
S O F T W A R E C O N S T R U C T I O N U S I N G T Y P E D

F R A G M E N T S

Nazim H. Madhavji
Niko8 Leoutsarakos
Dimitri Vouliouris

School of C o m p u t e r Science
MeGi l l Un i ve r s i t y

805 Sherbrooke S t ree t W e s t
Mont rea l , P Q ,

C A N A D A H3A 2K6

ABSTRACT

R e c e n t r e sea rch in the field of p r o g r a m m i n g e n v i r o n m e n t s ha s resu l ted in
i n t eg ra t ed s y s t e m s w h i c h d e m o n s t r a t e the i r use in t he d e v e l o p m e n t of sma l l pro-
g r ams . I t is a rgued here t h a t such s y s t e m s are n o t su i tab le for non- t r iv ia l
so f tware d e v e l o p m e n t , as t h e y s u p p o r t p r o g r a m m i n g - i n - t h e - s m a l l only . T h i s
p a p e r i n t roduces a new concep t of a t y p e d f r a g m e n t cal led fragtype, which m a k e s
t h e no t i on of a sof tware bu i ld ing block concrete . W i t h t he he lp o f the unde r ly ing
f r ag type d r iven s t r u c t u r e d editor , a n d a f r a g m e n t l ibrary, s u c h bu i ld ing blocks
can be used to cons t ruc t a wel l - formed large sof tware edifice.

I . I n t r o d u c t i o n

T h e concep t of in teg ra t ion has recent ly p rec ip i t a t ed widesp read research efforts in combin -

ing p r o g r a m m i n g tools, such as an editor, compiler , l inker and debugge r in to cohe ren t p rog ram-

m i n g e n v i r o n m e n t s . E x a m p l e s of such s y s t e m s include the Cornel l P r o g r a m Syn thes i ze r [TeL~e81],

A L O E [MedNo81], M E N T O R [DHKL84], Magp ie [DelMS84], P O E [FJMPS84], P E C A N [Reiss84]

and C O P E [ArcCo81}. W hi l e s u c h s y s t e m s have clearly d e m o n s t r a t e d the i r use in t he develop-

m e n t of syn tac t i ca l ly , and in some cases, s t a t i c - s eman t i ca l l y correc t small programs , the i r viabil-

i ty is still to be t e s ted in the d e v e l o p m e n t of reasonably large prog rams .

I t is a rgued here t h a t cu r ren t ly avai lable p r o g r a m syn thes ize r s are no t su i tab le for non-

t r iv ia l so f tware d e v e l o p m e n t , p r imar i ly because t h e y s u p p o r t p r o g r a m m i n g - i n - t h e - s m a l l on ly . For

the d e v e l o p m e n t of r e a sonab l y large p rograms , a h igh ly i n t e g r a t e d s c r a t c h pad faci l i ty based on a

new concep t o f a f r a g m e n t type , cal led fragtype, is p roposed here.

~64

F rag types have a formal basis, s imilar to da ta types in P~ca l - l ike p r o g r a m m i n g languages,

and therefore they provide protect ion dur ing the const ruct ion of software. A f r agmen t of a cer-

t a in f ragtype can contain objects which are compatible wi th t h a t f ragtype only. Such objects can

be of small granular i ty , such as an expression or they can be of large granular i ty , such as a sub~

sys t em of a p rogram. Thus , a f r agment is a formal s t ruc ture of variable granular i ty .

In order ~o man ipa la t e fragment, s, the scra tch pad provides a s t ruc tured edi tor which can be

used to create a new f ragment . The editor also has the capabil i ty to develop, refine and assemble

existing f r agmen t s into a new one, possibly of a different fragtype, in an in tegra ted and well-

defined manner . Thus , the editor is a machine for fabricat ing sof tware f rom f ragmen t s of var ious

fragtypes.

