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ABSTRACT The software crisis results from our disorderly concepts of "program". These 
make programming an art, rather than an engineering discipline. Such a discipline 
would at least require that we have stocks of useful off-the-shelf programs and 
collections of standard theorems that can be applied repeatedly. We have neither. 

Mathematical systems are often distinguished by a set of operations that (a) map a 
set of entities into itself, (b) have simply understood results, and (c) obey a set 
of strong algebraic laws. Neither conventional programs nor "object level" functional 
programs are entities belonging to such a system. The standard operations on conven- 
tional programs violate (b) and (c); object level functional programs normally employ 
lambda abstraction as their program building operation and it violates (a) and (c). 
Other problems of these program concepts are reviewed. 

Function level programs are the entities of just such a mathematical system: programs 
are built by program-forming operations having good algebraic properties. Hence they 
are the subject of a large number of general theorems, theorems that are applicable 
in practice. We give examples. Function level programs also have the possibility of 
providing solutions to many of the other problems reviewed. 

The paper reviews the function level FP system of programs, sketches a function level 
semantics for it, and from the equations of that semantics develops some moderately 
general results concerning linear, recursively defined functions, one concerning 
recursion removal. It then discusses other general, directly applicable results in 
the literature and shows that they are essentially function level results and are 
best presented and recognized in that form. 

The final section is about optimization; it shows how some FP programs can be trans- 
formed into others that run as fast as Fortran programs. It introduces "Fortran 
constructs" into FF, pure functions that have an obvious corresponding Fortran-like 
program. It exhibits a number of function level identities for these constructs and 
shows how these can be used to convert inefficient FP programs into efficient 
Fortran-like ones. 

I. Introduction 

The primary reason for the software crisis is that programming has failed to become 

an engineering discipline. One mark of such a discipline is a collection of standard 

constructs and theorems. Thus electronics has a set of standard circuits and standard 

theorems that are used over and over by practicing engineers to design a new device 

and verify that it will work correctly. 

In contrast, programs are not constructed from a collection of off-the-shelf 

programs; each program is basically written anew from the beginning. There are few 

general theorems that can applied directly to a given program to help prove it cor- 

rect. Typically each program is proved correct, if at all, also from the beginning. 
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Thus programming is a low level business, one that is guided by many helpful prin- 

ciples, but which has not reached a level of elegance and power in which we can 

accumulate reusable programs and generally applicable theorems. 

This software crisis is basically caused by the fact that we have chosen the wrong 

concepts of "program" to work with. Let us make a brief survey of the difficulties 

that attach to two basic kinds of program concepts. 

I.I Problems with the yon Neumann concept of "program" 

The yon Neomann concept of a program as a mapping of one store into another has the 

followi~; basic problems: 

• Programs depend on storage plans; programs to be combined must have a common 

storage plan, hence programs cannot be built from existing, independently writ- 

ten, off-the-shelf programs. Instead they are typically built from a set of 

subprograms that have all been planned and written together, de novo. 

• The combining forms used to put existing program fragments together to form 

larger ones do not have good mathematical properties [they do not obey a strong 

set of algebraic laws]. Further, the most powerful of these, while-do and its 

analogs, lack the most important property of good combining forms: if you know 

what programs p and q do, then you should know in the most simple and direct way 

what comblne(p,q) does. 

@ Programs are concerned with a low level of detail and with their "environment". 

Programming is still primarily the art of combining words to form a single new 

word and then arranging to repeat this process [a really "loopy" way to work!]. 

This low level style encourages a concern with computer efficiency that is 

humanly very inefficient. [Instead of relying on general theorems to transform 

inefficient high level programs into more complex efficient ones.] 

As a result of these defects programming has made little progress toward becoming an 

efficient engineering discipline over the last quarter century. Their combined 

effect is that programming is a terribly repetitive business, a black art. Beyond 

principles and techniques we have very few things in our profession of lasting 

usefulness: few reusable programs, few general theorems [and the statement of these 

is usually so complex that it is difficult to recognize an instance of one]. For a 

further discussion of the problems flowing from the yon Neumann concept of "program" 

see [Backus 81a]. 
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One example of this lack of generality and reusability is our treatment of 

"housekeeping operations". These consist of "control structures" to repeat a set of 

statements, together with certain index variables scattered throughout those state- 

ments [thus a housekeeping operation is not just a "for statement" but includes all 

the occurrences of the index variable]. As a result, these ubiquitous operations in 

our work are not reusable and compact operations, but comprise bits of information 

scattered over a program text. Thus housekeeping operations, which lle at the center 

of our business, cannot be defined, cannot be reused, cannot be transferred from one 

program to another, but must always be drearily redeveloped from scratch in each new 

program. 

The area of reasoning about and transforming programs represents another example of 

the lack of generality in conventional programming. There are a great many papers in 

our literature giving examples of transformations and correctness proofs. Neverthe- 

less, we still seem to be a long way from having a powerful and generally accepted 

body of knowledge that really simplifies the task of reasoning about programs, even 

very ordinary kinds of programs. We have few general theorems that are immediately 

useful to a programmer for transforming his program or proving it correct. [Although 

this situation is beginning to improve, at least in the area of functional 

programming.] What we do have is a large collection of principles that one may 

struggle to apply to an individual program; thus, for example, [Manna 74] contains a 

number of important theorems that justify various kinds of inductive proofs. 

In the absence of general theorems, some authors propose that programs be developed 

starting from a predicate that is to be true when the program ends. The development 

process is illustrated by many examples and principles that may help one to develop 

a desired program. This approach is described in David Gries' book on structured 

programming, The Science of Programming. See also [Dijkstra 76, Hoare 69, Mill~ 75]. 

Structured programming is quite successful [it gives many helpful techniques to try, 

and deals with many difficult and subtle problems], but, like all conventional 

programming, it is demanding and infuriatingly repetitive -- with practice, one 

acquires technique but no lasting general results -- each problem is a new chal- 

lenge. It is as if we were to solve many quadratic equations, treating each as a new 

problem and cleverly using various factoring techniques -- instead of solving the 

general equation once and for all, and then applying that solution to each equation. 

1.2 Problems with functional, "object level" concepts of "prosram" 

There has been a movement in recent years to work with functional programs [that map 

objects into objects, rather than stores into stores]. This approach has many advan- 
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rages, although it has to overcome a number of problems before it becomes the ob- 

vious choice for everyday use. Even here, however, the most common notion of program 

is the "object level" one and this has problems. It is based on the use of variables 

that range over "objects" [the things programs transform]. In "object level" 

programming, building a new program from given ones involves applying the given 

programs to objects or object variables until the "result object" is built; the new 

program is then obtained by abstracting the object variables. Here are some of the 

problems: 

• Unlike conventional programs, which use standard combining forms [e.g., composi- 

tion, :Lf-then-else, while-do], these programs tend to rely on lambda abstraction 

as the principal tool for building programs. Lambda abstraction is not a combin- 

ing form. It combines a variable and an expression [with free variables] to form 

either a program [=function] or another expression. Its properties are syntactic 

rather than algebraic. Thus it combines two entities, neither of which is a 

progrm~, to form a program; it fails to build programs from simpler ones and it 

fails to provide an algebra of programs on which to base general results about 

programs. 

• Since these programs are not built by combining forms~ reasoning about them 

concerns operations on objects and the mathematics of objects. This leads to 

theorems about objects but does not easily lead to general theorems about 

programs. 

To have general theorems about programs one needs programs that are built by apply- 

ing operations to existing programs, and these operations [combining forms, fune- 

tionals, program-forming operations] must have attractive algebraic properties. This 

is the fundamental structure of many mathematical systems. Why are we in computer 

science so reluctant to build our basic entity, the program, in this way? 

