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ABSTRACT 

A distributed programming language normally incorporates one mechanism by which 

processes communicate with each other. This mechanism can be used to transfer information or 

to synchronize the flow of control in the program. Different communication mechanisms have 

been proposed for different languages. In this paper, we provide a common framework in which 

these mechanisms can be examined independently of the languages in which they may be embed- 

ded. Operationally, this framework is a communication scheduler : formally, it is specified Mge- 

braically as a data type. A number of different communication mechanisms, such as synchronous 

and asynchronous message passing, broadcasts and remote procedure calls, are modelled and, as 

an illustration of how global properties can be analysed, we consider the problem of deadlock 

detection. 

1.  INTRODUCTION 

Modulari ty  and abstraction are used in program construction so that  a complex problem 

can be solved using a program with a number  of small and relatively simple components.  In 

sequential  programs, these components  are usually procedures, functions, or  class-like encapsu- 

lations, while concurrent  and distr ibuted programs may also contain independently executing 

processes or  tasks. Different kinds of components  are distinguished by the form of control used 

to invoke their  actions and by the means used to propagate  information from one component  

to another.  Thus,  between the  components  of a sequential program, procedure (or function) 

calls and returns are normally used to transfer information and control, and block s t ructure  

has been used to  statically control  access to data~ Many schemes have been proposed for inter- 

process communicat ion in concurrent  and distributed programs and different languages have 

used, for example, synchronous message transfer [10], asynchronous message transfer [5], corou- 

t ine calls [15] and remote  procedure calls [13]. In several of these schemes, sending da ta  in a 

message is the common means of transferring information from one process to another,  but  the 
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synchronization disciplines used for message transfer differ considerably and have important 

effects on global properties of the program, such as termination and deadlock. For example, 

the minor variation over standard CSP [10] needed to introduce output commands in guards 

adds to the symmetry and elegance of the language, makes it easier to avoid deadlock in cer- 

tain cases, but certainly leads also to some implementational complexity [1]. 

Proof of the properties of a program written in a distributed programming language usu- 

ally requires global reasoning about the whole program to be combined with local reasoning for 

each process. Such a proof can be established using a proof system which provides rules for 

each statement and for the particular communication mechanisms used in that language. 

Proof of a distributed program is usually more complex than that of a similar sequential pro- 

gram and the additional complexity is almost solely an outcome of the process interactions that 

take place through interprocess communication. Each proof system is specific to one program- 

ming language, and therefore to one set of communication mechanisms. 

It is therefore of interest to model a multiplicity of communication mechanisms in a com- 

mon framework so that their intrinsic properties can be examined independently of the opera- 

tional details of the languages in which they may be embedded. We shall attempt to do so in 

this paper, using an algebraically specified communication environment in which the com- 

ponents of the distributed or concurrent program are defined as modules. The environment 

will be defined by a set of operations whose semantics are described by axioms; algebraic 

specification of this form has been used for defining abstract data types (e.g., Gognen, 

Thatcher and Wagner [8], and Guttag and Homing [9]), so we could consider this environment 

to be a 'communication data type' [3]. 

2. A L G E B R A I C  S P E C I F I C A T I O N  

The algebraic specification of a data type consists of the definition of the set of opera- 

tions, or functions, of the data type together with axioms which provide the semantics of the 

operations. We shall not describe the method of algebraic specification in detail (the interested 

reader is referred to [8], [9]) but we can illustrate it, and the syntax we shall be using, by deirm- 
ing a simple data type. 

The operations of a data type will be defined using the following syntax : 

[<mnemonic> ~--~] <operation name> : < d o m a i n >  --. < r a n g e >  

Axioms will be numbered in sequence (for easy reference), sometimes given a mnemonic name, 

and written as algebraic equations with expressions on the left and right hand sides, the latter 

containing values of type range and logical expressions of the form if_then_else... 
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2.1. A S i m p l e  Da¢a  T y p e  

Let. us define MN~EQ a da ta  ~ype which models an abstract sequence of items of type 

rood-name. MNSEQ is defined using seven operations and eleven axioms, and rood-name is 

just a sequence of characters. We shall assume that  the data type BOOLEAN is predefined. 