One str iking difference be tween this editor and o ther s t ruc tu red editors is t ha t the former Is

driven by fragtypes. Hence, it, au tomat ica l ly ad jus ts itself according to the f ragtype of the frag-

m e n t being opera ted upon. This is a dynamic feature of the editor, as a f ragtype can change at

any t ime depending on the user action. It is this feature of the editor, combined wi th the concept

of fragtypes, which makes the scratch pad flexlble enough to suit wide varieties of software

deve lopment methodologies and yet provide protect ion during software construct ion.

Seven major software engineering notions considered in the design of the scratch pad are:

® Sof tware building blocks.

• Rigorous construct ion.

® Top-down and b o t t o m - u p methodologies.

o Reposi tory for building blocks.

® In tegra t ion of activities.

• Tes t ing of building blocks.

o Deve lopment tool.

The above ment ioned points are a subject of cur rent research in the context of the MUPF_~2

project a t McGill Universi ty. This paper focuses on the scra tch pad facility which is an impor-

t a n t componen t of the project . Before considering the scratch pad in more detail, the next sec-

t ion pu t s it in to perspective.

165

2. T h e M U P E - 2 E n v i r o n m e n t : A n O v e r v i e w

The McGill Universi ty P r o g r a m m i n g Env i ronmen t (MUPE-2), is an integrated env i ronment

for the design, development and use of Modula-2 [Wirth82] programs. The level of MUPF~2 (see

Figure 1) can be viewed as above t h a t of p rogram synthesizers, bu t benea th t h a t of full sof tware

engineering environments , such as CADES [SnowdS1], P W B / U N I X [Ivie?7], SDS JAilorS1] and

others.

PROORAH

AIDES CP'5
CADIE$ ALOE
SDS MA6PIE
SIPS PECAN
APSE HENTOR

m O

O D

a I I

Figure 1 - The level of MIYPE-2

MIJ~E-2 has a characterist ic coloured user interface, which is divided into w h a t are te rmed

the module screen, the procedure screen and the scra tch pad, as shown in Figure 2. The module

screen is used for programming- in- the- large on a chosen implementa t ion module. Here, wi th the

use of its context-s~nsitive s t ruc tured editor, a n u m b e r of operat ions can be performed on the

internal nodes of the module tree. Besides, the module screen can communica te wi th the scratch

pad by t ransferr ing subsys tem f ragments t o / f r o m the personal f ragment l ibrary called FRAGLIB.

The procedure screen is used for programming-inothe-small on a chosen procedure /module

(e.g. T) f rom the current module on the module screen, thus mainta in ing the complete

!66

,(F R f l G i _ I B)

• ° o

u ill

Figure 2 - MUPF_~2 screen layout.

env i ronment of the procedure. Opera t ions of the edi tor pe rmi t manipu la t ion of language and

meta- language templa tes and Engl ish phrases. Besides, similar to the module screen, the pro-

cedure screen can communica te wi th the scra tch pad by t ransferr ing procedure f ragments t o / f r o m

FRAGLIB.

The sc ra tch pad is a context-free mul t i -purpose workbench of the system, where snbsysbem

and procedure f ragments may be developed, assembled and tested for inclusion in the main pro-

g r am or in FRAGLIB. Together , the three screens serve the widel3~ known activities of sof tware

engineering: p r o g r a m m i n g in-~he-large and in-the-small , design, exper imenta t ion and test ing in a

167

highly integrated manner .

The key features of MUPF~2 are summar i sed by the following :

* I t s par t i t ioned user interface.

* A scratch pad facility for operat ing on typed f ragments .

• Universal operat ions based on the s t ruc tured cursor.

• Coloured graphics for visually (instead of textually) conveying semantic informat ion to the

user.

• A n u m b e r of contextual views, to suppor t display, editing, assembling and execution of sub-

sys tem and p rog ram fragments .

• Call-tree and user selected walk- through mechanisms.

• In tegra ted documenta t ion capabil i ty based on p rog ramming decisions, their refinements and
tex tua l or graphical comments .

