SOFTWARE CONSTRUCTION USING TYPED
FRAGMENTS

Nazim H. Madhavyt
Nikos Leoutsarakos
Dimitr: Vouliouris

School of Computer Science
MeGill University
805 Sherbrooke Street West
Montreal, PQ,
CANADA H3A 2K6

ABSTRACT
Recent research in the fleld of programming environments has resulted in
integrated systems which demonstrate their use in the development of small pro-
grams. It is argued here that such systems are not suitable for non-trivial
software development, as they support programming-in-the-small only. This
paper introduces a new concept of a typed fragment called fragtype, which makes
the notion of a software building block conerete. With the help of the underlying

fragtype driven structured editor, and a fragment library, such building blocks
can be used to construct a well-formed large software edifice.

1. Introduction

The concept of integration has recently precipitated widespread research efforts in combin-
ing programming tools, such as an editor, compiler, linker and debugger into coherent program-
ming environments. Examples of such systems include the Cornell Program Synthesizer [TeiRe81],
ALOE {MedNo81], MENTOR [DHKL84], Magpie [DelMS84], POE [FIMPS84], PECAN [Reiss84]
and COPE [ArcCo81]. While such systems have clearly demonstrated their use in the develop-
ment of syntactically, and in some cases, static-semantically correct small programs, their viabil-

ity is still to be tested in the development of reasonably large programs.

It is argued here that currently available program synthesizers are not suitable for non-
trivial software development, primarily because they support programming-in-the-small only. For

the development of reasonably large programs, a highly integrated scratch pad facility based on a

new concept of a fragment type, called fraglype, is proposed here.

164

Fragtypes have a formal basis, similar $o data types in Pascal-like programming languages,
and therefore they provide protection during the construction of software. A fragment of a cer-
tain fragtype can contain objects which are compatible with that fragtype only. Such objecis can
be of small granularity, such as an expression or they can be of large granularity, such as a sub-

system of a program. Thus, a fragment is a formal structure of variable granularity.

In order to manipulate fragments, the scratch pad provides a structured editor which can be
used to create a new fragment. The editor also has the capability to develop, refine and assemble
existing fragments into a new one, possibly of a different f{ragtype, in an integrated and well-
defined manner. Thus, the editor is a machine for fabricating software from fragments of various

fragtypes.

One striking difference between this editor and other structured editors is that the former is
driven by fragtypes. Hence, it automatically adjusts itself according to the fragtype of the frag-
ment being operated upon. This is a dynamic feature of the editor, as a fragtype can change at
any time depending on the user action. It is this feature of the editor, combined with the concept
of fragiypes, which makes the scratch pad flexible enough to suit wide varieties of software

deveiopment methodologies and yet provide protection during software construction.

Seven major software engineering notions considered in the design of the scratch pad are:
s Software building blocks.
* Rigorous construction.
® Top-down and bottom-up methodologies.
® Repository for building blocks.
® Integration of activities.
° Testing of building blocks.

L] Development t00l.

The above mentioned points are a subject of current research in the context of the MUPE-2
project at McGill University. This paper focuses on the scratch pad facility which is an impor-
tant component of the project. Before considering the scratch pad in more detail, the next sec-

tion puts it into perspective.

165

2. The MUPE-2 Environment: An Overview

The McGill University Programming Environment (MUPE-2), is an integrated environment
for the design, development and use of Modula-2 [Wirth82] programs. The level of MUPE-2 (see
Figure 1) can be viewed as above that of program synthesizers, but beneath that of full software

engineering environments, such as CADES [Snowd81], PWB/UNIX [Ivie77], SDS [Alforg81] and

others.
LEREE SOFTIGEE ENICEERING SYSHENS]
PROGR AM SYNTHESIZERS

AIDES cPs
CADES ALOE
SDS MAGPIE
SPS PECAN
APSE MENTOR

-3 o

= »

= o

Figure 1 - The level of MUPE-2

MUPE-2 has a characteristic coloured user interface, which is divided into what are termed
the module screen, the procedure screen and the scratch pad, as shown in Figure 2. The module
screen is used for programming-in-the-large on a chosen implementation module. Here, with the
use of its context-sénsitive structured editor, a number of operations can be performed on the
internal nodes of the module tree. Besides, the module screen can communicate with the scratch

pad by transferring subsystem fragments to/from the personal fragment library called FRAGLIB.