MNSEQ 

NS --'~ NewSeq : --~ mnseq 
Insert : mnseq X rood-name --+ mnseq 
In : mnseq X rood-name --* boolean 
Empty  : mnseq --* boolean 
Dell  : mnseq X rood-name ~ mnseq 
DetAil : mnseq X rood-name ~ mnseq 
Concat : mnseq X mnseq -~ mnseq 

for all s ,sl  in mnseq and m,ml  in rood-name 

1 In(NS,m) = false 
2 In(Insert(s,m)~ml) ~- if Eq(m,ml) then true else In(s,ml) 

3 Empty(NS) ---~ true 
4 Empty(Insert(s,m)) ~ false 

5 DelI(NS,m) = NS 
6 Dell(Insert(s,m),ml) = if Eq(m,ml) then s else Insert(Dell(s,ml),m) 

7 DelAll(NS,m) -~- NS 
8 DelAll(Insert(s,m),ml) ~ if Eq(m,ml) then DelAll(s,ml) else Insert(DelAll(s,ml),m) 

9 Concat(NS,s) ~ s 
!0 Concat(s,NS) --~ s 
11 Concat(s,Insert(sl,m)) ~ Insert(Concat(s,sl) m) 

where we assume the existence of a operation Eq to determine equality between two objects of 

type rood-name. 

The operation Dell deletes the first occurrence and the operation DelAll deletes each 

occurrence of an element from the sequence : thus use of DeL4ll results in the sequence being 

treated more as a set than a sequence. The data  type MNSEQ will be used later in the defini- 

tion of other data  types. 

2.2. Design of  Algebraic Specification 

It is well known ([1I], i14]) that  it is not possible to specify every computable operation 

with a finite number of axioms. Majster [I1] therefore proposed the use of hidden operations, 

where a hidden operation is one that  may only be invoked from some operation of the da ta  

type, and which is not accessible from outside the data  type; using hidden operations it is 

always possible to give a finite specification for any computable operation [14]. We make 

extensive use of hidden operations in this paper; a ' ~ '  symbol preceding a operation identifies 

it as being a hidden operation. 
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Though algebraic specifications have been formalized and used for a number of years, very 

few data types have actually been defined in this methodology. We believe this is probably due 

to the fact that writing algebraic specifications is still an art. In this paper we shall also try to 

motivate the development of the various data types introduced in this paper. 

A particular data type can be algebraically described in a number of different ways. It is 

therefore important to know why a particular algebraic specification is chosen. So, we shall 

often indicate the choices possible as well as the consequences of each decision. Further, the 

requirements placed on a data type are typically in terms of the semantics that should be pro- 

vided for the operations. But since hidden operations are not available to a user of the data 

type, there is no obvious guideline for deciding what hidden operations should be introduced 

but we shall attempt to explain the basis for our choices. 

3. M O D E L L I N G  C O M M U N I C A T I O N  

Communication between concurrent or distributed processes requires action through some 

mediating agency such as shared memory, a communication medium, a 'transport layer', or an 

operating system. This agency provides a name space in which processes are assigned unique 

identification, and a means of conveying messages from one named process to another : in 

other words, the agency is the environment in which interprocess communication takes place 

and we shall refer to it subsequently as the 'communication environment', or just as the 

'environment'. To relate the syntax and semantics of the algebraic specification with the more 

familiar operational view, we shall 'annotate' the axioms with operational descriptions of their 

semantics. 

Initially the environment is empty and each module that is to participate in communica- 

tion must be defined in the environment using the operation EnterModName. A module then 

indicates its willingness to communicate using the operation Request, which requires as argu- 

ments the name of the module and two objects of type mnseq which contain the names of the 

modules to which it is ready to send messages and from which it will accept messages respec- 

tively. This corresponds to a non-deterministic construct in a programming language, where 

one of a set of input or output commands may be selected for execution (as is the case in 

extended CSP [1]). An additional constraint in a programming language would be that for 

communication to take place, the type of the message to be input in one process must be 

identical to that to be output by another process. For simplicity, we shall assume that 

separate syntactic checks ensure this and ignore message types in this analysis. In synchronous 

communications, which we shall be modelling initially, the first process to attempt a communi- 

cation must wait until a matching request comes from some other process. Another operation 

that must be provided is to allow a module to be removed from the environment, RemoveMod- 
NalT~e. 

