates at most one 

event, a computation induces a well-founded total ordering on the events of its 

last element or of its result. We call it ~eneration ordering. 
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The following theorem given in /DeMo84b/ links the sequential and concurrent 

notions of computation. 

Theorem 3.1 The generation orderings induced by all computations on Z having the 

same history h=(S,l,~) as last element or as result, are exactly those well-founded 

total orderings compatible with (i.e. larger than or equal to, in the set 

theoretical sense) the partial ordering g of h. 

In /DeMo84b/ a construction is presented for generating a most simplified 

Labelled Event Structure (LES) starting from a set Z of atomic histories. This LES 

defines the semantics of Z. Labelled Event Structures are models of nondeterministic 

concurrent computations described in the literature /CFM82/, /Wins82/. Our notion of 

simplification is based on an abstraction homomorphism having the property that, 

given a LES, a unique most simplified homomorphic LES always exists. 

3.2. Petri nets 

The notion of computation on a set Z of atomic histories defined in the 

previous section is a general language-independent framework for describing 

behaviours of concurrent programs. The set Z can be defined independently. If Z is 

finite, it can be given explicitely. We call this Level i.i.. In this case a set Z 

is equivalent to a transition Petri net /JaVa79/ plus a partial function mapping the 

transitions of the net into observable actions. The places of the net correspond to 

the process types, while every transition is associated to an atomic history in Z. 

More precisely, immediate antecedent (successor) places of the transition correspond 

to heads ~tails), and an event exists iff the partial function above is defined. In 

fig. 2 we see an example of this equivalence. 

a) b) 

Fig. 2 a) A transition Petri net. b) The equivalent set of atomic histories. 
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3.3. Synchronization 

So far, an atomic history involving many processes is understood as a single, 

indivisible move. On the other hand, it can often be conveniently seen as the 

composition, through a synchronization mechanism, of a separate move for each 

process involved. This consideration brings us to Level 1.2.. For the sake of 

symplicity, from now on we consider only atomic histories of type ii). Each possible 

move is described by a labelled production. The left member of a production contains 

a single process, and the label is called a communication protocol. The 

synchronization mechanism is represented by an associative commutative partial 

function f, mapping, if defined, any multiset of communication protocols into an 

observable action. Function f, called s~nchropization function, makes it possible to 

specify which productions can be composed in a single transition rule. 

A production is a triple 

AI-~ M 

where A is a process type, M is a multiset of process types and p is a protocol. 

Given a set W of productions and a synchronization function f, the atomic 

histories in Z are derivable by the following inference rule 

Pl P 
_~ 

A 1 --~ MI,...,A n M n 

f(Pl,.--,Pn ) 

AI,...,A n ........... ~MIU...OM n 

In Fig. 3 we see a computation step where the atomic history used is generated 

by the above rule. 

An example of a synchronization mechanism described in the literature which 

fits our present schema is that used for synchronization trees /MilnSO/. Milner, 

however, does not distinguish between observable actions and communication 

protocols,, since the observer himself is considered to be a process. Furthermore, 

the communication mechanism is intended to be based on message passing, and thus 

actions come in pairs like a~, where an element represents the envoy of the message 

and the other its reception. 
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b' 
A---~A 

b" 
B---~B 

fCa' )=a 

f(b',b")=b 

bVl A-~kA, B - - -  B 

AB _b_> AB 

a) b) c) 

before 

gives 

d) 

Fig. 3 a) Three productions (notice the half-arrow). 

b) The synchronization function. 

c) The derivation of an atomic history. 

d) A step in a computation. 

To adapt synchronization trees to our framework, we assume that the observer 

can exchange a set of protocols a'l,a'l,a'2,a'2 ' .... Thus we have, 

f(a'l)=a I, f(g'l)=~l .... 

f(a'l,~'l)=~, f(a'2,~'2)=~ .... 

where~rrepresents Milner's unobservable action. 
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Conversely, the "intersection" synchronization mechanism proposed by Hoare 

/BHR84/ does not fit completely. This mechanism forces all processes which are 

present in the system to agree on the same protocol, i.e. 

f ( a ' ,  . . . .  a ' ) = a ,  f ( b ' ,  . . . .  b ' ) = b  . . . .  
n n 

where the synchronization function f applies iff there are exactly n processes in 
n 

the system. Notice that this synchronization mechanism requires access to the global 

state of the system, and we exclude this possibility. 

