
Algebraic Specification
Of A Communication Scheduler

Mathai Jo*eph

Computer Science Group
Tara Institute of Fundamental Research

Colaba, Bombay 400 005 INDIA

Abha Moitra

Department of Computer Science
Cornell University
Ithaca 1",~" 14853

ABSTRACT

A distributed programming language normally incorporates one mechanism by which

processes communicate with each other. This mechanism can be used to transfer information or

to synchronize the flow of control in the program. Different communication mechanisms have

been proposed for different languages. In this paper, we provide a common framework in which

these mechanisms can be examined independently of the languages in which they may be embed-

ded. Operationally, this framework is a communication scheduler : formally, it is specified Mge-

braically as a data type. A number of different communication mechanisms, such as synchronous

and asynchronous message passing, broadcasts and remote procedure calls, are modelled and, as

an illustration of how global properties can be analysed, we consider the problem of deadlock

detection.

1. INTRODUCTION

Modulari ty and abstraction are used in program construction so that a complex problem

can be solved using a program with a number of small and relatively simple components. In

sequential programs, these components are usually procedures, functions, or class-like encapsu-

lations, while concurrent and distr ibuted programs may also contain independently executing

processes or tasks. Different kinds of components are distinguished by the form of control used

to invoke their actions and by the means used to propagate information from one component

to another. Thus, between the components of a sequential program, procedure (or function)

calls and returns are normally used to transfer information and control, and block s t ructure

has been used to statically control access to data~ Many schemes have been proposed for inter-

process communicat ion in concurrent and distributed programs and different languages have

used, for example, synchronous message transfer [10], asynchronous message transfer [5], corou-

t ine calls [15] and remote procedure calls [13]. In several of these schemes, sending da ta in a

message is the common means of transferring information from one process to another, but the

357

synchronization disciplines used for message transfer differ considerably and have important

effects on global properties of the program, such as termination and deadlock. For example,

the minor variation over standard CSP [10] needed to introduce output commands in guards

adds to the symmetry and elegance of the language, makes it easier to avoid deadlock in cer-

tain cases, but certainly leads also to some implementational complexity [1].

Proof of the properties of a program written in a distributed programming language usu-

ally requires global reasoning about the whole program to be combined with local reasoning for

each process. Such a proof can be established using a proof system which provides rules for

each statement and for the particular communication mechanisms used in that language.

Proof of a distributed program is usually more complex than that of a similar sequential pro-

gram and the additional complexity is almost solely an outcome of the process interactions that

take place through interprocess communication. Each proof system is specific to one program-

ming language, and therefore to one set of communication mechanisms.

It is therefore of interest to model a multiplicity of communication mechanisms in a com-

mon framework so that their intrinsic properties can be examined independently of the opera-

tional details of the languages in which they may be embedded. We shall attempt to do so in

this paper, using an algebraically specified communication environment in which the com-

ponents of the distributed or concurrent program are defined as modules. The environment

will be defined by a set of operations whose semantics are described by axioms; algebraic

specification of this form has been used for defining abstract data types (e.g., Gognen,

Thatcher and Wagner [8], and Guttag and Homing [9]), so we could consider this environment

to be a 'communication data type' [3].

2. A L G E B R A I C S P E C I F I C A T I O N

The algebraic specification of a data type consists of the definition of the set of opera-

tions, or functions, of the data type together with axioms which provide the semantics of the

operations. We shall not describe the method of algebraic specification in detail (the interested

reader is referred to [8], [9]) but we can illustrate it, and the syntax we shall be using, by deirm-
ing a simple data type.

The operations of a data type will be defined using the following syntax :

[<mnemonic> ~--~] <operation name> : < d o m a i n > --. < r a n g e >

Axioms will be numbered in sequence (for easy reference), sometimes given a mnemonic name,

and written as algebraic equations with expressions on the left and right hand sides, the latter

containing values of type range and logical expressions of the form if_then_else...

358

2.1. A S i m p l e Da¢a T y p e

Let. us define MN~EQ a da ta ~ype which models an abstract sequence of items of type

rood-name. MNSEQ is defined using seven operations and eleven axioms, and rood-name is

just a sequence of characters. We shall assume that the data type BOOLEAN is predefined.