• In te rna l representa t ion which is minimal and is compatible wi th user operat ions.

3. S o f t w a r e C o n s t r u c t i o n in t h e S c r a t c h P a d

The scratch pad provides a context-free env i ronment to the user, so t h a t p rog ram f ragments

can be developed Independent of the main program. This implies t h a t semant ic checking in the

scratch pad is per formed up to the f ragment boundary . In contrast , full semant ic checking can be

carried out in the procedure and the module screens, since the entire language (Modula-2)

env i ronment is available there.

A new f r agmen t can be buil t in the scratch pad, f rom scratch, by jo t t ing down ideas as

English phrases or by const ruct ing an expression, s ta tements , declarations, a procedure, a module,

a sys tem-layer (described later) or a subsys tem. This const ruct ion is facilitated by the underlying

s t ruc tu red editor. Fo r identification purposes, a f ragment may be given a name wi th its descrip-

t ion. By default , the sys tem issues an unique f ragment number .

If desired, an existing f ragment can be selected f rom a set of working f ragments , or it can be

unhooked f rom FRAGLIB, the f ragment library. The library is a collection of f ragments designed

in the scra tch pad, hooked f ragments of a procedure f rom the procedure screen and hooked frag-

men t s of a subsys t em f rom the module screen.

The under lying editor has the capabil i ty to manipula te f ragments of different fragtypes, so

t h a t they can be developed, refined and assembled into new f ragments in an integrated b u t ord-

erly manner . A new f ragment can be hooked into FRAGLIB for later use on any of the three

168

screens or it can be retained in the scratch pad as one of the working f ragments .

3 .1 . S o f t w a r e B u i l d i n g B l o c k s

Cons t ruc t ion of a reasonably large p rogram generally involves p rog ramming in-the-large and

in-the-small . Dur ing th is activity, m a n y utilise bo th top-down and b o t t o m - u p methods of

development . However, a sys tem can take a long period to complete, and therefore, rapid proto-

typ ing is often desirable to quickly determine the na ture of the eventual sys tem. In addit ion, dur-

ing the design of such a sys tem, one may experience mundane tasks of re- inventing p rog ram

s t ruc tures t h a t are already in use in o ther projects , and often, one may need to search for efficient

and wel l -wri t ten algori thms.

Well-defined sof tware building blocks axe a step towards solving the above ment ioned prob-

lems in sof tware engineering, as they provide formal s t ruc tures for assembling and re-using

software. In MUPF~-2, a f ragment is a building block, and it is well-defined because it is a frag-

typed s t ruc ture which can be identified th rough its a t t r ibutes . A f ragtype indicates how the asso-

ciated f r agment can be combined wi th o ther s t ructures .

Expression:

Declarations:

S ta tements :

Procedure:

Module:

System-layer:

Subsys tem:

_Abstract:

The following !ist describes the basic fo rm of fragtypes.

This f ragtype conta ins one expression only.

This f ragtype contains a sequence of declarat ions only.

This f ragtype contains a sequence of s t a t e m e n t s only.

This f ragtype contains one procedure onIy.

This f ragtype contains one module only.

This f ragtype contains a combinat ion of procedures, modules and subsys tems
which have the same parent . F o r example, in Figure 3, (B, C, D) is a sys tem-
layer of node A; whereas, (P, A) is a sys tem-layer for node X.

This f ragtype contains a combinat ion of procedures and modules which have a
hierarchical relationship. This relationship is s t ructural , shown by the tree arcs,
and is according to the target language rules. In addition, the uses-relationship is
based on procedure calls within a given node, and is dealt wi th by the incremental
semant ic analyser. Figure 3 shows tha t A(B, C, D) and X(P, A) are subsys tems,
where leaf nodes are t reated as procedures or modules as the case may be.