3 . 4 ,  CCS 

In the previous section we were able to define our set Z of atomic histories in 

terms of a given set of productions and a synchronization function. It is also 

possible to define directly Z using suitable inference rules, obtaining Level 1.3.. 

Here we define ZCC S for Milner's CCS. It is possible to prove that there is a direct 

correspondence between atomic histories in ZCC S and CCS derivation steps (/DDM84/). 

Recall that the concrete syntax of pure CCS terms is as follows. 

E::=x I NIL I)AE I Eke1 E[~] I E+E I E]E [ rec x.E. 

We introduce a notion of move 

L 

I I ----> 12 
1 
3 

which generalizes Milner derivation relation 

E 1 ~-> g 2 

and which is essentially an atomic history, according to the definition given in the 

Section 3.1. The elements Ii, 12 and 13 in a move are finite sets of grapes, i.e. of 

terms defined as follows. 

G::= E I i d l G  I Glid t G\~ I G [6] 

where E denotes a CCS term and ~ and [6] have the same meaning as in E. 

Intuitively speaking, a grape represents a suitable subterm of a CCS term, 

L 
• ----> l^,z the grapes in Ii, 12, 13 are together with its access path Given a move I 1 

1 
3 

called head, tail and idle grapes, respectively. 

A CCS term can be decomposed into a set of grapes by the function de___cc, here 

defined by structural induction. 
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dec(NIL) = {NIL I 

dec(x) = ~x] 

dec(;~E) : I~E} 

dec(Eke) = dec(E) \W 

dec(E[~ I) = dec(E) [0] 

deo(El+E 2) : {EI+E2~ 

dec(EiIE 2) = deC(El)lid U id~dec(E2) 

dec(rec x.E) = Irec x.E~ 

Here the application of a syntactic constructor to a set of grapes is defined 

as applying the constructor to all grapes in the set, e.g. 

I\~ : {a\~ ) G in I l 

Notice that the decomposition stops when an action, a sum or a recursion in 

encountered. We have for instance: 

dec((((rec x.gx+Bx)Irec x.~x+[x)Irec x.~x)\g )= 
(3.1) 

{(({rec x.gx+Sx) lid)lid)k. , ((idlrec x.gx+~x)lid)\~, (idlrec x.Rx)ka}. 

It is easy to see that function dec is injective, and thus full information 

about E is contained in dec(E). It is not surjective instead, and a set of grapes 

which is the decomposition of a CCS term is called complete. 

Going back to our definition, the last element of the move relation is a 

synchronization ~eFm L, namely a term defined as follows. 

L : = ~  I i d [ L  I L l i d  I LIL I L \ ~  I L [ + ]  

where  ~ , ~  and + have  t h e  same meaning a s  i n  CCS t e r m s .  

I n t u i t i v e l y ,  L b r i n g s  i n f o r m a t i o n  abou t  t h e  i n t e r n a l  communica t ion  o f  t h e  move. 

We d e f i n e  by s t r u c t u r a l  i n d u c t i o n  on L a f u n c t i o n  s y n ,  which  embodies  t h e  

synchronization algebra of CCS. 

syn(~) =)~ 

syn(idlL) = syn(Llid) = syn(L) 

syn(glIL 2) = if syn(L I) = syn(-~2 then~'else synerror 

syn(L \g) = if syn{L)=~ o_~r Syn(L)=~ ~hen synerror else syn(L) 

syn(m[~]) = if syn(L)=synerror the D synerror else ~(syn(L)) 

Notice that if a subterm of L evaluates to synerror, the whole L evaluates to 

synerror. 

We are now ready to define our move relation using axioms and inference rules 

in direct correspondence with those of Milner derivation relation. 
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Let 

L 

Z I ---->I 3 
1 
2 

be the least relation which satisfies 

L 

Re__~s. 11 ----> 12 implies 
1 
3 

L 

Re__ !. I 1 ----> 12 implies 
1 
3 

L 

Su___~m. i ) I I .... 12 imPlies 
I 
3 

2) and 

Com.l) 

L 

I I .... ~ 12 
1 
3 

where 

implies 

2) and 

L 

3) I 1 ----~ 12 and 
1 
3 

m ~ 

I' r-v> i, 2 
3 

implies 

L[~I 

11 [¢] ...... -> z2[~] 
13 [~] 