MNSEQ

NS --'~ NewSeq : --~ mnseq
Insert : mnseq X rood-name --+ mnseq
In : mnseq X rood-name --* boolean
Empty : mnseq --* boolean
Dell : mnseq X rood-name ~ mnseq
DetAil : mnseq X rood-name ~ mnseq
Concat : mnseq X mnseq -~ mnseq

for all s ,sl in mnseq and m,ml in rood-name

1 In(NS,m) = false
2 In(Insert(s,m)~ml) ~- if Eq(m,ml) then true else In(s,ml)

3 Empty(NS) ---~ true
4 Empty(Insert(s,m)) ~ false

5 DelI(NS,m) = NS
6 Dell(Insert(s,m),ml) = if Eq(m,ml) then s else Insert(Dell(s,ml),m)

7 DelAll(NS,m) -~- NS
8 DelAll(Insert(s,m),ml) ~ if Eq(m,ml) then DelAll(s,ml) else Insert(DelAll(s,ml),m)

9 Concat(NS,s) ~ s
!0 Concat(s,NS) --~ s
11 Concat(s,Insert(sl,m)) ~ Insert(Concat(s,sl) m)

where we assume the existence of a operation Eq to determine equality between two objects of

type rood-name.

The operation Dell deletes the first occurrence and the operation DelAll deletes each

occurrence of an element from the sequence : thus use of DeL4ll results in the sequence being

treated more as a set than a sequence. The data type MNSEQ will be used later in the defini-

tion of other data types.

2.2. Design of Algebraic Specification

It is well known ([1I], i14]) that it is not possible to specify every computable operation

with a finite number of axioms. Majster [I1] therefore proposed the use of hidden operations,

where a hidden operation is one that may only be invoked from some operation of the da ta

type, and which is not accessible from outside the data type; using hidden operations it is

always possible to give a finite specification for any computable operation [14]. We make

extensive use of hidden operations in this paper; a ' ~ ' symbol preceding a operation identifies

it as being a hidden operation.

359

Though algebraic specifications have been formalized and used for a number of years, very

few data types have actually been defined in this methodology. We believe this is probably due

to the fact that writing algebraic specifications is still an art. In this paper we shall also try to

motivate the development of the various data types introduced in this paper.

A particular data type can be algebraically described in a number of different ways. It is

therefore important to know why a particular algebraic specification is chosen. So, we shall

often indicate the choices possible as well as the consequences of each decision. Further, the

requirements placed on a data type are typically in terms of the semantics that should be pro-

vided for the operations. But since hidden operations are not available to a user of the data

type, there is no obvious guideline for deciding what hidden operations should be introduced

but we shall attempt to explain the basis for our choices.

3. M O D E L L I N G C O M M U N I C A T I O N

Communication between concurrent or distributed processes requires action through some

mediating agency such as shared memory, a communication medium, a 'transport layer', or an

operating system. This agency provides a name space in which processes are assigned unique

identification, and a means of conveying messages from one named process to another : in

other words, the agency is the environment in which interprocess communication takes place

and we shall refer to it subsequently as the 'communication environment', or just as the

'environment'. To relate the syntax and semantics of the algebraic specification with the more

familiar operational view, we shall 'annotate' the axioms with operational descriptions of their

semantics.

Initially the environment is empty and each module that is to participate in communica-

tion must be defined in the environment using the operation EnterModName. A module then

indicates its willingness to communicate using the operation Request, which requires as argu-

ments the name of the module and two objects of type mnseq which contain the names of the

modules to which it is ready to send messages and from which it will accept messages respec-

tively. This corresponds to a non-deterministic construct in a programming language, where

one of a set of input or output commands may be selected for execution (as is the case in

extended CSP [1]). An additional constraint in a programming language would be that for

communication to take place, the type of the message to be input in one process must be

identical to that to be output by another process. For simplicity, we shall assume that

separate syntactic checks ensure this and ignore message types in this analysis. In synchronous

communications, which we shall be modelling initially, the first process to attempt a communi-

cation must wait until a matching request comes from some other process. Another operation

that must be provided is to allow a module to be removed from the environment, RemoveMod-
NalT~e.