As in ILhe case of conventional programs, work with object level programs has 

produced[ few general results, for the reasons sketched above. For example, one 

promising approach to transforming object level programs is that of [Burstall & 

Darlington 77]. Its authors give a set of transformation rules for transforming 

recursively defined functions at the object level. But again, as in the structured 

programming approach, there are few general results; instead there are lots of 

examples and strategies. These may be helpful when one is confronted with a new 

problem~, but a lot of ingenuity is needed to define the right auxiliary function 

[the "eureka" step in the process]. Some powerful results are obtained by this 

approach. The problem is to try to make them more general and reusable. 
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1.3 Function level prggrams 

The function level view of programs is one in which programs are constructed from 

existing ones by the use of program-formlng operations (PFOs), operations that have 

two properties: 

• If G(f,g) is a program built from programs f and g by the program-formlng opera- 

tion G, and if one knows how f and g behave, then one knows very simply and 

directly how the new program G(f,g) behaves. 

• There is a powerful set of algebraic laws relating PFOs, particularly those that 

equate an expression in which one PFO is the main connective with another ex- 

pression in which a different PFO is the main connective. 

This way of building things -- by the application of operations that a) produce 

clearly understood results, and b) have strong algebraic properties -- distinguishes 

many of our most useful mathematical systems. The function level view asks that 

programs be built this way, that programming, by adopting this concept of program, 

become a mathematical system, the kind of system that history has proven to be 

extremely useful. 

The function level approach seeks to bring this mathematical viewpoint to program- 

ming -- one that has heretofore been lacking -- just as the development of abstract 

data types has brought mathematics to bear on the subject of types. Originally we 

thought of data types as sets and we were concerned with the structure [or repre- 

sentation] of the objects belonging to a given type. Later we understood that we 

were really more interested in the abstract ~ropertles of the objects, not their 

structure or representation. And these properties are given by the algebraic struc- 

ture of the operations on the objects, as determined by the laws they are required 

to satisfy. It is these algebraic laws that enable us to reason about data types, to 

prove general theorems about any type whose operations obey certain laws. 

The function level view of programs seeks to do for programming what abstract data 

types have done for types, what algebra has done for arithmetic. It seeks to focus 

our attention on the oper@tlons on programs and on their algebraic structure, rather 

than on the structure and representation of the programs themselves. It seeks to 

have us view a program as the result of an operation, not as a syntactic entity 

whose structure is determined by punctuation -- semicolons and begin - ends, nor as 

a predicate transformer, nor as the syntactic result of substituting an argument for 

a variable in some expression. 
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In addition to their own algebraic structure, the program-forming operations [= 

combining forms = functionals] give a hierarchical structure to programs built with 

them. The operation that constructs a program is its main connective. Each of the 

programs put together by the main connective is itself built by various secondary 

connectives, and so on down, giving a tree structure to the entire program, with 

program-forming operations at the nodes and its constituent programs at the leaves. 

The importance of structure in conventional programs has long been recognized; we 

should now become aware of its importance in functional ones. 

Just as we can now prove general theorems about objects by utilizing the algebraic 

properties of the operations on those objects [e.g., prove that all quadratic equa- 

tions have a general solution], so we can prove general theorems about programs by 

the same means. But to do so, programs must be the result of operations, operations 

that have desirable algebraic properties. This is exactly what the function level 

view demands. 

In contrast to this goal, the program-forming operations (PFOs) of yon Neumann 

programs do not have desirable algebraic properties, and object level functional 

programs are not constructed by PFOs at all. 

In su~=aary, the fundamental goal of the function level view is to emphasize the 

mathematical structure of programs rather than the textual one. This view also 

offers solutions to the other difficulties discussed above, with the following 

possibilities: 

i) The ability to construct a new program from off-the-shelf ones, since functional 

programs do not depend on storage plans. 

2) Combining forms such that, if yon understand the programs that are to be com- 

bined, then you very easily understand the resulting combined program. 

3) Programs that are not concerned with low level details or with the names, size, 

or storage arrangement of their operands. 

4) The ability to use powerful algebraic laws and theorems to convert simple but 

inefficient programs into complex, efficient ones. This can lessen the need to 

write efficient programs. [Our concern with efficiency is a major cause of inef- 

ficiency in programming.] 

5) General "housekeeping" operations [data rearrangements] that can be defined and 

used over and over again. 

6) A technology for reasoning about and transforming programs in which general 

theorems can be proved once and for all and easily applied in practice. 
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In this paper we hope to give indications for the validity of some of the above 

advantages of the function level view. We exhibit and use combining forms with the 

claimed properties; we use reusable, compact housekeeping operations. We exhibit 

compact programs that have a great disregard for efficiency and then turn them into 

very efficient ones. By developing a general result and applying it in examples, by 

examining the general results of others and restating them in function level form, 

and by using function level equations to optimize function level programs, we hope 

to show that this style offers a uniform, helpful technology for reasoning aboutj 

transforming, and optimizing programs. 

1.4 Outline of the , paper 

Section 2 offers a brief review of the FP language [Backus 78, 81b] and some ex- 

amples of function level equations for its primitives and combining forms that might 

make up a semantic description. Section 3 reviews some earlier general results, then 

develops some new ones leading to a moderately general recursion removal theorem. 

Section 4 presents a survey of examples of general results by some authors and their 

application, and exhibits them in function level form. 

Section 5 presents a strategy for optimizing certain kinds of FP programs. It intro- 

duces some new "constructs" into FP -- pure functions with obvious counterparts as 

conventional programs -- and some equations involving them. It shows how these can 

be used to form identity functions for the arguments of functions to be optimized -- 

identity functions that describe the "shape" of those arguments. And it shows the 

use of these constructs and equations in optimizing some examples. These examples 

show how inefficient FP "housekeeping" operations, copying, and the computation of 

intermediate results can be eliminated by a relatively simple strategy to produce 

programs that run as fast as Fortran programs. 

Section 6 presents some conclusions. 

2 .  R e v i e w  and s e m a n t l e s  o f  FP 

2.1 Review of FP 

Readers familiar with FP may skip this section or use it as a reference for under- 

standing the examples of later sections. 

We adopt most of the notation and primitives of the FP system of [Baekus 78] -- the 

few deviations are noted below with "(*)". Thus the set O of objects contains i 
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["bottom"], the set of atoms, the empty sequence <>, and the sequence 

<Xl,...,Xn> of non-bottom objects x i [where <...,I,...> =I]. The set of atoms 

typically include numbers, symbols or identifiers, and T and F for "true" and 

"false". 

An o b j e c t  e x p r e s s i o n  i s  e i t h e r  an o b j e c t  or  a s equence  o f  o b j e c t  e x p r e s s i o n s  o r  an 

a p p l i c a t i o n  F:E,  where F i s  a f u n c t i o n  e x p r e s s i o n  and E i s  an o b j e c t  e x p r e s s i o n .  

A function f or respectively, a [function expression] is either 

a) a pr~Itlve function [primitive function symbol], or 

b) G(fl, .... ,fn) , where G is one of the combining forms {composition, condition, 

construction, left insert, right insert, apply-to-all}, the fi are functions 

[function expressions], and n corresponds to the arlty of G, or 

c) ~x, for some object x [object expression], where -x is the function that is 

everywhere x except at 1" Such a function is called a constant function. Or, 

d) sel(n) or selr(n), for some integer [object expression wlth integer value] n>l. 

Such functions are called selector functions and select the nth element of a 

sequence starting from the left end ~ sel(n) -- or the right end m self(n)]. 

When it is clear that a selector function is intended, we write, e.g., "3" in 

place of "sel(3)". Or, 

e) a defined function [defined function symbol], for which a unique definition 

exists [see definitions below]. 

A function definition has the form 

def f =E 

where f is an unused function symbol and E is a function expression that may involve 

f. [To see that the strict, bottom-up semantics of FP constitute a safe computation 

rule to compute the least fixed point of this recursive equation, refer to [Williams 

82].] We may also give "extended" definitions [see 2.3 below for their descrlptlon]. 