The semantics of the operation Request can be informally described as follows. 
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Request(e,m,sl,s2) 
if mod-name m is not defined in the environment e then drop this request 
else if m is a t tempting to wait for itself then drop this request 
else if none of the rood-names in st  and s2 is present in the environment e 

then error 
else if m already has a request pending in the environment e 

then drop this request 
else if possible match this request with a pending request 
else if by adding this request all modules will have a request pending 

then deadlock-error 
else keep this request pending (to be satisfied later) 

(4) 

The test in (1) can be accomplished by introducing a new boolean operation IsModNameInEnv. 

This operation could be kept as a hidden operation but since there might be other uses for it 

we can allow it to be invoked by a user. The test in (2) can be handled by making use of the 

operation In defined in MNSEQ. The test in (3) can be done by introducing a new operation 

Strip which takes as arguments an environment and a mnseq and returns a mnseq which is the 

sequence of all rood-name in the input mnseq that  are also present in the environment. 

Before we consider the other tests that  have t<) be performed, we must first decide on how 

a pending request will be kept (7). The simplest solution would be to rewrite (7) as 

else Request(e,m,sl,s2) (7 t ) 

but then if Request(e,m, sl, s2) is encountered there is no way of knowing whether this is a new 

request for which tests have not been performed or whether it is a pending request for which 

the tests have been done but  for which there was no matching communication. Such a distinc- 

tion has to be made to specify, among other things, the test in (4). So, we should introduce a 

new operation, say NewFnl, and rewrite (7) as 

else NewFnl(e,m,sl ,s2) (7 ~ ~ ) 

Algebraic specifications are defined in a hierarchical fashion : a new type is defined using 

some predefined types. For example, here we are trying to define a new type env using the 

predefined types mnseq~ boolean. For any data  type, we can define a minimal set of operations 

that  are sufficient to describe every possible element of the new type [9]. In the present case, 

the operations EnterModName, NewFnl and CreateEnv are the minimal operations that  are 

sufficient to describe every element in the type env. So, any environment will be of the form 

{EnterModName, NewFnl}* CreateEnv 

This means that  the various operations that  test  whether or not an environment satisfies a par- 

ticular property must typically be defined using three axioms. (Of course, if enough additional 

operations are introduced, each original operation can be defined using one axiom only but  

then this axiom can get quite complicated [12].) However the specification can be simplified if 

we could get an arbitrary environment to be of the form 

¢ $ 
tNewFn2} CreateEnv 
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where NewFng is some new operation. 

This  can be accomplished in the  following way : 

EnterModName(e ,m)  ---~ if the mod-name m is in the environment  e then e 
else AddModName(e,m,NS,NS) 

and (7) is written as 

else change AddModName(e '  ,m,NS,NS) in e to AddModName(d  ,m,sl,s2) 

In AddModName(e,m, sl, sg), module m is not  waiting for any communicat ion if and only if 

both sl  and s2 are empty;  otherwise it is wait ing for a communication.  

The  operat ions and axioms of the  communicat ion da ta  type SYNCH-COMM are given 

below. In this da ta  type, communicat ion between modules is synchronous, i.e. a module mak- 

ing a communicat ion request is blocked until  its message is t ransmit ted  and this takes place 

when the  sender and the  receiver are both ready. We assume tha t  each domain is extended to 

include appropriate  error elements [7]. 

SYNCH-COMM 

CE ---~ Crea teEnv : --* env 
E M N  -~ En te rModName : env X mod-name --* env 
# A M N  ---- AddModName : env X rood-name X nmseq X rnnseq --. env 
Req ---- Request  : env X rood-name X mnseq X mnseq --+ env 
# A d d  : env X mod-name X mnseq X mnseq --. env 
CMatch ~ CanBeMatched : env X rood-name X mnseq X mnseq - .  boolean 
# M a t c h  : env X mod-name X mnseq X mnseq --* env 
R M N  -~-- RemoveModName : env X mod-name --* env 
# D M N  ---- Dele teModName : env X mod-name --* env 
ISMNE -~-- I sModNameInEnv : env X rood-name --* boolean 
Wai t  ---- Wai t ing  : env X mod-name --* boolean 
Al lWai t  ---- Al tWait ing : env --* boolean 
Strip : env X mnseq --* mnseq 

for all e in env, m , m l  in rood-name, sl,s2,s3,s4 in mnseq 

1 EMN(e,m) ----- if ISMNE(e,m) then e else AMN(e,m,NS,NS) 

Each module in the environment is unique; a new rood-name is added to the environment 

along with two mnseq objects (initially empty) that will be used to contain the names of the 

modules to which communications may be sent and from which communications may be 

received. 