L 

IEI+E) .... 12U 13 

L 

{E+EI~ .... 12UI 3 

deC(El)=I 1U 13 

L 

illid .................. > x21id 
I31id U idldec(E) 

L 
idlI 1 .................. "> idlI 2 

idlI 3 U dec(E)lid 

niL' 
i I lid u i il I u 

L 
Rec. I ---->I and 
-- 1 2 -- 

1 
3 

I 1 U 13 = deC(El[rec X.El/X ]) implies 

L 

(rec X.El} -~-> 12 U 13 
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The intuitive meaning of the move relation 

L 

ii u__> 12 
I a 

is that the grapes in I I become the grapes in 12 with internal communication L, 

while the grapes in 13 stay idle. It is easy to see by induction that I 1 U 13 and 

12 U 13 are complete sets of grapes. 

Therefore, given a move we can syntetize out of it a head term E and a tail 
1 

term E 2 such that dec(E 1 ) = I 1 U 13 and dec(E 2) = 12 U 13 . We can now shortly 

comment about our axiom and rules. 

In axiom Act., a single grape is rewritten as a set of grapes, since the firing 

of the action makes explicit the (possible) parallelism of E. A move generated by 

rule Su___mm.l) can be understood as consisting of two steps. Starting from the 

singleton {EI+E } a first step discards alternative E and decomposes E 1 into 

I 1 U 13; a second step (the condition of the inference rule) rewrites I 1 as 12 and 

leaves 13 idle. The net effect of the two steps, however, is to rewrite the 

singleton IEI+E} into the set 12 U 13, with no idle grape. 

Rule Co_~m.l) (Com.2)) can be read as follows. If we have a move where I 1 is 

rewritten as 12 and 13 stays idle, we can add in parallel to Ii, 12 and 15 to the 

right (to the left), a complete set of grapes dec(E), which stay idle. Co__~m.3) is 

the synchronization rule: note that encoding the composition of L and L' into LIL' 

may permit to use different synchronization algebras. 

As an example we show the proof of both a move and the correspondin E Milner 

derivation. 

I. 8'I --~--> {E I ' where E : tee x.x+~x, by A~; 

{.E'÷~E'} -~ IE'I , by Sum 1); 

{E~ --% {81 , hy .e__~; 

al id 
i) ~E ,i~ ...... >IE .id~ where ~: rec x.x+,x by Co__~ ~; 

/idlE'} 
IE} -~-~ {E} , where E=-rec x.~x, by Ac__t. and Re___cc.; 

l(E'lid)lid, idIE~ (~lid) l~ ~ l(E'lid)lid, idle ~ , by i) and Com.3) 

c3.2) {(CE' l i~)l id~\, ' , ( idlE)X,.} ( (" l !a l  I'~) ''~' > {((E' l i d ) l i d ) \ , ~ , ( i d l ~ ) \ ' ~ }  . 
{( c id  I E,, ) I i,~ )',,~,} 
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Let us follow now the corresponding derivation in pure CCS. 

gE' ~->E' where E'=rec x.~x+Bx 

~E'+fiE' ~-)E' 

E' E-yE' 

i) E'IE"-~->E'IE" where E"=rec x.~x+~x 

E ~->E where E=rec x.~x 

(E'IE")IE F->(E'IE")[E 

((E' ]E"')l E)\~-~-> ((E' [E")IE)\~ . 

E 
1 

the definitionp syn( ( (o~1 id) l~)\~):Z ~, 

L 

Note that if we write (3.2) as I 1 .... > 12 and the latter derivation as 

13 

-~-> E 2 we have dec(E1)=dec(E2)=I 1U 13=I 2 U 13 by Example 3.1 and, according to 

a L 

---> E 2 then I 1 -i--> 12 

3 

In general it is possible to prove /DDM84/ that if E 
1 

with syn(L)=a, dec(E1)=I 1U I3, dec(E2)=I 2 U I3, and viceversa. 

We now translate moves to histories. Given a move 

L 

m = I 1 ----> 12 
1 
3 

with syn(L)~synerror, its head (tail) grapes in Ii(I 2) can be interpreted as head 

(tail) processes of an atomic history, having one event labelled by syn(L). Idle 

grapes are simply forgotten. However, since the sets of head and tail processes of 

a history are by definition non intersecting, while I 1 and 12 may have non empty 

intersection, it is necessary to make "new" copies of I 1 and 12. The same 

construction takes care of the fact that all histories in a set Z of atomic 

histories must be disjoint. 