Each function is strict and maps a single object into a single object. We write f:x 

for the result of applying f to x. A function f is defined at x if f:x # I" 

In the following examples of primitive FP functions and combining forms, we give 

object level descriptions of them so the reader may have an informal understanding 

of their behavior without first having to become familiar with the function level 

style. ~>wever, the function level equations of the next section indicate the way we 

propose to formally describe their semantics. [But we shall only indicate this in 

this paper.] 
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2.1.1Examples of primitiveFP functions. Here we give some FP primitive functions 

with brief explanations. These descriptions are merely to indicate the "object 

level" effect of these functions, their semantics are ultimately to be given by 

"function level" equations, some of which appear in 2.5 - 2.8 below. 

Function ~scription, examples 

1,2.. Ir,2r.. Selector functions. I:<A,B,C> = A, 

tl, tlr 

al, ar 

distl, distr 

trans 

id 

+, -, *, / 

addl, subl 

and, not, eq 

atom 

null 

2:<A,B,C> = B, 

2:<A> = I' Ir:<A,B,C> = C, 2r:<A,B,C,D> = C 

[We use the integers to represent selector functions when 

there is no confusion about whether we mean a function or an 

integer; when there is, we use the PFO sel that converts an 

integer n into the corresponding selector function. Thus in 

the above we could write sel(n):x rather than n:x.] 

Tail and tail right, tI:<A,B,C> = <B,C>, tlr:<A,B,C> = <A,B> 

Append left and append right. 

aI:<A,<B,C>> = <A,B,C>, ar:<<A,B>,C> = <A,B,C> 

distribute left, distribute right. 

distI:<A,<B,C>>=<<A,B>,<A,C>>, distr:<<A,B>,C>=<<A,C>,<B,C>> 

Transpose. trans:<<a,b>,<c,d>,<e,f>> = <<a,c,e>,<b,d,f>> 

Identity. id:x = x for all objects x. 

The arithmetic functions. +:<2,3> = 5, *:<3,5> = 15, etc. 

addl:3 = 4, subl:7 = 6 

and:<T,T> = T, and:<T,F> = F, not:F = T, eq:<A,<B>> = F 

atom:A = T, atom:F = T, atom:<A,B> = F, atom:3.14 = T 

(defined for every non-bottom object) 

null:<> = T, null:<A,B> = F, null:A = 

(defined only on sequences) 

2.1.2 Examples , of function expressions using combining fo~s. Here are some func- 

tion expressions involving functions p, f, g, fl,...,fn showing the notation for 

the combining forms and the functions they build. In these examples, if no value is 

given for a function f at some object x, then f:x = ~. 

Expression Description ~ examples 

f'g Composition of f and g. 

f'g:x = f:(g:x) 

p -> f; g Condition of p [predicate], f and g. 

Read "if p then f else g". 

(p -> f; g):x = f:x if p:x = T 

= g:x if p:x = F 

We write p -> f; q -> g; h for p -> f; (q -> g; h) etc. 

[fl,...,fn] Construction of fl,...,fn. 
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/f 

\f 

@f 

(a f b) 

[fl,...,fn]:X = <fl:x,...,fn:X> 

[]:x = <> 

Right insert of f. 

/f:<x,y> = y if X = <> 

= f:<l:x, /f'<tl:x,y>> if X = <Xl,...,Xn> 

Left insert of f 

\f:<x,y> = y if x = <> 

= f:<\f:<tlr:x,y>, It:x> if x = <Xl, .... xn> 

Apply-tu-all of f. 

@f:<> = <> 

@f:<xl,...,Xn> = <f:xl,...,f:Xn> 

Infix notation for f-[a,b], f + g = +-[f,g] 

(*) 

(*) 

(*) 

(*) 

(*) 

(*) 

2.2 Specification of semantics: object level vs. fungtignlevel 

The semm~tics of the original FP language [Backus 78] was specified at the object 

level. ~mt is, for each function denoted by an expression E and each object x the 

result of applying E to x [the object E:x] was specified by a collection of rules. 

From these object level semantics a set of function level laws was derived that 

expressed various algebraic properties of the primitive functions and of the combin- 

ing forms [= functionals = PFOs]. 

Instead, one could have specified the function level laws relating the primitive 

functions and PFOs. For example, to partly describe the semantics of append left 

[all, instead of giving the object level equation: for all objects x, yl,...,yn, 

al:<x,<Yl,...,yn>> = <x,yl,...,yn> , 

that expresses the equality of two objects, one could give the corresponding 

"lifted" function level equation: for all functions x, yl,...,y n 

al'[x,[y I ..... n ]] ffi [x,y I ..... Yn ] , 

that expresses the equality of two functions. Not only can one obtain from this the 

object level equation, but its function level form is very useful in reasoning about 

programs: one has a general law in which one can substitute any functions for the 

variables of the law and then replace the resulting function expression on the left 

by that on the right [or vice versa]. On the other hand, the object level version is 

useful only for reasoning about objects. 

2.3 Extended definitions in FP 

Many people find it hard to read "proper" FP definitions llke the following one for 

an iterative factorial function f, where factorial = f-[id,~l], 
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7) f = eq0-1 -> 2; f-[subl'l, *'[1,2]] 

whereas they have no difficulty with the object level equation 

8) f:<x,y> = eq0:x => y; f:<subl:x, *:<x,y>> 

which is to hold for all objects x and y [here "=>" denotes the object level opera- 

tion if-then-else]. To make function level equations as easy to read as (8), object 

level equations can always be "lifted" [Backus 81e] to corresponding function level 

ones by doing the following 

a) Change all object variables to function variables, thus x will range 

over all functions instead of all objects. 

b) Change all pointed brackets < >, to square ones [ ]. 

c) Change all applications to compositions, i.e. change ":" to "-". 

d) Change => to ->. 

If we do this to (8) we get the function level equation that holds for all functions 

x and y 

9) f'[x,y] = eq0-x -> y; f-[subl-x, *-Ix,y]] 

that serves as readably to define f as (8) and has the additional advantage that it 

is a general law about the defined function f. We will call such a definition lifted 

from the object level an extended definition [Baekus 81b] and use them freely. If we 

note that [1,2] is the identity on pairs, then for pairs, by substitution for x and 

y we get 

f = f-[l,2] = eq0"l -> 2; f-[subl-l, *'[1,2]] 

which is the original proper definition (7). We have found that extended definitions 

are by far the best form to use in defining a function, for readability, whereas 

proper definitions are the best to use for reasoning about [transforming, calculat- 

ing with] the defined function. We will make use of this fact later. 

2.4 FP semantics: soundness and completeness 

There is the question of the soundness and completeness of any semantic description 

of a language. This question has not been completely answered for any treatment of 

the semantics of the FP language of [Backus 78], however this has now been done 

[Halpern, Williams, Wimmers, Winkler 85] for an FP system [let me call it FP84 ] 

much richer than the one we deal with here. The FP system we treat here is almost 

identical to that described in [Backus 78]: all functions are strict, the sequence 

constructor is strict, all sequences are of finite length, and there are no func- 

tions of higher type than functionals. 

None of the above properties hold for FP84. That is, FP84 is an untyped system 
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in which functions at all levels exist and are first class entities of the system: 

sequences of functions can be formed and other functions can be applied to them, 

thus "apply:<f,g>" is a meaningful expression in FP84 , whereas it is not in FP. 

Infinite sequences are admissible constructions. 

Halpern, Williams, Wimmers, Winkler give the operational semantics of FP84 in 

terms of rewrite rules. They also define an independent denotational semantics. They 

prove that the rewrite rules preserve the denotational "meaning" of an expression 

[soundness]. They then prove that if the "meaning" of an expression is a finite 

object [the "meaning" of an expression may be a function or an infinite sequence], 

then the rewrite rules are sufficient to reduce the expression to that object 

[completeness]. 

2.5 The function lev@!algebraic semantics of FP 

Our object here is to give some examples of the kind of equations that might make up 

an algebraic description of the semantics of FP. The following equations do not 

constitute a complete description; the object of a complete description would be to 

give a practically useful set of equations, some of which might be redundant, as may 

be the case here. Some of the following equations will be used to derive proposi- 

tions of the next section, others only illustrate the kind of equations that could 

be used. 