The semantics of the operation Request can be informally described as follows.

360

Request(e,m,sl,s2)
if mod-name m is not defined in the environment e then drop this request
else if m is a t tempting to wait for itself then drop this request
else if none of the rood-names in st and s2 is present in the environment e

then error
else if m already has a request pending in the environment e

then drop this request
else if possible match this request with a pending request
else if by adding this request all modules will have a request pending

then deadlock-error
else keep this request pending (to be satisfied later)

(4)

The test in (1) can be accomplished by introducing a new boolean operation IsModNameInEnv.

This operation could be kept as a hidden operation but since there might be other uses for it

we can allow it to be invoked by a user. The test in (2) can be handled by making use of the

operation In defined in MNSEQ. The test in (3) can be done by introducing a new operation

Strip which takes as arguments an environment and a mnseq and returns a mnseq which is the

sequence of all rood-name in the input mnseq that are also present in the environment.

Before we consider the other tests that have t<) be performed, we must first decide on how

a pending request will be kept (7). The simplest solution would be to rewrite (7) as

else Request(e,m,sl,s2) (7 t)

but then if Request(e,m, sl, s2) is encountered there is no way of knowing whether this is a new

request for which tests have not been performed or whether it is a pending request for which

the tests have been done but for which there was no matching communication. Such a distinc-

tion has to be made to specify, among other things, the test in (4). So, we should introduce a

new operation, say NewFnl, and rewrite (7) as

else NewFnl(e,m,sl ,s2) (7 ~ ~)

Algebraic specifications are defined in a hierarchical fashion : a new type is defined using

some predefined types. For example, here we are trying to define a new type env using the

predefined types mnseq~ boolean. For any data type, we can define a minimal set of operations

that are sufficient to describe every possible element of the new type [9]. In the present case,

the operations EnterModName, NewFnl and CreateEnv are the minimal operations that are

sufficient to describe every element in the type env. So, any environment will be of the form

{EnterModName, NewFnl}* CreateEnv

This means that the various operations that test whether or not an environment satisfies a par-

ticular property must typically be defined using three axioms. (Of course, if enough additional

operations are introduced, each original operation can be defined using one axiom only but

then this axiom can get quite complicated [12].) However the specification can be simplified if

we could get an arbitrary environment to be of the form

¢ $
tNewFn2} CreateEnv

361

where NewFng is some new operation.

This can be accomplished in the following way :

EnterModName(e ,m) ---~ if the mod-name m is in the environment e then e
else AddModName(e,m,NS,NS)

and (7) is written as

else change AddModName(e ' ,m,NS,NS) in e to AddModName(d ,m,sl,s2)

In AddModName(e,m, sl, sg), module m is not waiting for any communicat ion if and only if

both sl and s2 are empty; otherwise it is wait ing for a communication.

The operat ions and axioms of the communicat ion da ta type SYNCH-COMM are given

below. In this da ta type, communicat ion between modules is synchronous, i.e. a module mak-

ing a communicat ion request is blocked until its message is t ransmit ted and this takes place

when the sender and the receiver are both ready. We assume tha t each domain is extended to

include appropriate error elements [7].

SYNCH-COMM

CE ---~ Crea teEnv : --* env
E M N -~ En te rModName : env X mod-name --* env
A M N ---- AddModName : env X rood-name X nmseq X rnnseq --. env
Req ---- Request : env X rood-name X mnseq X mnseq --+ env
A d d : env X mod-name X mnseq X mnseq --. env
CMatch ~ CanBeMatched : env X rood-name X mnseq X mnseq - . boolean
M a t c h : env X mod-name X mnseq X mnseq --* env
R M N -~-- RemoveModName : env X mod-name --* env
D M N ---- Dele teModName : env X mod-name --* env
ISMNE -~-- I sModNameInEnv : env X rood-name --* boolean
Wai t ---- Wai t ing : env X mod-name --* boolean
Al lWai t ---- Al tWait ing : env --* boolean
Strip : env X mnseq --* mnseq

for all e in env, m , m l in rood-name, sl,s2,s3,s4 in mnseq

1 EMN(e,m) ----- if ISMNE(e,m) then e else AMN(e,m,NS,NS)

Each module in the environment is unique; a new rood-name is added to the environment

along with two mnseq objects (initially empty) that will be used to contain the names of the

modules to which communications may be sent and from which communications may be

received.