This f ragtype contains a sequence of English-like phrases only. Each phrase is an
abs t rac t representa t ion, at a user chosen conceptual level, of a p r o g r a m m i n g solu-
tion. Fo r example, a list of phrases may represent a layer of sys tem modules, a
set of declarations, a set of s ta tements , etc. This choice of target objects is a
user ' s decision. MUPE-2 does not understand a phrase, as it is not knowledge
based. Hence, onus is upon the user to make certain tha t the phrase is wr i t t en

wi th intent .

169

x
I \

I \
P A !i!\\

B C D

Figure 3 - Subsys tem and System-layer relat ionships

The breakdown of f ragtypes above is generalised, in order to avoid specific details of

Modula-2. In this language, for example, there can be several kinds of subsystems, such as

Implementa t ion-Module-Subsys tem, Uni t -Subsys tem, Procedure-Subsys tem and Program-Module-

Subsys tem. Also, there is r ichness in fragtypes for data declarations and module interface. In con-

t rast , f ragtypes for Pascal are much simpler. This simplicity is reflected in the homogenei ty of

s u b s y s t e m and sys tem s t ruc tures described above. In essence, the concept of f ragtypes is powerful

enough to be applicable to a class of p rog ramming languages.

A parallel can be drawn between f ragtypes and Pascal-like da t a types. Whereas f ragments

of var ious f ragtypes can be used to const ruct larger s t ruc tures such as procedures, modules and

subsys tems, da ta i tems of various types can be used to const ruct smaller s t ruc tures such as lists,

trees and arrays. In contrast , however, a f ragtype is subject to t ransi t ions f rom one fragtype to

another .

Figure 4 i l lustrates the flexibility together wi th the protect ion provided by fragtypes and

the i r opera t ions during sys tem construction. Fo r example, it shows t h a t a f ragment of f ragtype

Abs t rac t can be refined into a f ragment of another fragtype. This is useful for bo th p rog ramming

in-the-small and in-the-large. It also shows tha t s t a t emen t and declaration f ragments can be

tu rned in to procedure and module f ragments , say, in bo t tom-up design. Similarly, procedures and

modules can form a sys tem-layer which can then be turned into a proper subsys tem. Notice tha t

170

(

f

Figure 4 - F rag type t ransi t ion diagram

it is also possible to arrive at smaller s t ruc tures f rom larger ones, and to t r ans fo rm procedures and

modules.

These t rans i t ions of f ragtypes are achieved by using var ious commands , such as

Copy / In se r t , Delete, Trans fo rm, Replace/Refine, and their var iants . However , before i l lustrating

specific examples of usage, the next section introduces semant ic rules which are applied during the

fabr icat ion of software.

3 . 2 . Rigorous Construction

Because f ragtypes are format, s imilar to da ta types in Pascal-like languages, it is possible to

formulate semant ic rules to ensure correct f ragtype transi t ions, and f ragtype compat ib i l i ty rules

to ensure well-formed f ragments .

171

Firs t , some me ta - symbo l s are in t roduced so t h a t they can be used in the fabr ica t ion rules

t h a t follow:

I~}.n " means >---- n t imes
• ~ means inse r t ed-a round

/ [\ means which- is - root -of

1!: ----°°--°r
m e a n s f ragment- is -composed-ol

Subsys t em
Sys tem- layer
Module
P rocedure

A b s t r a c t
S t a t e m e n t s
Declaration
Expression

: : = (P r ° c e d u r e l M ° d u l e) / I \ (Sys tem' layer lProcedure [M°dule lAbs t rac t)
: : = {Procedure IModulelSubsyst 'emtAbstract} 2
::~--- Module - t empla te <:.. .:> [Declarat ions]Abstract] [Sta tements[Abstract]
: : ~ P rocedure - t empla t e <:... > [Declarat ionslAbstract]

[S ta tements lAbs t rac t]
::~- {English ph rase} l
: : ~ { s t a t e m e n t } l
::~-~- {declarat ion} 1
::~-~ expression

These rules ensure t h a t s t ruc tures are wel l - formed according to the ta rge t language. For

example , inser t ing a f r agmen t of f ragtype Declarat ions in the mids t of a f r agmen t of f ragtype

S t a t e m e n t s is no t possible. This principle is s imilar to the d a t a type compat ib i l i ty rules in

s t rongly t y p e d languages. The benefi t here is t h a t a sys t em cons t ruc ted f rom basic bui lding blocks

is comple te ly wel l - formed.