2.6 Preliminaries 

In what follows all variables will range over the space of FP functions [except in 

the form ~x, where x ranges over objects, or sel(n) or selr(n), where n ranges over 

integers, a subset of the objects] and are universally quantified. An equation may 

be qualified; thus we write 

p ->-> f = g 

to mean that, for all objects x, f:x is the same object as g:x provided that p:x = 

T. For example, if p:x = T and f:x = ~, then the above asserts that g:x = I 

[ "=" denotes strong equality]. If p:x is anything but T, even undefined (=~), then 

the above makes no assertion. 

We shall need the function "def" to qualify equations, where 

def == ~T. 

Since every function is strict, def-f yields T in exactly the domain in which f is 

defined, and lelsewhere. 
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2.7 Semantics of primitive functions, examples of function level equations 

selectors, append left, and tail 

:) al-[x,[]] = Ix] 

2) al'[x,[Yl,...,yn] ] = [x,y I ..... yn] 

3) def'[x2,...,x n] ->-> l'[Xl, .... x n] = x 1 

4) def-x I ->-> tl-[Xl,...,Xn] = [x2, .... Xn] 
= [] 

5) ar-[[],x] = [x] 

6) ar-[[x I ..... Xn]J] = [x I .... ,Xn,Y] 

7) def-[xl,...,xn_1] ->-> Ir-[xl,...,x n] = x 

8) def'x n ->-> tlr'[x I ..... x n] = [x I ..... x n-~] 

= [] 

not-null ->-> al-[IJl] = Id 

not-null ->-> ar-[tlr,lr] = id 

fn ~ f.fn-I for n>l fO = Id 

sel(n) = l-tln-l~ selr(n) = ir-tlr n-I 

9) 

10) 

11) 

12) 

Identity 

13) id-x = x.id = x 

Constant functions 

14) def-y ->-> ~x'y = -x 

Atom 

:5) 

,6) 

17) 

null 

18) null. I] = ~T 

19) def-al-[x,y] ->-> null.(al-[x,y]) = ~F 

length. 

20) len.x = null.x -> -0; (~i + len-tl-x) 

if n>2 

if n=l 

if n>2 

if n=l 

for n>l 

atom'~a = -T for each atom a (this represents an infinite set of 

equations, one for each atom) 

atom-I] = "F 

def-al'[x,y] ->-> atom-al-[x,y] = "F 

2.8 Semantics of the ' co~abinln~ forms~ examples of function level equations 

21) f - ( g - h )  = ( f - g ) - h  

22) f'(p -> q;r) = p -> f-q; f-r 

23) (p -> q;r)-f = pof -> q-f; r'f 

24) def-g ->-> []-g = [] 

25) [fl .... 'fn ]'g = [fl "g ..... fn "g] 

26) [...(p -> f;g)...] = p -> [...f...];[...g...] 
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27) /f'[x,y] = null-x -> y; f-[l'x, /f'[tl'x,y] ] 

28) \f'[x,y] = null'y -> x; f-[\f-[x,tlr-y], Ir-y] 

S. Some general function level results about programs 

We summarize some general results from earlier papers [Backus 78, 81b] and derive a 

few others that we shall use in the examples to follow. The machinery outlined below 

for transforming and reasoning about programs has a somewhat mechanical character, 

involving a good deal of routine calculations using function level identities. 

However, we believe these techniques provide a uniform, accurate technology for 

building up a set of general results in a form that makes it easy to identify and 

apply them, either mechanically or by people. 

3.1 Some simple general results 

Here we state without proof a number of simple equations and results that can be 

derived from the algebraic semantics. 

29) /f-[Ix I ...... Xn] , f-[y,z]] = /f[[x I ..... Xn,Y], z] 

30) \f-[f-[y,z], [x I ..... Xn] ] = \f-[y, [z,x I ..... Xn] ] 

31) if h is associative and has unit u, then /h.[id,~u] = \h-[~u,id] 

32) p-> q; p-> r; s = p -> q; s 

3.2 The general solution of linear functional equations 

The following linear expansion theorem and related facts about linearity are often 

generally useful for reasoning about reeursively defined functions, as we shall see 

in later examples. 

3.2.1 Definition of linear forms and equations ,. An equation of the form 

f = p -> q; }If 

is linear if the expression or form Hf in the variable f is linear. A form Bf is 

linear if there exists a form HtP such that the following two conditions hold: 

LI) For all functions a, h, and c, 

H(a -> b;c) = Hta -> Hb; Hc 

L2) For all objects x, if H~i:x ~ I' then, for all functions a, 

Hta:x T . 

H t is the predicate transformer of H. Clearly Hf is linear with H t if H 

and H t satisfy (LI) and H~I = ~i" 
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3.2.2 Linear expansion theorem. 

of 

i s  

f = p -> q; Hf 

If Hf is a linear form, then the [least] solution 

f o p _> > 

where t he  i n f i n i t e  c o n d i t i o n  on the  r i g h t  d e n o t e s  t h e  f u n c t i o n  t h a t  i s  t h e  l i m i t  of  

t h e  f o l l o w i n g  i n c r e a s i n g l y  d e f i n e d  f u n c t i o n s :  

f i  ffi P -> q ; . . . ; H ~ p  ->  Hiq; - ~  

and where Hn+lf  d e n o t e s  H(Hnf) .  Note t h a t  the  d i s t r i b u t i o n  r u l e s  f o r  c o n d i t i o n  

apply to infinite conditions, in particular: 

33) (Pl -> ql;'";Pi -> ql ;''')'g = (Pl "g -> ql'g;''';Pl "g -> ql "g;''') 

This extension of the rule (23) for finite conditions depends on the continuity of 

}If ffi f.g, so that H(llm fl) ffi llm H(fl) ; see [Williams 82]. 

3 . 2 . 3  Composi t ion  of  forms ,. I f  H and G a r e  two forms [ f u n c t i o n  e x p r e s s i o n s  each  

with one free variable], then by their composltion HG we mean the form such that HGf 

ffi H(Gf) = the form obtained by replacing the free variable of H by the form Gf [G 

with its free variable replaced by the function or variable f]. Take care not to 

confuse HGf [form composition] with Hf-Gf [functlon composition]. 

3.2.4 Theorem: composition of linear forms. If H and G are llnear~ then HG [where 

HGf = H(Gf)] is linear with predicate transformer (HG) t = HtG t. 

3.2.5 Theorem: basic linear forms~ In the following function expressions we use 

Roman letters for the free variable of a form and bold-faced letters for arbitrary 

fixed functions. The followlng forms Hf are linear in f with the given predicate 

transformer HtP: 

Hf = r with Hip = ~T 

Hf ffi r - f  with Htp = p ffi I p  

Hf = f ' r  w i t h  HtP ffi p ' r  ffi Hp 

Hf = [ g , f ]  w i t h  Htp ffi p = Ip 

Hf = [ .... f .... ] with HtP = p = Ip 

Hf ffi p -> q;f with Htr ffi p -> "T;r 

Hf = p-> f;q with Htr ffi p -> r;~T 

Hf ffi f -> g;h with Hip ffi p = Ip 

Applyin~ t he  c o m p o s i t i o n  theorem to  t he  above b a s i c  forms g e n e r a t e s  a g r e a t  many 

linear forms and their predicate transformers. Note that all forms }If with a single 

occurrence of f and built with composition+ constructlon~ and condition, are linear. 

Thus, for example~ Hf = h-[i~foJ] is linear with HtP ~p-J, since H = RST where 
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Rf = h-f, Sf = [i,f], Tf = f.j, and HtP = RtStTtP = ll(p-j) = p-j. Many 

forms Hf ~rlth multiple occurrences of f are linear. For example, 

Hf = s - >  f - k ;  h - [ i , f - j ]  

is linear with Htr = s -> r-k; r-j. Of course the usefulness of the linear 

expansion theorem to solve f = p -> q;Hf depends on being able to deal with the 

expressions ~tp and Hnq; in this case these expressions become unmanage- 

able unless the values of p, k, h, i, j allow simplifications, as may happen. 

For some further results on linear forms see [Backus 81b] and for results on non- 

linear equations see [Williams 82]. 