2 Req(e,m,sl ,s2) ----- if -~ISMNE(e,m) then e
else if In(sl ,m) V In(s2,m) then e
else if Empty(Str ip(e ,s l)) A Empty(Strip(e,s2)) then error
else if Wait(e,m) then e
else if CMatch(e,m,sl ,s2) then Mateh(e,m,sl ,s2)
else if AllWait(Add(e,m,sl ,s2)) then deadlock-error
else Add(e,m,sl ,s2)

362

Requests for communication m~y only be received from modules defined in the environ-

ment. The object s1 contains the names of modules to any of which module m is prepared to

send messages, and s2 the names of modules from any of which m is ready to accept messages.

s l and s2 should not contain m, nor should they both be empty. To simulate synchronous

communication, a request from a module that is already waiting for a previous communication

is ignored. Each request is tested for a match with other pending requests; a request that can

be matched is satisfied immediately. If a request from a module cannot be matched immedi-

ately, and all the other modules have either terminated or are also waiting for communication,

then no progress by any module is possible and the system is deadlocked. (If only part of the

system is deadlocked but progress can be made by some modules, the processing of further

communication requests is carried on.) If a request cannot be matched, and the entire system is

not deadlocked, then that request is added to the list of pending requests.

For the present, we take the simple and straightforward view that deadlock occurs only if

no module can make any further progress. Later, we will also show how it is possible to detect

a partial deadlock.

3 CMatch(CE,ml,sl,s2) ----- false
4 CMateh(AMN(e, ml,s3,s4),m,sl,s2) ----- if Eq(m,ml) then CMateh(e,m,sl,s2)

else if In(s2,ml) A [n(sa,m) then true
else if In(sl,ml} A In(s4,m) then true
else CMateh(e,m,sl,s2)

A request can be matched with a pending request if the names of the modules m and mI

appear in complementary send and receive requests (i.e. in the objects s2 and s3, or in the

objects sl and s~).

5 Match(CE,m,sl,s2) = error
6 Match(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then AMN(Match(e,m,sl,s2),ml,s3,s4)

else if In(s2,ml) A In(s3,m) then AMN(e,ml,NS,NS)
else if In(sl,ml) A In(s4,m) then AMN(e,ml,NS,NS)
else AMN(Match(e,m,sl,s2),ml,s3,s4)

In axiom 6, checks are made for inclusion of ml and m in s2 and s3, respectively, and then in

s l and s4. Note that this order can be reversed. When two requests match, they are cancelled

(this is done by setting the associated mnseq objects to the value N S).

7 Add(CE,m,sl~s2) ---~ error
8 Add(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then AMN(e,m,sl,s2)

else AMN(Add(e,m,sl,s2),ml,s3,s4)

For a request that cannot immediately be matched, Add associates the request with the

appropriate A M N operation for that module. Thus the objects sl and se associated with an

unmatched request will replace the empty mnseq objects associated with that module.

9 RMN(e,m) = if Wait(e,m) then e else DMN(e,m)

10 DMN(CE,m) = CE

363

11 DMN(AMN(e,ml,sl,s2),m) = if Eq(m,ml) then DMN(e,m)
else if-~(Empty(sl) A Empty(s2)) A Empty(DelAll(sl,m))

A Empty(DelAll(s2,m)) then error
else AMN(DMN(e,m),ml,DelAll(sl,m),DelAll(s2,m))

A module may be removed only if it is not awaiting any communication. If the removal

of a module causes some other module to wait on empty objects s1 and s2 then an error is

raised.

12 ISMNE(CE,m) ----- false
13 ISMNE(AMN(e,m,sl,s2),ml) -~- if Eq(m,ml) then true else ISMNE(e,ml)

14 Wait{CE,m) ---- false
15 Wait(AMN(e,m,sl ,s2),ml) ---- if -~Eq(m,ml) then Wait(e,ml)

else if Empty(sl) A Empty(s2) then false
else true

A module which is not waiting for any communication will have empty objects s1 and s2.

