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The design and development of semantically based programming tools is a goal 

whose fulfillment is unquestionably many years off. The vision has been articulated in 

various forms by many researchers (including us in IFIP 83), but our impression now 

is that the expression of the vision provides little more than spiritual support and that 

there is an urgent need to distinguish shorter term goals along the way to mechanized 

tools. 

While there does indeed seem to be some consensus that a notion of program 

derivation or "meta-program" is required (and there are indeed many informal ex- 

amples of derivations in the literature), little has been said concerning the formal 

structure of these objects and how we will need to operate on them. What distinguishes 

derivations from mere proofs? What are the basic derivation steps? What deductive 

support is required? How can we assess the value of proposed derivation structures? 

Also, while much has been said concerning the functionality of the proposed tools, it 

is safe to say that  we are still quite uncertain of their i~ttended behavior and mode of 

interaction. What will be the correct balance of responsibility between programmer 

This research was supported in part by the Office of Naval Research under Contract N0014-84- 
K-0415 and in pa r t  by the  Defense Advanced  Research Projec ts  Agency (DoD), ARPA Order  No. 
3597j moni to red  by the  Air Force Avionics L a b o r a t o r y  under  Con t rac t  F33615-81-K-1539. The views 
and conclusions contained in th is  documen t  are those of the  au tho r s  and should not  be in te rpre ted  
as represen t ing  the o~Icial policies~ ei ther  expressed or implied~ of the Defense Advanced Research 
Projects Agency or the U.S. Government. 



53 

and tool and how will they interact? Can we realistically expect to build tools that  

will capture enough knowledge that they will become useful in practice? 

This brief paper is intended to draw attention to several of the shorter-term 

issues and problems. Our recent focus has been on ths construction of a system for 

experimentation~ so the bulk of our comments here will be on this aspect. Even though 

there are substantial theoretical problems still to be overcome, it is possible now to 

make progress towards experimental systems. The second section of the paper contains 

some remarks concerning programmer interaction with semantically based tools (what 

we have been calling inferential programming systems). 

1. T o w a r d s  e x p e r i m e n t a l  s e m a n t i c a l l y  b a s e d  p r o g r a m m i n g  tools .  

While a number of implemented systems have been built for experimenting with 

interactive theorem proving, program transformation, heuristically guided program- 

ming, and[ the like, we are still far from having a satisfactory framework for experimen- 

tal inferential programming tools. The ML and LCF systems are perhaps the best 

examples currently available, but they are not well suited to the large scale syntactic 

manipulations that will be required. More importantly, ML is not as well able to 

support, as compared with Lisp, the (relatively) large scale system development we 

are undertaking. 

We evaluated a number of possible architectures for prototype inferential pro- 

gramming systems, and it became immediately clear that the overall system design 

would continue to elude us until a number of conceptual and engineering questions had 

been sett][ed. But we did find that in all of our scenarios, certain basic system func- 

tions were required above and beyond those provided in conventional programming 

environments. The Ergo Support System (ESS) is being created in order to provide 

an environment in which a diversity of implementation paths can be explored--an 

environment that will support the construction of prototype semantically based tools. 

In our present view, the Support System includes four basic components, (1) 

an object and type management facility we call the datafile, (2) a set of language 
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tools, including a syntactic processor for supporting experimentation with program- 

ming and logical languages, (3) a basic deductive facility for supporting inference and 

simplification of expressions, and (4) an interaction and view management facility 

that supports communication between the system and human users. As the Support 

System evolves, other components will be added. (The Support System has been un- 

der active development since Spring 1984; it is being implemented in a Common Lisp 

environment.) The initial applications of the Support System wilt be experimentation 

with mechanizing several existing program derivations in order to better understand 

what kind of deductive support is needed. 

While the Support System development will soon provide a useful set of facilities, 

a longer term goal is the development of metalanguage for controlling the support 

system and, ultimately, expressing knowledge about programming. Three require- 

ments for the metalanguage are a suitable type framework for organizing objects, 

language for accessing the support system, and a means of easily expressing deductive 

knowledge. This deductive metaphor for computation is especially vivid in program 

manipulation systems, and a useful metalanguage should have a strong deductive 

flavor. Again, the best existing model for this language and its relationship to the 

system is ML. 