3.3 Application of the linear expansion theorem: recurslon removal 

We use the linear expansion theorem to obtain a moderately general result that 

provides an iterative solution for a class of recurslvely defined functions. Similar 

techniques could be used to obtain similar results for other, more general recursive 

equations. Stronger results can be found in [Kieburtz and Shultis 81]; we present 

this one to illustrate a different method of proof with some useful intermediate 

facts. ~,e of these is corollary 3.3.1, which provides useful data for reasoning 

about a larger class of functions. 

3.3.1 Corollary of the linear expansion theorem. 

34) f = p-> q; h-[i,f-j] 

Then 

35) p.jn _> /h-[[i,i-j ..... i-jn-l],q-j n] 

Let f satisfy the following 

is the general term of the expansion for f. 

3.3.2 Corollary of the linear expansion theorem. Let f" satisfy the following for 

all functions x and y: 

36) f'-[x,y] = p-x -> h-[y,q-x]; f'-[j-x, h-[y,l-x]] 

Then the general term of the expansion for f" that is valid for pairs and 

n>l is 
m 

37) p.jn.l -> \h.[2, [i,i-j .... ,i-jn-l,q-jn]-I ] 

3.3.3 Recursion removal theorem. Given 

38) f = p -> q; h-[i, f.j] 

39) f'-[x,y] = p-x -> h-[y,q.x]; f'.[j-x, h-[y, i.x]] 

where h is associative with unit u, then 



76 

40) f = f''[id,~u] 

Proof. From (37) we get the general term of the expansion for f" on pairs and, using 

the law (33) to distribute [id,'u] over the expansion for f" from the right, we get 

the general term of the expansion for f'-[id,~u "] and progressively transform it: 

p.jn'l'[id,~u] -> \h'[2, [i,i'j ..... i'jn-l,q'jn]'l ]'[id,~u] 

41) p.jn _> \h.[~u,[i,i.j ..... i.jn-l,q.jn]] 

42) p.jn _> /h-[[i,i-j ..... i-jn-l,q-jn],~u] 

43) p.jn _> /h-[[i,i-j ..... i.jn-1],h-[q-jn,~u]] 

44) p.jn _> /h-[[i,i.j ..... i.jn-l],q-j n] 

by (3) (12) (13) (25) 

by (31) 

since h associative 

by (29) 

since u is a unit of h 

This last is the general term of the expansion of f. The initial term of f.[id,~u] 

is, by (39), p -> h-[~u,q], which reduces to p -> q . Therefore the expansions of f 

and of f'-[id,~u] are equal, therefore the functions are equaL. Q.E.D. 

4. The use  o f  g e n e r a l  theorems t o  o b t a i n  program trans , f?rmat lons  

Here we compare the use of general theorems in the approach of various authors. Let 

me first make a general comment about those that present their results in the form 

of object level equations. To take an example from [Wadler 81]: he gives the object 

level rule 

(map f) (map g) xs 

=> (map h) xs 

where h x = f g x 

This is exadtly the FP law 111.4 of [Backus 78] 

@f-@g = @(f-g) 

The point here is that the FP function level equation allows one to immediately 

substitute one side of the equation for the other in any function expression, 

whereas the object level statement of the principle is much less directly useful and 

requires the use of a lot of unnecessary indirection, as in the where clause that is 

required by failure to use the combining form composition. For this reason I submit 

that it is time we recognize that such principles are essentially function level 

ones and should uniformly be given as such. 

4.1 The approach of [Kieburtz and Shultis 81] = K & S 

This paper contains some good examples of the function level approach we are ad- 

vocating and has a number of results that go beyond the simple recursion removal 
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theorem presented here. It uses the FP function level technology to derive a general 

theorem [Prop 2] of which our recursion removal theorem is a corollary. We present 

our proof only because it represents a quite different approach to obtaining such 

results. 

Their proof starts from the most basic function level identities and involves two 

inductive arguments, whereas ours relies on the linear expansion theorem~ which was 

helpful in obtaining the formulation of the theorem by examining the general terms 

of the expansion for the given function f. Their proof is shorter and cleaner, ours 

involves some mechanical calculation that is tedious but easy. 

They also prove several other interesting and generally useful theorems concerning 

recursion removal for the scheme f = p -> q; h-[i,f°j] of our theorem. They go on to 

prove several general theorems [props 5 & 6] for removing recurslon from non-linear 

functions of the forms 

f = p -> q; h-[f-r, f-s] and 

f = p -> q; h-[r,h-[f-s, f-t]] 

It is interesting to note that the basle scheme for the solutions of these last two 

questions came, according to the authors, from [Cohen 79]. However the function 

level presentation here of the result seems to make it much shorter and more acces- 

sible than in its more general presentation in terms of conventional programs in 

[Cohen 79]. 

This paper provides some of the most directly useful theorems for recurslon removal 

that I ~ aware of. And they are presented as function level results that can be 

straightforwardly applied, rather than as principles and methods for obtaining 

results, or as lengthy, difficult to recognize, object level schemes. 

4.2 The approach of [Burstall and Darllngton 77] = B & D 

It is interesting to examine the differences between the algebraic approach to 

program transformation and that of B & D, who originated the basic ideas about 

transfor=Ling reeursively defined functions. Their approach is to provide a set of 

transfor=mtion rules to be applied to the transformation of an individual function 

or set of functions. This involves defining an auxiliary function in terms of the 

given one [the "eureka" step], then instantiating object variables, unfolding, 

simplification and folding; the object being to get a recurslve expression for the 

defined function that does not depend on the given functionj and then redefine the 

given one in terms of the new one. The goal is to define the new function so that 

the resulting redefinition of the given one is more efficient. 
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The approach we advocate is to develop general function level identities and 

theorems. The goal is to provide a basic uniform technology for transforming 

programs in a mechanical way that captures, once and for all, a lot of difficult 

details and reasoning, and to develop general theorems that can be easily applied to 

transform many different programs. Our methodology is just that of substitution in 

equations and needs no special rules. The above theorems and those of K & S and 

others are easier to apply [when they apply] than B & D's methods, and they preserve 

termination properties, whereas B & D's do not. 

The most difficult programs to reason about are recursively defined ones. For linear 

recurslve programs and for certain non-llnear ones [Williams 82] the FP technology 

provides non-recursive expansions that often help one to understand and reason about 

such programs. Many programs that are normally defined recurslvely are easier to 

define in FP in a simple closed form in which one can reason about them directly 

using the FP technology. We have given above an example of a general theorem for 

transforming a class of linear recursive functions into iterative ones, K & S give 

several more plus two for classes of non-linear equations. 

B & D's methods apply to many programs to which our theorems above do not. However, 

many of those programs may be handled by the results of K & S discussed above. 

4.2.1 Example i. Factorial. Given the definition of factorial 

fact = eq0 -> ~i; *-lid, fact-suhl] 

we see that the recurslon removal theorem applies since * is associative with unit 

I. Thus in 

f'-[x,y] = p-x -> h.[y,q-x]; f'.[j.x, h-[y, i.x]] 

we need only replace p by eq0, h by *, q by ~i, i by id, and J by subl to give 

f'-[x,y] ='eq0"x -> *'[y,'l'x]; f'.[subl-x, *'[y, id'x]] 

f'.[x,y] = eq0-x -> y; f'.[subl-x, *-[y,x]] 

and fact = f'-[Id,~l], which is essentially the same program derived by B & D. Their 

derivation of this example required some ingenuity and work, whereas our effort went 

into developing a general theorem which can be routinely applied to this example as 

well as many others. 

In the FP programming style we would prefer to define 

fact = /* • iota , 

a non-recursive definition using the iota function of APL, where 

iota:n = <l,2,...,n> . 
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4.2.2 Exmnple 21. Reverse. When reverse is defined using concatenate, as it is in B 

& D, it fits exactly the same scheme as factorial, since ++ is associative with unit 

[]° Thus it c~n be treated exactly as above to obtain B & D's result. If we define 

reverse, using append left, as 

rev = null -> []; al-[Ir, rev-tlr] , 

then Proposition 2 of [Kieburtz and Shultls 81] applies directly to provide an 

iterative solution that uses append right. 