The procedure screen is used for programming-in-the-small on a chosen procedure/module

(e.g. T) from the current module on the module screen, thus maintaining the complete

166

¥ FRAGHENT L 1BRARY
. ¢ FRAGLIB)

CARDINAL
: RERAL;

BEGIN
readln(i) :
¥ a>o THE readln(il;

" etetyt.

E R
WHILE i>0 DO
<transform>
{print message>

“s y

Figure 2 - MUPE-2 screen layout.

environment of the procedure. Operations of the editor permit manipulation of language and
meta-language templates and English phrases. Besides, similar to the module screen, the pro-
cedure screen can communicate with the scratch pad by transferring procedure fragments to/from

FRAGLIB.

The scratch pad is a context-free multi-purpose workbench of the system, where subsystem
and procedure fragments may be developed, assembled and tested for inclusion in the main pro-
gram or in FRAGLIB. Together, the three screens serve the widely known activities of software

engineering: programming in-the-large and in-the-small, design, experimentation and testing in a

167

highly integrated manner.

The key features of MUPE-2 are summarised by the following :
. Its parfitioned user interface,
. A scratch pad facility for operating on typed fragments.
[Universal operations based on the structured cursor.

. Coloured graphics for visually (instead of textually) conveying semantic information to the
user.

. A number of contextual views, to support display, editing, assembling and execution of sub-
system and program fragments.

(] Call-tree and user selected walk-through mechanisms.

. Integrated documentation capability based on programming decisions, their refinements and
textual or graphical comments.

. Internal representation which is minimal and is compatible with user operations.

3. Software Construction in the Scratch Pad

The scratch pad provides a context-free environment to the user, so that program fragments
can be developed independent of the main program. This implies that semantic checking in the
scratch pad is performed up to the fragment boundary. In contrast, full semantic checking can be
carried out in the procedure and the module screens, since the entire language (Modula-2)

environment is available there.

A new fragment can be built in the scratch pad, from scratch, by jotting down ideas as
English phrases or by constructing an expression, statements, declarations, a procedure, a module,
a system-layer (described later) or a subsystem. This construction is facilitated by the underlying
structured editor. For identification purposes, a fragment may be given a name with its descrip-

tion. By default, the system issues an unique fragment number.

If desired, an existing fragment can be selected from a set of working fragments, or it can be
unhooked from FRAGLIB, the fragment library. The library is a collection of fragments designed
in the scratch pad, hooked fragments of a procedure from the procedure screen and hooked frag-

ments of a subsystem from the module screen.

The underlying editor has the capability to manipulate fragments of different fragtypes, so
that they can be developed, refined and assembled into new fragments in an integrated but ord-

erly manner. A new fragment can be hooked into FRAGLIB for later use on any of the three

168

screens or it can be retained in the scratch pad as one of the working fragments.

3.1. Software Building Blocks

Construction of a reasonably large program generally involves programming in-the-large and
in-the-small. Duripg this activity, many utilise both top-down and bottom-up methods of
development. However, a systemn can take a long period to complete, and therefore, rapid proto-
typing is often desirable to quickly determine the nature of the eventual system. In addition, dur-
ing the design of such a system, one may experience mundane tasks of re-inventing program
structures that are already in use in other projects, and often, one may need to search for efficient

and well-written algorithms.

‘Well-defined software building blocks are a step towards solving the above mentioned prob-
lems in software engineering, as they provide formal structures for assembling and re-using
software. In MUPE-~2, a fragment is a building block, and it is well-defined because it is a frag-
typed structure which can bs identified shrough its attributes. A fragtype indicates how the asso-

ciated fragment can be combined with other structures.

The following list describes the basic form of fragtypes.
Expression: This fragtype contains one expression only.

Declarations: This fragtype contains a sequence of declarations only.

Statements: This fragtype contains a sequence of statements only.
Procedure: This fragtype contains one procedure only.
Module: This fragtype contains one module only.