Datafi le.  A principal source of complexity in large systems is the number and 

variety of the objects they manipulate and the lack of a uniform mechanism for manag- 

ing the objects. This will be particularly true for program manipulation systems~ 

in which it will be necessary to manipulate objects such as program text~ program 

specifications, facts about programs, domain-specific facts, proofs of facts, documen- 

tation text, compiled code, program transformations~ program derivations, program 

derivation patterns (for representing heuristic knowledge), and even mail messages and 

window descriptions for displays. Adding to the complexity is the fact that most of 

these objects, considered abstractly, will need a variety of representations appropriate 

to different computational needs (and appropriate to different storage media such as 

files, displays, and run-time storage). Ordinary software engineering considerations 
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dictate that  a uniform means--beyond typing--be developed for managing the many 

objects, kinds of objects, and representations. 

In the Ergo Support System, the datafile facility serves in this information manage- 

ment role. The datafile functions as a combined file system and database by provid- 

ing a means of naming, storing, classifying, and retrieving objects and collections of 

objects. 

A major function of the datafile is classification and search management. The 

language for naming objects and collections of objects must, in order to permit fast 

search, be more expressive than that of an ordinary file system. But, in order to retain 

flexibility, we have avoided strong commitment to particular database organizations. 

Two basic mechanisms are provided--classes, which are special objects that represent 

sets of objects, and a simple set-theoretic language of retrieval expressions (which 

themselves are also objects) for describing classes. The datafile keeps track of selected 

retrieval expression objects and their values during incremental updates, thus enabling 

rapid search of the classes described even when the datafile state has changed. 

Besides naming and search support, the datafile has a rudimentary object typing 

mechanism. The types are simply uninterpreted symbols; thus, there is no commit- 

ment in the support system to a particular ontology or organization of types. But this 

rudimentary typing system does provide special support for multiple representations 

of objects. Program fragments, for example, are most usually represented internally 

as annotated abstract syntax trees, but on a user's display or in an externally available 

file, they are best represented as concrete-syntactic text, and in an internal text file 

the best structure may be Lisp-like lists. The datafile helps keep track of the mul- 

tiple instances and representations and maintain consistency as appropriate--allowing 

programs that  use the datafile to manipulate objects without regard to representation. 

S y n t a c t i c  Tools.  The major objects of attention in programming tools are, of 

course, programs. While it would be dangerous to make commitments to any specific 

languages of programs, support of a generic sort can be provided for manipulation of 
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programs and other complex objects. The Support System provides sophisticated tools 

for compiling grammar specifications into parsers, unparsers, formatters, marchers, 

and so on. These tools provide a uniform means for associating concrete syntax 

with objects such as programs, specifications, transformations, assertions, and so on. 

Although syntax may appear to be a trivial problem, it is essential that  it be handled 

gracefully even in prototype semantically based systems, in which so many different 

languages must be used} the user interfade should not be the limiting factor to the 

success of experimental systems. 

Reasoning Facility. The bulk of the computational activity in a semanti- 

cally based tool is deduction. We are pursuing in our implementation a general ap- 

proach that allows most of the formal reasoning activity to be described in a uniform 

framework, including proving assertions about programs, making simplifications to 

formulas and programs~ applying transformations, and carrying out computations on 

virtual machines. This deductive framework would be the mechanism that carries out 

the fundamental program derivation steps and interacts with the user to plot strategy. 

LCF is the major antecedent of our design, though there will be important differences. 

For example, we are interested in directly manipulating proof objects and abstractions 

on proof structure. 

Our recent efforts have been concentrated on building or collecting an imple- 

mented base of decision procedures that will facilitate inference in theories such as 

simple recursive data types and Presburger arithmetic, and on integrating these with 

a simple rewriting and pattern matching facility. We are not yet at the point of 

approaching substantive issues in this aspect of the implementation. 