4.3 The approach of [Bird 84] 

This is another paper that presents some general function level results. However it 

uses a somewhat idiosyncratic mixture of function and object level equations, 

curried functions, infix functions~ "sections" and other special notation that makes 

for terse expressions but very difficult reading. One annoying feature of the use of 

curried functions is that it is difficult to determine the arlty of a function in an 

expression unless the expression is object level, and even then it requires some 

analysis. I believe the use of uneurried functions promotes readability and 

eliminates the need for object level equations. 

4.3.1 Example. The "promotion" scheme. We give the example first in Bird's terms 

[beginning with his paragraph 3, p491], and then give his derivation in an un- 

curried, function level FP version. 

(DI) spec x = f(Hx) 

(D2) H[] = ... 

H(a;x) = h a (Hx) 

(C1) f-(hs) = (h'a)-f 

The equations (DI) and (D2) represent a specification in which we shall think of H 

as building an object from a sequence [a;x denotes appending a to the sequence x] by 

combining [with h] the head and H of the tail of its argument. For efficiency it 

would be preferable to compute spec by using the existence of an h" satisfying (CI). 

Here is the FP derivation of Bird's result, but using an uncurrled version, uh, for 

his curried two-argument function h, and uh" for his h': 

(DI') spec = f.H 

(D2") H = null -> r; uh-[l,H-tl] 

(CI') f-uh-[x,y] = uh'-[x, f-y] 

Thus we have the following 

spec = f-H 

= f.(null -> r; uh-[l,H*tl]) 

= null -> f-r; f-uh-[l,H-tl) 

r is supplied here for the [] case. 

for all functions x, and y. 

def of H ["unfolding"] 

by (22) 
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= null -> f-r; uh'-[l, f.H-tl] by (Cl') 

= null -> f-r; uh'-[l, spec-tl] by (DI') 

which is Bird's result in FP form. Here it is obtained at the function level. The 

pattern-matching style of SASL equations, in which conditions are broken up into 

multiple equations using mutually exclusive arguments, requires that the arguments 

always tag along in Bird's object level derivation. 

If one applies the corollary 3.3.1 to this last equation for spec, 

simplifies the general term in its expansion, 

null.ti n -> /uh'-[[l,l-tl,...,l-tln-l], f-r-tl n] 

= (len = n) -> /uh'-[id, f-r-I] ] 

one then obtains the following closed form expression for spec 

spec = /uh'°[id, f-r-[] ] 

which is easier to reason about and to use. 

and then 

5. Optimizing 1~ programs 

The function level style of FP replaces the scattered form of "housekeeping" opera- 

tions found in conventional programs with operations that rearrange data structures. 

This means that complex housekeeping operations can be defined and reused in FP, 

whereas such operations in conventional programs must be redeveloped for each 

program from scratch. Thus we believe that the FP style of housekeeping operations 

is the right way to think about and write such operations. But the price one pays in 

efficiency is enormous if programs with these operations are executed literally. 

In addition to those due to FP housekeeping operations, there are many other poten- 

tial sources of inefficiencies in FP programs. One of these is the creation of large 

and unnecessary intermediate results. This general problem for functional programs 

is discussed in [Wadler 84] where the author deals with the problem not only at the 

object level but by means of a "listless machine". Here we propose to deal with this 

issue at the function level in source language. Eliminating making copies of large 

objects is an important subcase of the problem of eliminating the creation of inter- 

mediate results. 

We propose to optimize FP programs having these problems into programs in an FP 

language extended with additional constructs [which we laughingly call "Fortran 

constructs"]. These constructs denote pure functions but have obvious realizations 

as efficient Fortran or other conventional programs. We hope to optimize most FP 
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programs that hmve potential efficient Fortran equivalents into those equivalents or 

something very close to them; that is, if an FP program is not essentially a "list 

processing" program, we hope to make it run as fast as a Fortran program. We hope to 

produce a Fortran-like program that addresses its data just as a Fortran program 

does, wit]Rout using llst structures or unnecessary levels of indirection in address- 

ing. 

The process of optimizing such FP programs into efficient extended FP programs will 

depend on the use of sophisticated strategies employing a collection of function 

level identities involving the Fortran constructs. The work on this approach is in 

an early stage, and it is not clear how far it can be carried nor how much of it can 

be automated. Much of its ultimate power and utility, if successful, will depend on: 

a) Powerful strategies for employing functional identities or rewrite rules for 

transforming programs. 

b) Systems for specifying programs and abstract data types within FP in terms of 

functional identities that are consistent with (a). These have yet to be com- 

pletely developed, although an excellent basis already exists in [Guttag, Horn- 

ing, Williams 81]. 

These goals are clearly difficult to achieve, but we believe they comprise an inter- 

esting effort to put together a practical, higher level functional style of program- 

ming. We have yet to study carefully the problems of optimizing programs that are 

recursively defined. We have some hope that some of the above machinery for linear 

programs will be helpful in this regard. For other programs some of the techniques 

of Burstall & Darlington should be helpful. 

All we s~mll do here is to exhibit some examples and show how a given set Of func- 

tional identities can be used to optimize them. 

5.1 The basic optimizing strategy 

Our basic strategy is the following. First, introduce some "Fortran constructs" into 

extended FP [which we will refer to as "constructs"]. These must have three 

properties: 

a) any "Fortran-like" FP program can be represented as a construct. 

b) any construct has an obvious Fortran-like program or similar counterpart that is 

directly efficiently realizable. 

e) it is possible to write a construct that is the identity function for all the 

arguments of the function one wants to optimize. 

Then, given such constructs as above, our strategy to optimize a program f is as 
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follows: 

I) Find a construct, C, that is the identity for all the valid arguments for f. This 

construct we call a "structure operator" for f [because it essentially describes 

the structure of f's arguments]. Thus f-C = f. We will work with f-C. 

2) If f = G(g,C') for some combining form G, then find an equation of the form 

G(g,C') = C''; if no such equation exists, that is, if g is too complex, try to 

find R and K so that f = H(r,K(s,C')) where s is simple enough that there is an 

equation K(s,C') = C'" and then continue in this way until you get f = C"'. In 

our examples so far, this strategy involves just G = H = K = composition. In this 

case the strategy is just, e.g., 

If f = g.h and f = f.C, and if 

h-C = C" and g-C" = C'" are instantlations of established equations then 

f = g-h.C => f = g-C' => f = C" 

transforms f into the construct C''. 

5.2 The for construct 

Our most basic construct denotes a construction of a sequence of functions whose 

length may depend on the argument to which it is applied. The functions in the 

construction are generated by some expression E(i) that converts an integer i into a 

function E(i). We write the for construct using bold-faced square brackets as fol- 

lows 

45) [E(i) i=f,g] 

where f and g are integer valued functions and i is a bound variable of the con- 

struct. The meaning of |E(i) i=f,g] is defined as follows for any object x: if 

1 < f:x < g:x, then 

46) [E(i) i=f,g]:x = [E(f:x), E(f:x + i) ..... E(g:x)]:x 

If f:x > g:x then 

[E(i) i=f,g]:x = <> 

Thus, for example, 

[i i='l,len]:<a,h,c> = [l,2,3]:<a,h,c> = <a,b,c> 

Here E(i) = i (more properly we should write E(i) = sel(1), but here there is no 

doubt that the integer i is a selector function). So |i i=~l,len] is the identity 

function for every non-empty sequence. 

Since a for construct denotes a construction, we will extend the definition of the 

for construct to include any construction whose elements are either functions or for 

constructs. Thus [Cl,...,Cn] is a for construct whether or not some or all of 
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the ci's are for constructs. 