2 Req(e,m,sl ,s2) ----- if -~ISMNE(e,m) then e 
else if In(sl ,m) V In(s2,m) then e 
else if Empty(Str ip(e ,s l ) )  A Empty(Strip(e,s2)) then error 
else if  Wait(e,m) then e 
else if CMatch(e,m,sl ,s2)  then Mateh(e,m,sl ,s2) 
else if AllWait(Add(e,m,sl ,s2)) then deadlock-error 
else Add(e,m,sl ,s2)  
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Requests for communication m~y only be received from modules defined in the environ- 

ment. The object s1 contains the names of modules to any of which module m is prepared to 

send messages, and s2 the names of modules from any of which m is ready to accept messages. 

s l  and s2 should not contain m, nor should they both be empty. To simulate synchronous 

communication, a request from a module that is already waiting for a previous communication 

is ignored. Each request is tested for a match with other pending requests; a request that can 

be matched is satisfied immediately. If a request from a module cannot be matched immedi- 

ately, and all the other modules have either terminated or are also waiting for communication, 

then no progress by any module is possible and the system is deadlocked. (If only part of the 

system is deadlocked but progress can be made by some modules, the processing of further 

communication requests is carried on.) If a request cannot be matched, and the entire system is 

not deadlocked, then that request is added to the list of pending requests. 

For the present, we take the simple and straightforward view that deadlock occurs only if 

no module can make any further progress. Later, we will also show how it is possible to detect 

a partial deadlock. 

3 CMatch(CE,ml,sl,s2) ----- false 
4 CMateh(AMN(e, ml,s3,s4),m,sl,s2) ----- if Eq(m,ml) then CMateh(e,m,sl,s2) 

else if In(s2,ml) A [n(sa,m) then true 
else if In(sl,ml} A In(s4,m) then true 
else CMateh(e,m,sl,s2) 

A request can be matched with a pending request if the names of the modules m and mI 

appear in complementary send and receive requests (i.e. in the objects s2 and s3, or in the 

objects sl  and s~). 

5 Match(CE,m,sl,s2) = error 
6 Match(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then AMN(Match(e,m,sl,s2),ml,s3,s4) 

else if In(s2,ml) A In(s3,m) then AMN(e,ml,NS,NS) 
else if In(sl,ml) A In(s4,m) then AMN(e,ml,NS,NS) 
else AMN(Match(e,m,sl,s2),ml,s3,s4) 

In axiom 6, checks are made for inclusion of ml  and m in s2 and s3, respectively, and then in 

s l  and s4. Note that this order can be reversed. When two requests match, they are cancelled 

(this is done by setting the associated mnseq objects to the value N S  ). 

7 Add(CE,m,sl~s2) ---~ error 
8 Add(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then AMN(e,m,sl,s2) 

else AMN(Add(e,m,sl,s2),ml,s3,s4) 

For a request that cannot immediately be matched, Add associates the request with the 

appropriate A M N  operation for that module. Thus the objects sl  and se associated with an 

unmatched request will replace the empty mnseq objects associated with that module. 

9 RMN(e,m) = if Wait(e,m) then e else DMN(e,m) 

10 DMN(CE,m) = CE 
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11 DMN(AMN(e,ml,sl,s2),m) = if Eq(m,ml) then DMN(e,m) 
else if-~(Empty(sl) A Empty(s2)) A Empty(DelAll(sl,m)) 

A Empty(DelAll(s2,m)) then error 
else AMN(DMN(e,m),ml,DelAll(sl,m),DelAll(s2,m)) 

A module may be removed only if it is not awaiting any communication. If the removal 

of a module causes some other module to wait on empty objects s1 and s2 then an error is 

raised. 