System-layer: ‘This fragtype contains a combination of procedures, modules and subsystems
which have the same parent. For example, in Figure 3, (B, C, D) is a system-
layer of node A; whereas, (P, A} is a system-layer for node X.

Subsystem: This fragtype contains a combination of procedures and modules which have a
hierarchical relationship. This relationship is structural, shown by the tree arcs,
and is according to the target language rules. In addition, the uses-relationship is
hased on procedure calls within a given node, and is dealt with by the incremental
semantic analyser. Figure 3 shows that A(B, C, D) and X(P, A) are subsystems,
where leaf nodes are treated as procedures or modules as the case may be.

Abstract: This fragtype contains a sequence of English-like phrases only. Each phrase is an
abstract representation, at a user chosen conceptual level, of a programming solu-
tion. For example, a list of phrases may represent a layer of system modules, a
set of declarations, a set of statements, etc. This choice of target objects is a
user's decision. MUPE-2 does not understand a phrase, as it is not knowledge
based. Hence, onus is upon the user to make certain that the phrase is written
with intent.

169

Figure 3 - Subsystem and System-layer relationships

The breakdown of fragtypes above is generalised, in order to avoid specific details of
Modula~2. In this language, for example, there can be several kinds of subsystems, such as
Implementation-Module-Subsystem, Unit-Subsystem, Procedure-Subsystem and Program-Module-
Subsystem. Also, there is richness in fragtypes for data declarations and module interface. In con-
trast, fragtypes for Pascal are much simpler. This simplicity is reflected in the homogeneity of
subsystem and systemn structures described above. In essence, the concept of fragtypes is powerful

enough to be applicable to a class of programming languages.

A parallel can be drawn between fragtypes and Pascal-like data types. Whereas fragments
of various fragtypes can be used to construct larger structures such as procedures, modules and
subsystems, data items of various types can be used to construct smaller structures such as lists,
trees and arrays. In contrast, however, a fragtype is subject to transitions from one fragtype to

another.

Figure 4 illustrates the flexibility together with the protection provided by fragtypes and
their operations during system construction. For example, it shows that a fragment of fragtype
Abstract can be refined into a fragment of another fragtype. This is useful for both programming
in-the-small and in-the-large. It also shows that statement and declaration fragments can be
turned into procedure and module fragments, say, in bottom-up design. Similarly, procedures and

modules can form a system-layer which can then be turned into a proper subsystem. Notice that

170

Figure 4 - Fragtype transition diagram

ez h
9y tem)
.
aystem
. (Inyer
module .
1
pr 2] 2]
4
] /)
—
decls /] v
e raiions
abatract J L -~ —/

it is also possible to arrive at smaller structures from larger ones, and to transform procedures and

modules,

These transitions of fragtypes are achieved by using various commands, such as

Copy/Insers, Delete, Transform, Replace/Refine, and their variants. However, before illustrating

specific examples of usage, she next section introduces semantic rules which are applied during the

fabrication of softwars.

3.2. Rigorous Construction

Because fragtypes are formal, similar to data types in Pascal-like languages, it is possible to

formulate semantic rules to ensure correct fragtype transitions, and fragtype compatibility rules

to ensure well-formed fragients.

17

First, some meta-symbols are introduced so that they can be used in the fabrication rules

that follow:

{}n means >s= n times

<..> means inserted-around

/I\ means which-is-root-of

0 means optional

| means or

L= means fragment-is-composed-of

Subsystem = (Procedure[Module) /[\ (System-layer|Procedure[Module|Abstract)

System-layer = {Procedure|Module|Subsystem]Abstract}2

Module == Module-template <...> [Declarations|Abstract}{StatementsjAbstract]

Procedure = Procedure-template <...> [Declarations|Abstract]
[Statements|Abstract]

Abstract = {English phrase}1

Statements = {statement}1

Declaration = {declaration}1

Expression == expression

These rules ensure that structures are well-formed according to the target language. For
example, inserting a fragment of fragtype Declarations in the midst of a fragment of fragtype
Statements is not possible. This principle is similar to the data type compatibility rules in
strongly typed languages. The beneflt here is that a system constructed from basic building blocks

is completely well-formed.