5.2.1 The Fortran-like program correspondlng to a for construct. Every construc- 

tion [fl,...,fn] has a corresponding Fortran-llke program that will compute 

[fl,...,fn]:X -- given Fortran-like programs p(i,x) that will compute fi:x -- 

(in the case of Fortran we must assume that fi:x is a single word, in other 

languages we might not need this assumption). The program is as follows 

for :[ = I, n 

r[i] := p(i,x) 

For a for construct [E(i) i=f,g], if p(E(i),x) is a program that will compute E(i):x 

for any integer i and any object x, then the program to compute [E(1) i=f,g]:x is 

for i = f:x, g:x 

r[i] := p(E(i),x) 

5.2.2 Nested for constructs. Consider the construct 

[[E(i,j) i=f,g] j=r,s] 

In the innermost construct the variable i is bound, so E'(j) = [E(i,j) i=f,g] is a 

legitimate expression in the free variable j that will produce a function for each 

integer j. For example 

[[i.j i=~l,len-l] j=~l,len] 

is the identity construct for every sequence of equal-length sequences [e.g., a 

rectangular matrix]. 

[[i-j i=~l,lenol] j='l,len]:<<a>,<b>> 

= [[i-I l=~l,len.l], [1-2 i=-l,len-l]]:<<a>,<b>> 

= <[l-I i=~l,len.l]:<<a>,<b>>, [i-2 l='l,len.l]:<<a>,<b>>] 

= <[l-l]:<<a>,<b>>, [l-2]:<<a>,<b>> > 

= <<a>,<b>> 

similarly 

[[i-j i=~l,len-j] jffi-l,len] 

is the identity construct for every sequence of sequences. 

5.3 The insertion construct 

5.3.1 Simplified left and right insert for optimization. In the following and in 

the examples it is convenient to introduce a simplified notion for left and right 

insert, In which /f and \f are functions of one argument rather than two. We define 

these one argument versions in terms of the two argument ones used above as follows 
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[these one argument inserts are those used in the original FP]. We use bold-faced /f 

and \f for the two argument versions and /f and \f for the one argument one. 

47) def /f = /f-[id,~u] 

= /f-[tlr,lr] 

48) def \f = \f-[~u,id] 

= \f-[1,tl] 

5.3.2 The insertion construct. 

if f has a right unit u 

otherwise 

if f has a left unit u 

otherwise 

Our second construct is the insertion construct. If 

C is a for construct, then /f-C and \f-C are insertion constructs. 

5.3.3 Fortran-llke programs corresponding to insertion constructs. 

compute \f-[E(1) i=g,h]:x is 

r := uf where uf is a left unit of f 

for i = g:x, h:x 

r := f:<r, p(E(1),x)> 

The program to 

5.4 Algebraic laws for constructs 

The following identities have the form f-C = C" where C and C" are for constructs 

and f is a primitive FP function. 

49) trans-[[E(i,j) i=f,g] j=r,s] = [[E(i,j) j=r,s] i=f,g] 

50) trans-[[El(i I) il=f,g] ..... [En(i n) in=f,g]] = [[El(i) ..... En(i)] i=f,g] 

51) distr-[[E(i) i=f,g], hi = [ [E(i),h] i=f,g] 

52) distl-[h, [E(i) i=f,g] ] = [ [h,E(i)] i=f,g] 

53) @f-[E(i) i=g,h] = [f'E(i) i=g,h] 

54) tl'[E(i) i=f,g] = [E(i) i=(f + ~l),g] Iprovided the left construct 

55) tlr-[E(1) i=f,g] = [E(i) i=f,(g - ~i)] I does not produce <>. 

These identities concern change of variables or bounds, distribution of a function 

from the right. 

56) [E(i) i=f,g] = [E(j) j=f,g] [change bound variable] 

57) [E(i) i=~n,f] = [E(i + -(n-l)) i=~l, f - ~(n-l) ] 

58) [E(i) i=f,g] - h = [E(i)-h i=f-h,g-h] 

There are many other possible identities, but these will suffice for our examples 

and indicate the possibilities. Note that they are easily derivable from the func- 

tion level semantics of FP. 

5.5 Examples of program optimization 
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5.5.1 Inner Product. The following FP program IP for inner product has the right 

form: it is concise and clear; it does not depend on the size of its arguments; it 

is non-recursive and therefore easy to reason about and transform. But its first 

operation is an inefficient housekeeping operation, transpose, which our optimiza- 

tion should eliminate. 

def IP = \+ - @* • trans 

Thus, for example 

IF-[[a,b,c],[d,e,f]] = \+-@*-[[a,d],[b,e],[c,f]] 

= (a'd) + (b'e) + (c'f) using infix function level notation 

Now the structure operator for IP -- the identity construct for any proper argument 

of IP, a pair of equal-length sequences m is the for construct 

C = [[i.j i=~l,len-l] j=-l,-2] 

We proceed to transform IP = IP-C by using the above rewrite rules 

IP-C = \+-@*°trans-[[i-j i=~l,len.l] j=~l,~2] 

= \+'@*'[[i'j j=~l,~2] i=~l,len.l] by (49) 

ffi \+-[ *.[i'j jffi~l,~2] i=~l,len.l] by (53) 

= \+.[ *.[i-l,i-2] i=~l,len-l] by def of for construct 

This last program corresponds directly to the following Fortran-llke program for 

inner product for the argument <a,b>, where a and b are sequences of equal length. 

r := 0 [the unit of +] 

for i = i~ len:a 

r := r + (a[i] * b[i]) 

So our transformation has eliminated the need to perform transpose or to create the 

intermediate result @*-trans:<a,b> [provided we implement insertion constructs 

properly]. It has produced the standard conventional program. Using the same ap- 

proach we could develop the general identity for IP-C: 

59) IP-[[E(i) i=~l,f], |F(j) j=~l,f]] = \+-[*-[E(i),F(i)] i=~l,f] 

5.5.2 Matrix multiplication. Here is the standard FP matrix multiplication 

program, MM, that will multiply any pair of conformable matrices, <A,B>, where each 

matrix is represented as the sequence of its rows. 

def MM = @(@IP)-@distl-distr-[l,trans.2] 

Again, this is a good program that concisely gives the essence of the operation, but 

it is very space and time inefficient. The first three operations of this non- 

recurslve program are data-rearranglng "housekeeping" operations; all of them should 

be eliminated by our transformation [and they are]. Our goal is to transform MM into 
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the following construct: 

60) MM = [ [ \+-[ *-[k-i-I, j-k-2] k=~l,len-2] j=~l,len-l-2] ] i=~l,len-l] 

The detailed transformation is given below. The construct (60) represents an effi- 

cient Fortran-llke program. Let matrices A and B be given with 

n I = len:A = no. of rows of A 

n 2 = len:B = no. of rows of B = len.l:A = length of a row of A, and 

n 3 = len.l:B = length of a row of B 

Then the construct (60) corresponds exactly to the following Fortran-llke program 

for the product of A and B, i.e., MM:<A,B> 

for i = I, n I 

for j = i, n 3 

r[i,j] := 0 

for k = i, n 2 

r[i,j] := r[i,j] + (A[i,k] * B[k,j]) 

Thus our transformation has turned all the FP "housekeeping" operations [the first 

three operations of MM] into Fortran-llke housekeeping operations. In a sense the 

transformation has turned the original program MM inside out; it has eliminated all 

the unnecessary intermediate results of the FP program and produced the standard 

matrix multiplication program. 

Details of the transformation of MM. To use our strategy we wish to find a construct 

that is the identity for pairs of conformable matrices. Let 

61) MI = |E(1) i=~l,len] where 

62) E(1) = [k-i k=~l,len-l] 

Then MI is the identity construct for any matrix, and 

63) [MI-I, MI-2] is the identity for any pair of matrices 

64) len-l-I = len-2 is the conformability requirement that the length 

of a row of A (len.l-l) equals the length of a 

column [i.e., the no. of rows] of B (len.2) 

So our strategy is to transform MM = MM-[MI.I,MI-2] by the above laws, where we can 

assume that (64) holds. 