12 ISMNE(CE,m) ----- false 
13 ISMNE(AMN(e,m,sl,s2),ml) -~- if Eq(m,ml) then true else ISMNE(e,ml) 

14 Wait{CE,m) ---- false 
15 Wait(AMN(e,m,sl ,s2),ml) ---- if -~Eq(m,ml) then Wait(e,ml)  

else if Empty(sl)  A Empty(s2) then false 
else true 

A module which is not waiting for any communication will have empty objects s1 and s2. 

16 AllWait(CE) ---- true 
17 AllWait(AMN(e,m,sl,s2)) -~ if Empty(sl)  A Empty(s2) then false else AllWait(e) 

AllWait checks whether there are any modules in the environment that  are not waiting for 

a communication : thus axiom 16 follows because in this case the environment is empty. 

18 Strip{e,NS} ----- NS 
19 Strip(e,Insert(s,m)) ---~ if ISMNE(e,m) then Insert(Strip(e,s),m) else Strip(e,s) 

Strip takes an mnseq object as an argument and deletes all rood-name in it that  are not 

defined in the environment. 

4. D E A D L O C K  

In the previous section we had assumed that  it is necessary to detect a deadlock only if no 

module could make any further progress. While every deadlock situation will eventually lead 

to a situation in which no module can make any further progress, it would be preferable to 

detect even a partial deadlock as soon as it occurs. In this section we show that  a deadlock of 

some processes can be detected even when there are other processes that  can make further 

gress. The procedure for deadlock detection is formulated to minimize the amount of compu- 

tation that  is required when a new unmatched communication request is added to the environ- 

ment. This procedure works as follows. 

Let e be an environment with n modules ml,  m2, .. m n and let Safe(e, mi) be the set of 

modules that  must be unblocked for execution of ms- to be possible. Initially, when there is no 

communication request pending in an environment e, Safe(e,m~) ~- $ for all 1 ~ i ~ n. When 

a new communication request of the form 
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m i waiting on rail , mj2 , . ,  mjk 

that cannot be immediately satisfied is added to the environment e to give a new environment 

g ,  the operation Safe is redefined as follows : 

Safe(d ,mi) -~- Safe(e, rail ) u Safe(e, mi2 ) u .. u Safe(e, mik) U {mil,..,mik } 

for 1 < i ~( n, i ~ j, if m i E Safe(e, mi) then Safe(g, mi) ---~ Safe(e, mi) u Safe(d, mi) 

else Safe(d, mi) ~ Safe(e, mi) 

A deadlock occurs in an environment e if there is some 1 <~ i < n such that m,. E 

Safe(e, mi). This formulation of deadlock detection can be easily incorporated into the data 

type SYNCH-COMM by adding another maseq argument to the operation AMN to keep track 

of the 'safe' set for that module. We do not present the new data type here as it involves a 

straightforward change to the data type S~WCH-COMM. 

There are several ways in which deadlock may be detected. We have distinguished 

between partial and complete deadlocks, referring by the later term to the case where all the 

modules left in the environment are blocked awaiting communication. But a partial deadlock 

will also eventually become a complete deadlock. On the other hand, there is a specific com- 

munication request that completes the condition for a partial deadlock and it is naturally desir- 

able that  this be detected as soon as it occurs. In terms of our model, this condition is 

represented by the truth of the relation mi E Safe(e, ml) for some i, 1 <~ i < n. 

Since this scheme detects partial deadlocks, it is closer in form to one described by 

Chandy, Misra and Haas [2] than, for example, the work on termination detection (e.g., [4], [6]) 

which tests for a global property. But it differs from all such work because, by its applicative 

nature, it does not rely on implementational details like the propagation of test messages such 

as probes [2] or signals [6] to detect deadlocks. This is a consequence of the fact that we are 

modelling the communication environment, rather than individual modules. For this reason 

also, it is not necessary to define a spanning tree or a ring along which to send deadlock detec- 

tion signals. 

As deadlock detection takes place before every unmatched communication request is 

added to e, the total .associated cost is proportional to the number of such requests. Further, 

for each unmatched communication request, the cost of deadlock detection is proportional to 

the total number of modules in the environment e (one pass over the environment e is enough 

to update all 'safe' information}. 