It is worth mentioning here that the fabrication rules do not restrict shared use of a com-
ponent by other components. This is a semantic issue which is resolved by the semantic analyser.
.In MUPE-2, the user is informed about legal calls to procedures from a given component in a sub-

system, with the help of colour coding.

Besides fragment-level semantics, there can be semantic checking within a fragment. For

example, in the following fragment of declarations, ‘elementtype’ is not defined.

Declarations

TYPE
range == 1 ., 10;
a == ARRAY [range | OF elementtype;

172

This could have been deliberate, as it may already have been defined in the procedure in which
this fragment is to be inserfed. Therefore, ‘elementtype’ is highlighted with a colour which means
semantic ceution rather than semantic error. Such checking for a fragment is possible by retain-

ing a local symbol table.

An important point to note is that semantic checking terminates at the boundary of a frag-
ment. This is because the fragment is context-free. All semantic failures in a fragment, which
would normally be flagged as semantic errors on the procedure and the module screens, are

flagged as semantic cautions on the scratch pad.

Notice that in the case of a newly created fragment of fragtype Statements, all variables are
semantic cautions. In the case of a fragment of fragtype Subsystem, checking can be more exten-
sive because simple operations such as insert and delete can have major effects on the rest of the

subsystem, in terms of non-iocal accesses and procedure calls.

At the point of insertion of a fragment in an environment (i.e. another fragment, current
procedure or module), incremental semantic checking takes place. If the environment is on the
seratch pad thenm semantic cautions, if any, are highlighted. Otherwise, semantic errors are

highlighted.

3.3. Top-down and Bottom-up Methodologies

While the fragitype compatibility rules described in the previous section are rigorous, they
do not support any parsicular developmenti methodology. In particular, providing flexibility of
top-down and bottom-up methodologies at any stage of software development is an important

asset of a development tool.

The serasch pad provides this fexibility by automatically changing the fragtype of a partic-
ular fragment, depending on a user action. Figure 5 shows the operations which can trigger off a
fragtype change, and Figure 6 is an example sequence of top-down and bottom-up actions. From
this, it is clear that the scratch pad facilitates programming in-the-large and in-the-small, and

top-down and bottom-up methods, in an integrated and orderly manner.

173

Fragrype (after)

System=-
Abstract | Expression Peclarationd Statements | Procedure | Module layer Subsystem

hoscract 5 a sl Adeal bAe f

Expression

Declarations ® A A

Etatements ® A A

Frocedure QDD A A

Fragtype (hefore)

Hodule qod A A

Taver ® ! @ A

Bubsystem ® ® ® A

1 Refine QDD : Transform

PN
=]
A : Insert around @ : Delete

: Insert beforefafter

Figure 5 - Operations that trigger off a fragtype change

The basic form of the actions that change one fragtype into another are precisely those
which are available on the procedure screen and the module screen. In fact, one uses the same edi-

tor on the scratch pad, and thus, uniformity is maintained by the system.

3.4. Repository for Building Blocks

The scratch pad derives its power from the formal concepts introduced thus far and the

tools that support these concepts. One such tool is the fragment library (FRAGLIB).

FRAGLIB saves, and makes available, fragments of various fragtypes. These fragments are

#

-1 <Abstracts

<reed an array of 10
numbers>

<opply o random Tunciion
on eagch efement>

<print the srray>

mm@

refine/replece

1 System~lager

174

=

Statements

FOR ¢id> := 1 70 10 DO
<input e numbery
END;

on each efement>
<print the array>

<apply o randem function

(=1

System~layer

® &

Fregment #1 is inserted in fragment

7 {which contained modufe C}

group procs. " Insert sfter’
AB procedure B
- J
=
-7 System-lager
‘insert after “Insart sround’
Froc D Modute M
i il
&ng group
L&D

Figure 8 - An exampie of integrated operations

4 ™y
*1 Stataments
FOR $:=1 7O 10 00

Readint{a{i}}

applyrandom {a);
<print the orrey>

1

" Insert Around *
Procedura A

=1 Procedure

Procedure A ;
BEGIN

FoR =170 10 DO
Resdint{alil}
END;

applyrandom {g);

<print the array>
END & ;

“~

-7 Suhsysiem

175

normally commonly used routines, data structures and algorithms; intra-program usable data
structures and algorithmic fragments, and partially completed new fragments, system-layers and
sub-systems. FRAGLIB, therefore, is a repository for both complete and incompiete fragments
and sub-systems. Together with the other tools provided in the scratch pad, such a facility per-
mits one to rapidly construct prototype, partial or complete systems, as they may not need build-

ing from scratch.