I t is wor th ment ioning here t ha t the fabr icat ion rules do no t res t r ic t shared use of a c o m -

p o n e n t by o the r components . This is a semant ic issue which is resolved by the semant ic analyser.

• In N~J'PE-2, t he user is in formed abou t legal calls to procedures f rom a given componen t in a sub-

sys tem, wi th the help of colour coding.

Besides f ragment - leve l semant ics , there can be semant ic checking wi th in a f ragment . Fo r

example , in t he following f r agmen t of declarat ions, "e lement type ' is no t defined.

Declara t ions [

..... T Y P E
range ~ 1 . , 10;
a ~-~ A R R A Y [range] O F e lement type ;

172

This could have been deliberate, as it may already have been defined in the procedure in which

th is f r agment is to be inserted. Therefore, ' e l ement type ' is highlighted wi th a colour which means

~emantic caution r a the r t han semant ic error. Such checking for a f r agment is possible by retain-

ing a local symbol table.

An i m p o r t a n t poin t to note is t h a t semant ic checking te rmina tes at the boundary of a frag-

ment . This is because the f ragment is context-free. All semant ic failures in a f ragment , which

would normal ly be flagged as semant ic errors on the procedure and the module screens, are

flagged as semant ic caut ions on the scra tch pad.

Notice t h a t in the case of a newly created f ragment of f ragtype S ta tements , all variables are

semant ic cautions. In the case of a f ragment of f ragtype Subsys tem, checking can be more exten-

sive because simple opera t ions such as insert and delete can have major effects on the rest of the

subsys tem, in t e rms of non-local accesses and procedure calls.

A t the poin t of insert ion of a f r agment in an env i ronment (i.e. ano ther f ragment , current

procedure or module), incrementa l semant ic checking takes place. If the env i ronment is on the

scra tch pad then semant ic cautions, if any, are highlighted. Otherwise , semant ic errors are

highlighted.

3.8. T o p - d o w n a n d B o t t o m - u p M e t h o d o l o g i e s

While the f ragtype compat ibi l i ty rules described in the previous section are rigorous, they

do not suppo r t any par t icu lar development methodology. In part icular , providing flexibility of

top-down and b o t t o m - u p methodologies at any stage of sof tware deve lopment is an i m p o r t a n t

asset of a deve lopment tool.

The scra tch pad provides this flexibility by automat ica l ly changing the f ragtype of a partic-

u la r f ragment , depending on a user aztion. Figure 5 shows the opera t ions which can tr igger off a

f rag type change, and Figure 8 is an example sequence of top-down and b o t t o m - u p actions. F r o m

this, it is clear t ha t the scra tch pad facilitates p rog ramming in-the-large and in-the-small , and

top-down and b o t t o m - u p methods, in an integrated and orderly manner .

173

Abstract Expression Declaration., Statements I Procedure I Module

Abstract

Expression

Declarationl

?rocedure

, i I lodule

4~> I
System-
ts.r ® ® ®

;ubsystem

®i ® ®

4Dr>

: Refine ~> : Transform

: Insert around ~ : Delete

A : Insert before/after

Figure 5 - Operat ions tha t tr igger off a fragtype change

System-
layer Subsystem

A

A

A

The baMc form of the act ions t h a t change one fragtype into another are precise ly those

w h i c h are avai lable on the procedure screen and the modu le screen. In fact , one uses the same edi-

tor on the scratch pad, and thus, un i formi ty is ma in ta ined by the sys tem.

3 .4 . R e p o s i t o r y f o r B u i l d i n g B l o c k s

The scratch pad derives i ts power from the formal concepts in troduced thus far and the

tools tha t support these concepts . One such tool is the f ragment l ibrary (FRAGLIB) .