But, on the basis of the informal program derivations that exist in the literature, it 

can be argued that in most circumstances only a modest inference capability is required 

for most derivation steps. Of course, there are cases where substantial intellectual 

jumps must be made; in the first prototype tools these jumps will need to be made 

by the user. 
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I n t e r a c t i o n  Faci l i ty .  In developing mechanisms by which users can interact 

with semantically based tools, perhaps most essential to recognize is the overwhelming 

complexity and size of the objects that  will be manipulated. In order to evoke a 

,decision, request advice, or simply inform a user concerning a particular object, such 

as a theorem to be proved or a program derivation step or a program specification, it is 

usually necessary for the tool to shield the user from the full extent of detail contained 

in the object being considered--and instead to present some view (i.e., projection or 

abstraction) of the complete object. Each such view presents a single aspect of the 

object; a collection of these views can provide a more natural and useful portrayal 

for a given interaction than a single monolithic representation. The use of views 

for manipulating objects allows internal object representations to include a wealth of 

supplementary information. 

2. User  I n t e r a c t i o n  w i t h  an  In fe ren t i a l  P r o g r a m m i n g  System. 

If we are to develop useful tools, we must take a realistic attitude towards the 

way in which programmers will interact with semantically based environments. We 

must accept, for example, the fact that  the vast majority of programming steps will 

likely involve the revision of previously made decisions, either because requirements 

have changed or in order to explore further a space of possible designs. 

A n  example  of  in fe ren t i a l  p r o g r a m m i n g  ac t iv i ty .  Consider the sorts of 

abstract types that  might be used in the implementation of a simple compiler. For 

certain types, such as syntax trees or run-time stack frames, choice of representation 

has a significant effect on the ultimate compiler design. In both of these cases the 

objects are used in so many different ways that, once the necessary specialized opera- 

tions are included in the type interface, there would arguably be little representational 

structure left to hide. The author of a code generator, for example, will need to know 

the full details of stack frame layout in order to generate tolerably efficient code se- 

quences for block entry and so on. It could then be argued that  there is no point to 



58 

making the abstract type explicit in the code since the intended abstraction boundary 

must be so consistently violated. 

In the program derivation framework, uses of abstractions and the definitions of 

their representations need not coexist within individual programs (i.e., at individual 

derivation steps), but  are instead spread over the derivation. This idea has been 

illustrated in a number of derivations in the literature. In these examples, instances 

of abstract operations appearing in early derivation steps are replaced in later steps 

by the corresponding operations on the representation, which, in still later steps, may 

be optimized based on the context in which they appear. 

How, then, would we use an inferential programming system to help maintain 

a program containing abstract types in this regime? Ideally, every user interaction 

would result in addition of structure to the derivation under construction, either 

through commitment, simplification, or whatever. But, since semantically based tools 

are to be used by human programmers, we must allow for backtracking and revision 

of earlier decisions. For example, it may be necessary to revise various commitment 

steps along the way from specification to implementation, or it may be necessary to 

revise the specification itself (if it exists yet--derivations need not be constructed in 

any particular order). 

I n f e r en t i a l  p r o g r a m m i n g  s teps .  This brings us to our point. In interacting 

with an inferential programming tool, a user can make two kinds of steps. One would 

hope that  most steps are elaborative steps, in which commitments or simplifications 

are made, augmenting an existing partial derivation. But there will always be some 

number of lateral steps, in which functional changes or design changes are made. 

Attempts  to work out this kind of scenario in greater detail inevitably lead to 

the question of what is the "right" notion of program derivation. Our view, and this 

is somewhat of a philosophical commitment, is that  this is primarily a foundational 

question--as distinct from an analytical one. Analysing our programming experience 

will provide direction, but  our purpose is not to build tools that  imitate this experience. 
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Rather,  our intent is to formulate notions of program derivation (together with criteria 

for their adequacy) through investigations into semantics and transformations. 

3. Conc lu s ions .  

It is one of our fundamental theses that major improvements in software en- 

gineering practice will come about only through the development and use of software 

development tools. This thesis is based on our belief that  formal methods will ul- 

timately have a far more profound effect on software engineering productivity than 

management based methods, programming language design, or fast hardware. But we 

also believe that  formal methods, by their nature, are suitable for practical use only 

in mechanized systems. This is not to say that  everything is to be automated; the 

point is that  the actual formal steps must be automated even if most of the guidance 

for their use is to come from the user. This is the same kind of observation that  

prompted the developers of LCF to introduce the NiL type structure to protect the 

notion of' "theorem," together with formal deductive structure that defines it, from 

the surrounding heuristic apparatus. It must be expected that  heuristics will be un- 

der continual development, but  a deductive system is fragile and will change only 

infrequently. 
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