5. M E S S A G E  Q U E U E S  

Under the discipline of synchronous communication, there can be at most one request 

pending from a module so it follows that two successive messages sent from one module to 

another will reach in the order in which they were sent. Can it also be ensured that messages 

are accepted by modules according to the order in which they were received? This is easily 
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done by replacing axioms 7 and 8 by the following axioms : 

7a Add(CE, m,sl,s2) = AMN(CE,m,sl,s2) 
8a Add(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then Add(e,m,sl,s2) 

else AMN(Add(e,m,sl,s2),ml,s3,s4) 

which will result in message propagation having a first-in-first-out order. By suitably extend- 

ing the operations AMN and Add, it can also be arranged for modules to he assigned priorities 

so that message transmission follows the order imposed by these priorities. 

Note that in the last line of axiom 2 in SYNCH-COMM we could have used 

else AMN(Del(e,m),m,sl,s2) 

where Del would replace AMNC~ ,m,NS,NS) in e by e ~ . But then such a choice would have 

made it more difficult to alter SYNCH-COMM to ensure that modules receive messages only in 

the order in which they were sent. 

6. R E M O T E  P R O C E D U R E  CALLS 

An extended form of synchronous communication can be used to describe remote pro- 

cedure calls from one module to another. Syntactically, a successful remote procedure call from 

module m to module ml can be simulated by four operations : a send request for the call from 

m to ml, acceptance of this request by ml, a send request for the reply from mI to m, and 

receipt of this by m. But defining this protocol literally in the axioms has several deficiencies : 

for example, the call by m and its acceptance by ml may be followed by other communication 

requests from m before waiting for a reply from mI, or the definition of the axioms may be 

such as to prevent nested remote procedure calls (i.e. calls from ml to other modules before a 

reply is sent to m). 

It is necessary to introduce some new operations : let RPC be the remote procedure call 

and Serve the request to accept such a call : 

RPC : env X mod-name X rood-name --~ env 
Serve : env X rood-name - ,  env 

The corresponding axioms are : 

20 Serve~e,m) = Req(e,m,NS,DelAtl(NewFn3(e),m)) 

21 RPC(e,m,ml) ----- if -~ISMNE(e,m) then e 
else if Eq(m,ml) then e 
else if Empty(Strip(e,{ml})) then error 
else if Wait(e,m) then e 
else if CMatch(e,m,{ml},NS) 

then Req(Match(e,m,{ml},NS),m,NS,{ml}) 
else if AllWait(Add(e,m,{ml},NS)) then deadlock-error 
else RP(Add(e,m,{ml},NS),m,ml) 
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22 RP(e,m,m!t) : if Wait(e,m) then RP(e,m,ml) else Req(e,m,NS,(ml}) 

where NewFn3(e) returns the set of all the modules in the environment e ; RP is a constructor 

type operation for which new axioms have to be defined and {ml} = Insert(NS, ml}. 

This is a relatively simple solution, but it  introduces an additional constructor type opera- 

tion RP. Another solution would be to ' tag '  the existing constructor type operations so as to 

distinguish between RPC and ordinary Req operations. This type of solution will be used later 

in this paper for broadcast communication. 

7. A S Y N C H R O N O U S  MESSAGE PASSING A N D  B R O A D C A S T  

The addition of fully general asynchronous communication between modules requires 

unbounded buffering, because a module may send an unlimited number of asynchronous mes- 

sages to one or more other modules. In any specific case, the number of asynchronous mes- 

sages sent by one module and still to be received by another module would be limited only by 

module termination, or by the sender attempting a synchronous communication or a remote 

procedure call, both of which block the module's execution until completed. There are two 

constraints on asynchronous communication : messages sent from one module to another must 

be received in the order in which they were sent, and no more messages may be received than 

are sent. Permitt ing a module to send a message to a number of other modules, in a single 

operation, is equivalent to a multicast or a broadcast operation. Conversely, there is no essen- 

tial difference between a broadcast operation with just  one destination module and simple 

asynchronous send. We shall therefore consider the problem of modelling broadcast communi- 

cation. 

The data  type SYNCH-COMM has two constructor type operations [9], CE and AMN. 