In Fig. 4 we see a picture of the history corresponding to the move in (3.2). 

I( (z'I i d) i ia)<~] 

Fig.4 A picture of the history corresponding to the move (3.2). 
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3.5. Spatial distribution 

In this section we describe Level 1.2.1., thus refining Level 1.2. of Section 

3.3.. We enrich a history with a spatial structure by introducing a set of ports N 

and a function c specifying for every subsystem s the tuple of ports to which s is 

connected. 

Formally, a distributed history is thus a quintuple (N,S,c,I,~), where (N,S,c) 

is a (multiple, hyper-)graph, and (S,l,g) is a history. 

The replacement operation can be extended to deal with the spatial aspects by 

using a construction analogous to one developed in the algebraic theory of graph 

grammars /Ehri83/. More precisely, in the algebraic approach a production 

p=(~l <_~L ~ -~%~2~ 

consists of three graphs BI, K and B2 and two graph homomorphisms bl and b2. Graphs 

B1 and B2 represent the usual left and right members (B1 will be replaced by B2), 

while the "interface" graph K and the two homomorphims bl and b2 are used for 

defining the "embedding", i.e. the connections of B2 with the rest of the graph. A 

distributed history h is analogous to a production P if we identify B1 and B2 with 

the heads and tails of h. Furthermore, if we assume that K consists only of ports 

and that bl and b2 are injective, the role of K, bl and b2 (i.e. specifying 

corresponding ports) can be played by those ports of the history connected to both 

heads and tails. These ports are called external ports. 

In the algebraic theory, given two productions p' and p", a new production 

p=p'~Rp" 

can be constructedrwhose application is equivalent to the successive applications of 

p' and p" /Ehri83/. The graph R specifies which parts of B2' and BI" will be 

identified. 

The replacement operation between distributed histories can be defined in 

exactly the same way. The events and the partial ordering relation of the result are 

of course obtained as for non distributed histories in Level I.. 

Atomic histories are also defined as in the non distributed case, but with one 

additional constraint. In fact we require as before the existence of one event 

greater than all heads and smaller then all tails. Furthermore, this event must be 

connected to all and only ports which are not external. 
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Non external ports of atomic distributed histories are called s~nchronization 

ports. The intended meaning of the above constraint is that all ports which are 

deleted and created by the transition are clearly affected by the event. Viceversa, 

a synch:conization on some port, being a point-like~ completely centralized 

transition, must involve all processes connected to that port. Thus external ports, 

which represent the boundary with the external world, cannot be loci of 

synchronization. 

In Fig. 5 we see a set Z of three distributed, atomic histories and a 

three-step computation. Notice that ports are represented as variables and atomic 

histories are written as usual in linear form. Note also that in the distributed 

histories in Fig. 5b) and c) port Yl is external, while in d) there are no external 

ports. 

Also for distributed histories the problem arises of generating atomic 

histories through a synchronization mechanism. This is possible using algebraic 

constructions like the gluing star /Corr83, CDM84, BFH84/. 

A formalism called GDS, essentially consistent with the one outlined here, is 

described in detail in /CaMo83, DeMoS3, DeMo84b/. 

A(x]b,B(x,y) ~!~l~2-> A(x ' ) ,B(x ' ,y)  

B(x,,y) ,A(y) ~!E±ZL!~ B(x,y ' ) ,A(y ' )  

A(z) -~-> A(z) 

a) 

/ 

b) 

c) 

 Txx 

d) 

Fi$. 5. A set Z of atomic histories (a)) and a three-step computation (b), c), d)). 
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3.6. Abstra@t data types and logic programming 

In this section, we refine the model of Level 1.2. of Section 3.3. in a 

different direction. So far the alphabets E of process types and A of observable 

actions were unstructured, yet infinite. Thus no explicit notion of data type was 

available. In the present Level 1.2.2. we parametrize the symbols of both alphabets 

with (tuples of) terms of an Herbrand universe. Logic programming axiomatizations of 

data in terms of Horn clauses can be given by using an enriched version of the 

productions of Section 3.3., thus providing a well-known tool for defining abstract 

data types. For a comprehensive reference on logic and logic programming see 

/Robi79/. 