F R A G L I B saves, and m a k e s avai lable , f ragments o f var ious fragtypes. These f ragments are

74

i ~ ! <Abs t rac t>

<read ener ray of 10
aumber~>
<apply a random funct ion
on each element>

<print the array>

refinelreplace

Statements

I FOR old> ~ 1 TO t0 DO
<]nput e number>

END;
<apply a random funetlorl
an each elemeet>

<print the a r ray>

Statements

FOR I:=l TO]~0 00
ReadInt(a|]|)

END:

applyrandora (e);

<print the a r r a y >

~ " Insert Around
Procedure A

r--

! # I System-layer

group ~r'~cs.
A,B

~-I 8ystem~loyer

' @

®
• Insert after'
procedure 8

~ ! Procedure

Procedure A ;
OEGIN

FOR I:=I TO 10 DO
Readfnt(a[i])

END;

appl~rondom (~);

<pAnt the a~t~>

END A. ;

Fragment = i is Inserted In fraymen~
=7 (which contained module C)

&

• Insert after" I

~'7 ~J~stem-layer

"Insert around'
Module M

#7 Subsystem

Figure 6 - A n example of integra~ed opera t ions

175

n o r m a l l y c o m m o n l y u s e d rou t ines , d a t a s t r u c t u r e s a n d a lgor i thms ; i n t r a - p r o g r a m usab le d a t a

s t r u c t u r e s a n d a lgo r i thmic f r a g m e n t s , a n d par t ia l ly c omp le t ed new f r a g m e n t s , s y s t e m - l a y e r s and

s u b - s y s t e m s . F R A G L I B , therefore , is a repos i tory for b o t h comple t e and incomple t e f r a g m e n t s

a n d s u b - s y s t e m s . T o g e t h e r w i t h t h e o t h e r tools p rov ided in t h e s c r a t c h pad , s u c h a faci l i ty per-

m i t s one to r ap id ly c o n s t r u c t p ro to type , pa r t i a l or comple t e s y s t e m s , as t h e y m a y no t need bui ld-

ing f rom sc ra t ch .

T h e l ibrary s t r u c t u r e is bas ica l ly a h ie ra rchy of r ings. E a c h r ing holds f r a g m e n t s of va r ious

f rag types . T h e in t e rna l r e p r e s e n t a t i o n of each f r a g m e n t is t he s a m e as those in t he s c r a t ch pad

i tself , a n d those o n t h e o t h e r two screens. T h u s t r a n s p o r t i n g f r a g m e n t s c an be s o m e w h a t

s implif ied. In addi t ion , while the c u r r e n t des ign h a s no provis ion for vers ion con t ro l o f a f r a g m e n t ,

s u c h a faci l i ty m a y be inc luded la te r on top of the kernel l ibrary s t r uc tu r e .

Para l le l work to t h e idea of a f r a g m e n t l ibrary can be found in TI [BalzeS1], PSI [BrotsS1]

a n d P A [Water82] . T h e s e three , however , are knowledge -based approaches , wh ich rely on pro-

g r a m m i n g clichds, a n d deal wi th p r o g r a m m i n g - i n - t h e - s m a l l . T h e l a s t one , in par t icu la r ,

r e p r e s e n t s p r o g r a m s t r u c t u r e s as p lans , a n d i t p rov ides an edi tor wh ich ope ra t e s on s u c h p lans .

In MUPF~2 , a f r a g m e n t m a y be referenced to, f rom a n y of the th ree screens , by i ts s y s t e m

a l loca ted n u m b e r or i ts user g iven n a m e or descr ip t ion if any . By defaul t , t h e f r a g m e n t ' h u n g ' on

t h e c u r r e n t hook is accessed. In addi t ion , a descr ip t ive sea rch faci l i ty (such as ' m a n -k ' on UNIX)

p rov ides a l is t o f f r a g m e n t s t h a t m i g h t be of in te res t . I t is c lear t h a t F R A G L I B fo rms an impor-

t a n t a n d a n u n a v o i d a b l e br idge for t r a n s p o r t i n g f r a g m e n t s a m o n g t he th ree screens. W i t h o u t it,

t h e power of M U P E - 2 wou ld be severely curtai led.