The library structure is basically a hierarchy of rings. Each ring holds fragments of various
fragtypes. The internal representation of each fragment is the same as those in the scratch pad
itself, and those on the other two screens. Thus transporting fragments can be somewhat
simplified. In addition, while the current design has no provision for version control of a fragment,

such a facility may be included later on top of the kernel library structure.

Parallel work to the idea of a fragment library can be found in TT [Balze81], PSI [Brots8l]
and PA [Waterg82]. These three, however, are knowledge-based approaches, which rely on pro-
gramming clichés, and deal with programming-in-the-small. The last one, in particular,

represents program structures as plans, and it provides an editor which operates on such plans.

In MUPE-~2, a fragment may be referenced to, from any of the three screens, by its system
allocated number or its user given name or description if any. By default, the fragment ‘hung’ on
the current hook is accessed. In addition, a descriptive search facility (such as ‘man -k’ on UNIX)
provides 3 list of fragments that might be of interest. It is clear that FRAGLIB forms an impor-
tant and an unavoidable bridge for transporting fragments among the three screens. Without it,

the power of MUPE-2 would be severely curtailed.

3.5. Development Tool

Underlying the concept of a fragtype is a single fragtype driven editor which handles both
programming in-the-large and in-the-small, and top-down and bottom-up methodologies. This

same editor is available in varying strengths on the three screens.

For example, on the procedure screen, the editor will function only on one procedure or a

176

module at a time {i.e. Procedure or Module fragtype}. On the module screen, it will function on
the module tree skeleton (i.e. Subsystem fragtype). Yet in the scratch pad, it will vary according

to the fragtype of the fragment being edited.

Fragtype changes in the scratch pad {see Figure 5) trigger off dynamic changes in the edit-
ing capabilities. This implies that, the editor is context-sensitive MadVL84]. Thus, when editing
a fragment of fragtype Statements, only those features of the editor are active that permit syntac-
tically correct construction of the statements. In addition, by, say, inserting a procedure template
around all the statements, the editing capabilities now autcmatically switech to that which are
valid for a whole procedure. Based on the same principle, when the fragtype of a fragment
changes from Procedure into System-layer for example, the editing capabilities change from

programming-in-the-small 1o programming-in-the-large.

The uniformity in this all ¢n one structured editor is achieved primarily because of its fol-

lowing two main characteristics:
(i) The editor always operates on a fragment of some fragtype, and

(ii) It integrates programming in-the-large and in-the-small, and top-down and bottom-up
methodologies.

To the user, this approach results in the following three principal benefits:
(i) The notion of a software building block is concrete.
(ii) The building blocks can be used to construct a well-formed software edifice, and

(iii) The engineering process is versatile.

4. Conclusion

A novel approach to programming is proposed in this paper, to overcome some of the
difficulties apparent in programming environments, such as those mentioned in [TeiRes81,
DelMS84, FIMPS84] and others. The authors believe that for engineering non-trivial piece of
software in an integrated manner, a programming environment should be more than just a struc-

tured editor and a run-time system with debugging aids.

In particular, a scratch pad facility which is based on the concept of a fragtype, together
with its fragment library, would achieve for reasonably large programs what Pascal has achieved

for small programs. That is, formalisation of a fragment and flexibility in its utilisation.

177

The work described in here is ongoing, but an area of immediate concern is the testing of
fragments in the scratch pad. This problem is being approached in two ways. One is the system
generated environment for a fragment, and another is a user hard-wired environment. While both
schemes may be desirable, the latter appears to be a non-trivial task for dynamic data structures

[Madwisi, Madhas4)].

Finally, MUPE-2 owes much to the recent and current research in programming environ-

ments, which has pointed out the need for a scratch pad facility.
ACKNOWLEDGEMENT

The work described in this paper was in part supported by FCAC, Quebee, Canada under Grant

290-19.