One way of adding broadcasts to this data  type would be to introduce another constructor 

type operation, e.g. BroadCast(e,m,~l), which would allow more than one broadcast request to 

be pending for the same module. The addition of a new constructor type operation BC would 

require some of the existing axioms to be rewritten and the number of axioms required would 

also increase. (Typically, if an operation was originally defined for CE and AMN, it would 

then have to be defined for CE, AMN and BC.} 

A simpler way of introducing the facility for broadcasts, and one we shall follow here, is to 

add an argument to the operation AMN. 

BC = BroadCast : env X mod-name X mnseq --* env 
AMN ----- AddModName : env X mod-name X mnseq X mnseq X mnseq --, env 

Both Req and BC will be handled by the operation AMN (and the number of constructor type 

operations will therefore not increase.} The third argument for AMN is the set containing the 

names of modules to which messages are to be broadcast. In this set, the oldest broadcast 

requests will be at the front, thus guaranteeing a first-come-first-served order for broadcasts to 



367 

the same module.  The  new da t a  type,  ASYNCH-COMM, is defined below. 

ASYNCH-COMM 

CE ~ CreateEnv : 
EMN = En te rModName : env X mod-name 
# A M N  ---- A d d M o d N a m e  : env X mod-name 
# A d d  : env X rood-name 
Req ~ Request  : env X rood-name 
BC ~ BroadCast  : env X rood-name 
CMatch  ~-  CanBeMatched : env X mod-name 
# M a t c h  : e a r  X mod-name 
RMN ~ RemoveModName : env X rood-name 
# D M N  ~- Dele teModName : env X mod-name 
ISMNE -~ IsModNameInEnv : env X rood-name 
Wai t  ----- Wai t ing  : env X mod-name 
Al lWai t  ----- Al lWai t ing  : env 
Str ip : env X mnseq 

for all e in env, m , m l  in mod-name,  

X mnseq X mnseq X mnseq 
X mnseq X mnseq X mnseq 
X mnseq X mnseq 
X mnseq 
X mnseq X mnseq 
X mnseq X mnseq 

sl,s2,s3,s4,s5,s6 in mnseq 

1 EMN(e,m) = ff ISMNE(e,m) then e else AMN(e,m,NS,NS,NS) 

Req(e,m,sl ,s2) ~ if -~ISMNE(e,m) then e 
else if In(sl,m} V In(s2,m) then e 
else if Empty(Str ip(e ,s l ) )  A Empty(Str ip(e,s2))  then error 
else if Wai t (e ,m) then e 
else if CMatch(e,m,sl ,s2} then Match(e,m,sl ,s2)  
else if AllWait(Add(e,m,sl ,s2,NS}} then deadlock-error  
else Add(e,m,sl ,s2,NS} 

BC(e,m,NS) ---- e 
BC(e ,m,Inser t (s l ,ml) )  == if -qSMNE(e,m) then e 

else if In ( s l ,ml )  V Eq(m,ml)  then BC(e,m,sl)  
else if -~ISMNE(e,ml) then BC(e,m,sl)  
else if Wait(e ,m) then e 
else if CMatch(e ,m,Inser t (NS,ml) ,NS) 

then BC(Match(e ,m,Inser t (NS,ml) ,NS) ,m,s l )  
else BC(Add(e,m,NS,NS,Inser t (NS,ml}) ,m,s l )  

5 CMatch(CE,ml , s l , s2 )  ~ false 
6 CMatch(AMN(e,ml,s3,s4,s5) ,m,sl ,s2)  -~ if Eq(m,ml)  then CMatch(e,m,sl ,s2)  

else if In(s2,ml)  A In(s3,m) then true 
else if I n ( s l ,ml )  A In(s4,m) then true 
else if In(s2,ml)  A In(sS,m) then true 
else CMatch(e,m,sl ,s2)  

7 Match(CE,m,s l , s2)  --~ error 
8 Match(AMN(e,  ml,s3,s4,s5),m,sl ,s2) 

if  Eq(m,ml )  then AMN(Match(e,m,sl ,s2) ,ml,s3,s4,sS) 
else if In(s2,ml)  A In(s3,m) then AMN(e,ml ,NS,NS,sS)  
else if In(s l ,ml}  A In(s4,m) then AMN(e,ml ,NS,NS,s5)  
else if In(s2,ml)  A In(s5,m) then AMN(e,ml,s3,s4,Dell(s5,m)) 
else AMN(Mateh(e,m,sl ,s2) ,ml,s3,s4,s5)  