3.5. Development Tool

U n d e r l y i n g the concep t of a f r ag type is a single f r ag type d r iven edi tor wh ich hand l e s bo th

p r o g r a m m i n g in- the- laxge a n d in - the-smal l , and t o p - down and b o t t o m - u p methodolog ies . Th i s

s a m e edi tor is ava i lab le in v a r y i n g s t r e n g t h s on the th ree screens.

F o r example , on t h e p rocedure screen, t h e edi tor will f unc t i on on ly on one p rocedure or a

176

module a.t a t ime (i.e. Procedure or Module fragtype). O n the module screen, it will funct ion on

the module tree skeleton (i.e. Subsys tem fragtype) . Yet in the scratch pad, it wilt va ry according

to the f rag type of ~he f r agment being edited.

F r a g t y p e changes in the scra tch pad (see Figure 5) tr igger off dynamic changes in the edit-

ing capabilities. This implies that , the editor is context-sensit ive [MadVL84]. Thus , when editing

a f ragment of f ragtype S ta tements , only those features of the edi tor are active t h a t pe rmi t syntac-

tically correct cons t ruc t ion of the s ta tements . In addition, by, say, inser t ing a procedure t empla te

a round all the s ta tements , the editing capabilities now automat ica l ly switch to t ha t which are

valid for a whole procedure. Based on the same principle, when the f ragtype of a f ragment

changes f rom Procedure into System-layer for example, the editing capabili t ies change f rom

programming-in-~he-smal l ~o programming- in- the- large .

The un i formi ty in this all in one s t ruc tured editor is achieved pr imari ly because of its fol-

lowing two main characterist ics:

(i) The editor a lways operates on a f ragment of some fragtype, and

(ii) I t in tegrates p rog ramming in-the-large and in-the-small , and

methodologies.

top-down and bo t tom-up

To the user, this approach results in the following three principal benefits:

(1) The not ion of a sof tware building block is concrete.

(ii) The building blocks can be used to const ruct a well-formed software edifice, and

(iii) The engineering process is versatile.

4. Conclusion

A novel approach m p r o g r a m m i n g is proposed in this paper, to overcome some of the

difficulties appa ren t in p rog ramming environments , such as those ment ioned in [TeiRe81,

DelN'flS84, FJIVIPS8~] and others. The au thors believe t h a t for engineering non-tr ivial piece of

sof tware in an ~ntegrated manner , a p rog ramming envi ronment should be more than jns t a struc-

tured editor and a run- t ime sys tem wi th debugging aids.

In par t icular , a scra tch pad facility which is based on the concept of a f ragtype, together

wi th its f r agment l ibrary, would achieve for reasonably large p rograms w h a t Pascal has achieved

for small p rograms. Tha t is. formalisat ion of a f ragmcns and flexibility in its util isation.

177

The work described in here is ongoing, but an area of immediate concern is the testing of

fragments in the scratch pad. This problem is being approached in two ways. One is the system

generated environment for a fragment, and another is a user hard-wired environment. While both

schemes may be desirable, the lat ter appears to be a non-trivial task for dynamic data structures

[MadWiSl, Madha84].

Finally, MUPE-2 owes much to the recent and current research in programming environ-

ments, which has pointed out the need for a scratch pad facility.

A O K N O W L E D G E M E N T

The work described in this paper was in part supported by FCAC, Quebec, Canada under Grant

290-19.

5. References

JAilor81] Afford, M.W.: SDS: Experience with the Software Development System. In Software
Engineering Environments, (ed) HRuke, H., North Holland Pub. Co., Amsterdam,
1981,

[ArcCo81] Archer, J.E., Conway, Jr and R.: COPE: A Cooperative Programming Environment.
Technical Report 81-459, Cornell University, June 1981.