5. References

[AYor81] Alford, MW.: SDS: Ezperience with the Software Development System. In Software
Engineering Environments, (ed) Hunke, H., North Holland Pub. Co., Amsterdam,
1981,

[ArcCo81] Archer, J.E., Conway, Jr and R.: COPE: A Cooperative Programming Environment.
Technical Report 81-459, Cornell University, June 1981,

[Balzes1l] Balzer, R.: Transformational Implementation: An Ezample. IEEE Trans. Soft. Eng.,
Vol. SE-7, Jan. 1981, pp. 3-14.

[Brotssl] Brotsky, D.C.: Program understanding through cliché recognition. M.S. thesis propo-
sal, MIT, Cambridge, MA., 1981.

[DHK1.84] Donzeau-Gouge, V., Houet, G., Kahn, G., Lang, B.: Programming Environments
Based on Structured Editors: The MENTOR Experience. In Interactive Program-
ming Environments (eds.) Barstow,D.R., et al., McGraw-Hill, 1984.

[DelMS84] Delisle, NM., Menicosy, D.E., Schwartz, M.D.: Viewing ¢ Programming Environment
as a Single Tool. Proc. ACM SIGSOFT/SIGPLAN Soft. Eng. Symposium on Practi-
cal Software Development Environments, ACM Sigplan Notices, Vol. 19, No. 5, May
1984, pp. 49-56.

[FIMPS84] Fischer, C.N., et al: The Poe Language-Based Editor Project Proc. ACM
SIGSOFT/SIGPLAN Soft. Eng. Symposium on Practical Software Development
Environments, ACM Sigplan Notices, Vol. 19, No. 5, May 1984, pp. 21-29.

[Ivie77] Ivie, E.L.: The Programmer’s Workbench - A machine for Software Development.
Comm. ACM, Vol. 20, No. 10, Oct. 1977, Pp. 746-753.

[Madhag4] Madhavii, N.H.: Visibility Aspects of Programmed Dynamic Data Structures. Comm.
ACM, Vol. 27, No. 8, Aug. 1984, pp. 764-776.

[MadVL.84] Madhavii, N.H., Vouliouris, D. and Leoutsarakos, N.: The Importance of Context in
an Integrated Programming Fnvironment. To appear in the Proc. 18th Annual
Hawaii Int. Conf. on System Sciences, Hawaii, Jan. 1985,

[MadWig1] Madhavji, N.H., and Wilson, LR.: Dynamically Structured Date. Software-Practice
and Experience, Vol. 11, No. 12, Dec. 1981, pp. 1235-1260.

MedMNog1]

'Reiss84]

[Snowds1]
[TeiRe81]
[Waters?2]
[Wilanso}

[Wirths2]

Medina-Mora, R., Notkin, D.8.: ALOE users’ and implemeniors’ gutde. Tech. Rep.
CMU-CS-81-145, Dept. of Comp. Science, Carnegie-Mellon Univ., Pittsburgh, Pa.,
Mov. 1981.

Reiss, S.P.: Qraphical Program Development with FECAN Program Development Sys-
tems. Proc. ACM SIGSOFT/SIGPLAN Soft. Eng. Symposium on Practical Software
Development Environments, ACM Sigplan Notices, Vol. 19, No. 5, May 1984, pp.
30-41.

Snowdon, R. A.: CADES and Software System Development. In Software Engineering
Environments, {ed) Hinke, H., North Holland Pub. Co., Amsterdam, 1981.

Teitelbaum, T., Reps, T.: The Cornell Program Synihesizer: A syntax directed pro-
gramming environment. Comm. ACM, Vol. 24, No. 9, Sept. 1981, pp. 563-573.

Waters, R. C.: The Programmer’s Apprentice: Knowledge Based Progrem Editing.
IEEE Trans. Soft. Eng., Vol. SE-8, No. 1, Jan. 1982, pp. 1-12.

Wilander, J.: An Interactive Programming System for Pascal. In Interactive Pro-
gramming Environments, (eds.) Barstow, D.R., et al., McGraw-Hill, 1984.

Wirth, N.: Programming in Module-2. Springer Verlag, 1982,