65) [l,trans.2]-[MI-l, Sl-2] = [Ml-l, trans-MI-2] by (25) (3) (12) 

= [MI-I, MI'-2] 

where 

66) MI" = trans-MI = [E'(J) j=~l,len-l] by (49) (56) 

where E'(j) = [j-k k=~l,len] 

So we now have 
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72) 

73) 

Now 

67) MM = @(@IP)-@distl-distr-[Ml-l, MI'.2] 

68) = @(@IP)-@distl-distr-[[E(i)-I i=~1,1en-l], MI'-2] by (61) (58) (14) 

69) = @(@IP)-@distl-[ [E(i)-l, MI'-2] i=~l,len-l] by (51) 

70) = @(@IP)-[ distl-[E(i)-l, MI'-2] i=~l,len-l] by (53) 

71) = @(@IP)-[ distl-[E(i)-l, [E'(j)-2 j=~l,len-l-2] ] i=-l,len-l] 

by (66) (58) (14) 

= @(@IF)-[ [[E(i)-l, E'(j)-2] j=~l,len-l-2] ] i=~l,len-l] by (52) 

= [ [IP-[E(i)'I, E'(j).2] j=-l,len.l-2] i=~l,len-l] by (53) twice 

IP-[E(i)-I, E'(j)-2] = IP-[[k-i-I k=~l,len-l-1], [j-k-2 k=~l,len-2]] 

by (62) (66) 

Therefore we can use the identity for IP (59) to get 

Ie-[E(i).l, E'(J)-2] = \+.[ *-[k-i-l, j-k.2] k=~l,len-2] 

since by ([64) len-1.1 = fen-2. Substituting this last result in (73) gives (60), the 

desired construct. 

5.5.3 Eliminating copying. Our final example demonstrates that our optimization 

technique can eliminate unnecessary copying of arguments. The preceding examples 

proceeded uniformly "downhill". That is, whenever a rule applies it eliminates a 

function from the composition that we are working on: g-C => C'. In this example we 

see a step g-C => g-C" that requires a "pattern matching" step that merely alters 

the construct so that a reducing rule g.C' => C'" will then apply. 

Consider the following program 

f = @+ - trans - [tlr,tl] 

This program, given <Xl, .... Xn>, computes <Xl+ x2,...,Xn_l+Xn >. The 

first operation constructs two almost-complete copies of the argument, whereas it 

would be simpler to compute the result from the original argument. Beginning with C 

= [i i=~l,len], the identity construct for sequences, the proper arguments for f, we 

transform f = f.C as follows 

f = @+-trans.[tlr,tl]-[i i=~l,len] 

= @+-trans-[tlr-[i i=~l,len], tl-[i i=~l,len]] by (25) 

= @+-trans-[[i i=~l,(len - ~I)], [i i=~2,1en]] by (54) (55) 

Now the rule (50) would apply if the bounds on i were the same in both constructs, 

but they are not. However (57) applied to the second construct makes the bounds 

equal. This is the pattern-matching step. 

= @+-trans.[[i i=~l,(len - ~I)], [(i+~l) i=-l,(len - ~I)]] by (57) 

= @+-[[i,i+~l] i=~1,(len - ~I)] by (50) 
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= |+-[i,i+~l] i=~l,(len - ~I)] by (53) 

Thus again we have reduced our program to a construct, one that represents the 

following Fortran-like program to compute f:x 

for i = I, (len:x - I) 

r[i] := x[i] + x[i+l] 

This has eliminated all intermediate results and copying. 

6. Conclusions 

We have argued that programs with good mathematical properties must be built at the 

function level. We have exhibited a system whose semantics are [or can be] given by 

function level equations, equations whose operations are program-formlng operations 

and whose constants and variables range over programs. From these equations theorems 

are derived whose conclusions are again equations, for example, one that asserts the 

equality of a recurslve and an iterative function. 

These equations, together with many others, constitute a fairly large body of 

general knowledge, knowledge that can be easily and uniformly applied to a fragment 

[i.e., subtree] of any function level program. We hope the examples show that this 

is a clear and preferable way to present general results about programs, so that 

they can be easily recognized and applied by users. 

Although some functional languages are stunningly elegant for expressing certain 

programs, notably SASL and KRC [Turner 81], they often tie themselves to the object 

level in one or more ways: by using lambda abstraction, by using curried functions, 

and by separating conditional expressions into separate equations: When lambda 

abstraction is used to express an object-to-object function it requires the use of 

object variables. If h is an arbitrary curried function, then one cannot perceive 

its arlty in (h a) unless one knows that, e.g., (h a x y) is an object. Thus for 

general expressions to be readable they must be object level [even then, con- 

siderable analysis may be needed to resolve the arity of hi. Finally, SASL-style 

pattern matching equations without conditions depend on the presence of mutually 

exclusive object level expressions as arguments, hence they must be object level. 

I believe languages like SASL are excellent for writing programs, but for the 

reasons outlined above, they tend to be object level ones and hence lack many of the 

advantages of the function level technology for ~eneral reasoning about and trans- 

forming programs [activities that are essentially function level]. With the addition 

of higher level functions and infinite sequences as in FP84 [Halpern, Williams, 
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Wimmers, Winkler 85], it seems clear that any object level program can be trans- 

literated into a function level equivalent, thereby making it subject to all the 

laws and theorems of that technology. And if it is a close transliteration, as I 

believe it can be in most eases, then that means that function level programs should 

be as clear, and as easy to read and to write as SASL programs. 

Uncurried function level expressions [using construction as a combining form] help 

to make clear the structure of a function's argument in a sharper way than in 

curried expressions; they also reduce the number of function levels needed, reserv- 

ing higher levels for truly higher level matters. Uncurried function level defini- 

tions that use construction and function variables correspond exactly to object 

level ones; they also serve as useful function level laws about the defined func- 

tion. 

The examples of FP program optimization give some hope that FP data-rearranging 

housekeeping operations [when they can be transformed into conventional ones], are 

practically viable, even though they represent extreme inefficiencies when done 

literally. If that turns out to be true, this should be a considerable advance for 

progra~ing since conventional housekeeping operations represent one of the most 

central but disorderly and non-reusable aspects of programming today. The FP 

housekeeping operations, on the other hand, are compact and reusable, and have 

useful mathematical properties. 

The work on optimization reported here is, I believe, just the beginning of a line 

of interesting and useful research. It shows that some programs [that one might call 

"fixed-data processing" in contrast to "list-processing", and that are much clearer 

and more orderly than Fortran programs] can be transformed into Fortran programs 

that run as fast as if they had been written in Fortran in the first place. It shows 

that the strategy for doing this, in some cases, is just the use of mechanical 

"downhill" rules: find a general equation f-C = C', where f is the rightmost opera- 

tion in the function to be optimized, substitute the proper constants, replace f-C 

by the construct C', and continue. 

At least for certain kinds of programs, the optimization technology suggested here 

has a potential for producing higher speed results than various combinator tech- 

nologies [Hughes 82, Stoye, Clarke & Norman 84, Turner 79]. Our approach is source 

level, leading to programs of a fairly standard kind with known, easy to estimate 

efficiencies. Although these other methods employ some interesting source level 

transformations, their target language is a list-processing one and has several 

complexities [e.g., pointer manipulation, garbage collection] behind the language 

"curtain" that make estimations of running times complex. This makes it hard to 
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evaluate alternative strategies for optimization, and in any case these target 

languages do not have the potential efficiency that Fortran-like languages do. 

Many questions remain, of course. How to distinguish between the fixed-data and 

list-processing cases? Is it possible to develop mixed techniques for handling the 

two, in which some data will have relativ@ly fixed allocations and be addressed by 

Fortran-llke techniques, and some will be stored and treated by llst-processlng 

techniques? How can recurslvely-deflned functions be optimized? What recursively 

defined functions can be transformed into closed form definitions that can then be 

optimized? Can other constructs be added that will enable us to use algebraic tech- 

niques in doing a lot of lower level optimizations also at the extended-source 

level? How complex will optimization strategies have to be to deal effectively with 

a large class of practical programs? 

In spite of all the remaining questions, the work on optimization indicates that 

making full use of the mathematical properties of function level programs promises 

to have considerable payoffs. These will certainly be required to do the really 

extensive optimization that is needed to make easy-to-wrlte function level programs 

run at the speed we have come to expect of Fortran programs. 
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