Let E and A be disjoint sets of positive literals, i.e. standard first-order 

predicates on terms with variables. A history with variables is meant to represent 

the set of all ground histories obtained by instantiating the variables with ground 

terms, i.e. terms without variables. The operation of replacement between two 

histories 

h I before h 2 gives h 

permits now the (most general) instantiation of variables of both h I and h 2 before 

matching the subsets of the heads of h 2 and of the tails of h I. This is the standard 

operation of unification, applied to tuples of predicates. Of course the resulting 

history represents exactly the set of ground histories derivable by the old 

replacement operation. 

Let us comment on the atomic histories with variables. An atomic history with a 

single head and no event is exactly a Horn clause (with a reversed arrow!). Atomic 

histories with many heads and no events are strictly related to the model of 

so-called Generalized Horn Clauses already studied in the literature /DeDi83, 

FLP84/. Thus our computations without events can be interpreted as proofs in a logic 

framework. Note however that in our case new hypotheses can be added during the 

proof as needed, due to the partiality of our replacement operation (as defined in 

Section 3.1.). 

The mechanism (defined at Level 2.2.) of combining productions (decorated with 

protocols) according to a synchronization function, to obtain atomic histories can 

be generalized to histories with variables. Also protocols are literals (of course 

possibly sharing variables with heads and tails) while the synchronization function 

is defined on predicate symbols only. Therefore a single unification problem can be 

set up for both synchronization and history replacement. 
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A similar mechanism has been defined in the literature by Monteiro /Mont84/. It 

uses essentially the CCS communication mechanism and generates histories without 

events. 

As a general comment, in our approach we emphasize the description of the 

temporal evolution of concurrent distributed systems (as a partial ordering of event~ 

because we aim at having a process-orlented semantics rather than an input-output 

semantics. Along this line we can rely also on our results on semantics and 

properties of infinite computations /DeMo84a, b/. 

In Fig. 6 we see an example of a simple system consisting of a producer P and a 

consumer C connected by a queue Q. The producer generates a random natural number by 

iterating a successor operation s. When communication with the queue takes place, 

the current number is enqueued and the counter is reset. The queue can output its 

front value by communicating with the consumer, provided the latter is in a ready 

state. Eventually the consumer prints the value. The queue is implemented as a pair 

of stacks. When the output stack is empty, it receives the reversed content of the 

input stack. Note that the atomic histories handling the stacks do not produce 

events, and thus the observable behaviour of Q is only that of a queue. It may be 

interesting to examine the results of the infinite computations in this example 

(with heads P,Q and C) when different metrics are chosen to define the limits. It is 

easy to :see that all computations are vital and thus have a result in out first 

metric space. When local fairness is required (namely our third metric is used) the 

producer cannot count forever, all the computations are also partial deadlock free 

and thus the limits have no tails. Note that in this case producer P realizes a 

choice operation, i.e. generates an unbound natural number still guaranteeing 

termination. 

We conclude this section by showing the whole of our level structure: 

Level i. Concurrent histories 

Level i.i. Petri nets 

Level 1.2. Productions - synchronization 

Level 1.2.1. Spatial structure - GDS 

Level 1.2.2. Abstract data types - logic programming 

Level 1.3. Inference rules of CCS. 
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i) 

ii) 

iii) 

iv) 

i)+ii) 

iii)+iv) 

P(n) ~-> P(s(n)) 

P(n) [~!~!_~ P(O) 

Q(Sl,S 2) ~!~-'Q(cons(n,Sl),S 2) 
Q(cons(n,Sl),nil ) .... -> R(cons(n,Sl),nil) 

R(cons(n,Sl),S2) .... ->R(Sl,cons(n,S2) ) 

R(nil,$2) .... -> Q(nil,S^) 

Q(Sl,COns(n,S2)) ~/-'Q(SI,S 2) 

C(ready) ~£~!~kC(full(n)) 

C(full(n)) ~!~}!~!-->C(ready) 

f(readl,read2)=read 

f(writel,write2)=write 

P(n),Q(SI,S 2) [~l->P(O),e(cons(n,Sl),S 2) 

Q(Sl,COnS(n,S2)),O(ready) ~£~!~l->O(Si,S2),C(full(n)) 

a) 

[Q(nil,nil) ] 

[O(nil,consi S(0),nil)i I 

b) 

Fig.6. Productions, synchronization function and atomic 

derived history (b)) for a producer-consumer example. 

histories Ca)), and a 
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