9 Add(CE,m,s l , s2 ,s3)  ~--- error  
I0 Add(AMN(e,ml,s4,sS,s6),m,sl ,s2,s3) 

= if -~Eq(m,ml) then AMN(Add(e,m,sl ,s2,s3),ml,s4,s5,s6) 
else if Empty(s3)  then AMN(e,m,sl ,s2,NS) 
else AMN(e,m,s4,s5,Concat(s3,s6)) 

l l  RMN(e,m) - -  if Wai t (e ,m) then e else DMN(e,m) 

--* env 
--* e n v  

--~ e n v  

--~ env 
- ~  e n v  

- ' *  e n v  

--* boolean 
- ,  env 
--~ e n v  

--~ e n v  

- ,  boolean 
-* boolean 
--* boolean 
--* mnseq 
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12 DMN(CE,m) := CE 
13 DMN(AMN(e,ml,sl,s2,s3),m) 

---- if Eq(mLm) then DMN(e,m) 
else if-~(Empty(sl) A Empty(s2)) A Empty(DelAll(sLm)) A Empty(DelAll(s2,m)) 

then error 
else AMN(DMN(e,m),ml,DelAll(sl,m),DelAll(s2,m),DelAlt(s3,m)) 

14 ISMNE(CE,m) ~ false 
15 ISMNE(AMN(e,m,sl,s2,s3),ml) = if Eq(m,ml) then true else ISMNE(e, mI) 

16 Wait(CE,m) ----- false 
17 Wait(AMN(e,m,sl,s2,s3),ml) = if ~Eq(m,mI) then Wait(e,ml) 

else if Empty(s1) A Empty(s2) then false 
else true 

18 AllWait(CE) ~-~ true 
19 AllWait(AMN(e,m,sl,s2,s3)) ~ if Empty(sl) A Empty(s2) then false else AllWait(e) 

20 Strip(e,NS) ---- NS 
21 Strip(e,Insen(s,m)) ~ if ISMNE(e,m) then Insert(Strip(e,s),m) else Strip(e,s) 

The data type ASYNCH-COMM can be augmented in a straightforward way to provide 

operations for deadlock detection. In the term AMN(e,m, sl, s2,s3), s3 is not involved in 

deadlock detection and hence the extension for ASYNCH-COMM would be very similar to that 

suggested for SYNCH-COMM. 

Relatively few changes were needed to convert SYNCH-COMM to ASYNCH-COMM, and 

the operations and axioms of the new data type show a high degree of similarity with those 

defined earlier. This was accomplished partly by treating mnseq objects both as sequences 

(using the operation Dell) and as sets (using the operation DelAl O. Another reason for achiev- 

ing this high similarity was that the number of constructor type operations in both data types 

was the same. It is also interesting to note that the blocking effect of synchronous communica- 

tion can be preserved, despite the introduction of asynchronous communication, merely by 

choosing an appropriate order of checking in the axioms. Thus, by axiom 4, no broadcast 

requests (BC) are accepted from a module waiting for a synchronous communication request 

(Req) : when a new request is added, synchronous communication requests are matched before 

broadcast requests (axiom 8). 

CONCLUSIONS 

In this paper we have modelled a number of different interprocess communication schemes 

used in concurrent and distributed programming by specifying them algebraically as abstract 

data types. 

Two criteria can be used to judge the usefulness of such specifications. First, how faith- 

fully do they represent the commonly understood semantics of the communication mecha~ 

isms? Secondly, how well do the specifications for different communication mechanisms illus- 

trate any inherent similarities between them? 

The importance of achieving the first criterion lies in the fact that, in practice, each 
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communication mechanism is defined either informally, or operationally as part of a program- 

ruing language. Once a formally defined and operationally acceptable specification has been 

produced, there appears to be many operational similarities between the mechanisms. 

The design of the specifications described in this paper proceeded with these criteria act- 

ing as constraints. The specification of the data type ASYNCH-COMM shows that mechanism 

as different as broadcasts and synchronous communication can be modelled in a common 

framework. Simple extensions to this data type permit more complex operations, such as 

remote procedure calls, to be specified. Global properties, like the presence of deadlocks, can 

also be quite easily considered. 
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