[Baize81] Balzer, R.: Transformational Implementation: An Example. IEEE Trans. Soft. Eng.,
Vol. SE-7, Jan. 1981, pp. 3-14.

[Brots81] Brotsky, D.C.: Program understanding through clich$ recognition. M.S. thesis propo-
sal, MIT, Cambridge, MA., 1981.

[DHK_L84] Donzeau-Gouge, V., Houet, G., Kahn, G., Lang, B.: Programming Environments
Based on Structured Editors: The MENTOR Experience. In Interactive Program-
ming Environments (eds.) Barstow,D.R., et al., McGraw-Hill, 1984.

[DelMS84] Delisle, N.M., Menicosy, D.E., Schwartz, M.D.: Viewing a Programming Environment
as a Single Tool. Proc. ACM SIGSOFT/SIGPLAN Soft. Eng. Symposium on Practi-
cal Software Development Environments, ACM Sigplan Notices, Vol. 19, No. 5, May
1984, pp. 49-56.

[FJMPS84] Fischer, C.N., et al.: The Poe Language-Based Editor Project Proe. ACM
SIGSOFT/SIGPLAN Soft. Eng. Symposium on Practical Software Development
Environments, ACM Sigplan Notices, Vol. 19, No. 5, May 1984, pp. 21-29.

[Ivie77] Ivie, E.L.: The ProgrammerJs Workbench . A machine for Software Development.
Comm. ACM, Vol. 20, No. 10, Oct. 1977, pp. 746-753.

[Madha84] Madhavji, N.H.: Visibility Aspect8 o] Programmed Dynamic Data Structures. Comm.
ACM, VoL 27, No. 8, Aug. 1984, pp. 764-776.

[MadVL84] Madhavji, N.H., Vouliouris, D. and Leoutsarakos, N.: The Importance of Context in
an Integrated Programming Environment. To appear in the Proc. 18th Annual
Hawaii Int. Conf. on System Sciences, Hawaii, Jan. 1985.

MadhavJi, N.H., and Wilson, I.R.: Dynamically Structured Data. Software-Practice
and Experience, Vol. 11, No. 12, Dec. 1981, pp. 1235-1260.

[M~Wi81]

178

~¢iedNo81]

~Re~41

[SnowdSlj

[TelReSl]

{Water82]

[Wilan80]

[Wirth82]

Medina~Mora, R , Notkin, D.S.: ALOE users ~ and implementore' guide. Tech. Rep.
CMU-CS-81-145, Dept. of Comp. Science, Carnegie-Mellon Univ., P i t t sburgh, Pa.,
Nov. 1981o

Reiss, S.P.: Graphical Program Development with PECAN Program Development Sy~-
temso Proc. ACM SIGSOFT/SIGPLAN Soft. Eng. Symposium on Pract ical Software
Development Environments , ACM Sigplan Notices, Vol. 19, No. 5, May 1984, pp.
30~41.

Snowdon, R. A.: CADES and Software System Development. In Software Engineering
Envlronrnen~s, (ed) H~nke, H., Nor th Holland Pub. Co., Amsterdam, 1981.

Tei te lbaum, T., Reps, T.: The Cornell Program Synthesizer: A syntax directed pro-
gramming environment~ Comm. ACM, Vol. 24, No. 9, Sept. 1981, pp. 563-573.

Waters , R. C°: The Programmer's Apprentice: Knowledge Based Program Editing.
~ E E Trans. Soft. Eng., Vol. SE-8, No. 1~ Jan. 1982, pp. 1-12.

Wllander, J.: An Interactive Programming System for Pascal. In Interactive Pro-
gramming Environments , (eds.) Barstow, D.R., et al., McGraw-Hill, 1984.

Wir th , N.: Programming in Modula-2. Springer Verlag, 1982.