16 AllWait(CE) ---- true
17 AllWait(AMN(e,m,sl,s2)) -~ if Empty(sl) A Empty(s2) then false else AllWait(e)

AllWait checks whether there are any modules in the environment that are not waiting for

a communication : thus axiom 16 follows because in this case the environment is empty.

18 Strip{e,NS} ----- NS
19 Strip(e,Insert(s,m)) ---~ if ISMNE(e,m) then Insert(Strip(e,s),m) else Strip(e,s)

Strip takes an mnseq object as an argument and deletes all rood-name in it that are not

defined in the environment.

4. D E A D L O C K

In the previous section we had assumed that it is necessary to detect a deadlock only if no

module could make any further progress. While every deadlock situation will eventually lead

to a situation in which no module can make any further progress, it would be preferable to

detect even a partial deadlock as soon as it occurs. In this section we show that a deadlock of

some processes can be detected even when there are other processes that can make further

gress. The procedure for deadlock detection is formulated to minimize the amount of compu-

tation that is required when a new unmatched communication request is added to the environ-

ment. This procedure works as follows.

Let e be an environment with n modules ml, m2, .. m n and let Safe(e, mi) be the set of

modules that must be unblocked for execution of ms- to be possible. Initially, when there is no

communication request pending in an environment e, Safe(e,m~) ~- $ for all 1 ~ i ~ n. When

a new communication request of the form

364

m i waiting on rail , mj2 , . , mjk

that cannot be immediately satisfied is added to the environment e to give a new environment

g , the operation Safe is redefined as follows :

Safe(d ,mi) -~- Safe(e, rail) u Safe(e, mi2) u .. u Safe(e, mik) U {mil,..,mik }

for 1 < i ~(n, i ~ j, if m i E Safe(e, mi) then Safe(g, mi) ---~ Safe(e, mi) u Safe(d, mi)

else Safe(d, mi) ~ Safe(e, mi)

A deadlock occurs in an environment e if there is some 1 <~ i < n such that m,. E

Safe(e, mi). This formulation of deadlock detection can be easily incorporated into the data

type SYNCH-COMM by adding another maseq argument to the operation AMN to keep track

of the 'safe' set for that module. We do not present the new data type here as it involves a

straightforward change to the data type S~WCH-COMM.

There are several ways in which deadlock may be detected. We have distinguished

between partial and complete deadlocks, referring by the later term to the case where all the

modules left in the environment are blocked awaiting communication. But a partial deadlock

will also eventually become a complete deadlock. On the other hand, there is a specific com-

munication request that completes the condition for a partial deadlock and it is naturally desir-

able that this be detected as soon as it occurs. In terms of our model, this condition is

represented by the truth of the relation mi E Safe(e, ml) for some i, 1 <~ i < n.

Since this scheme detects partial deadlocks, it is closer in form to one described by

Chandy, Misra and Haas [2] than, for example, the work on termination detection (e.g., [4], [6])

which tests for a global property. But it differs from all such work because, by its applicative

nature, it does not rely on implementational details like the propagation of test messages such

as probes [2] or signals [6] to detect deadlocks. This is a consequence of the fact that we are

modelling the communication environment, rather than individual modules. For this reason

also, it is not necessary to define a spanning tree or a ring along which to send deadlock detec-

tion signals.

As deadlock detection takes place before every unmatched communication request is

added to e, the total .associated cost is proportional to the number of such requests. Further,

for each unmatched communication request, the cost of deadlock detection is proportional to

the total number of modules in the environment e (one pass over the environment e is enough

to update all 'safe' information}.

5. M E S S A G E Q U E U E S

Under the discipline of synchronous communication, there can be at most one request

pending from a module so it follows that two successive messages sent from one module to

another will reach in the order in which they were sent. Can it also be ensured that messages

are accepted by modules according to the order in which they were received? This is easily

365

done by replacing axioms 7 and 8 by the following axioms :

7a Add(CE, m,sl,s2) = AMN(CE,m,sl,s2)
8a Add(AMN(e,ml,s3,s4),m,sl,s2) = if Eq(m,ml) then Add(e,m,sl,s2)

else AMN(Add(e,m,sl,s2),ml,s3,s4)

which will result in message propagation having a first-in-first-out order. By suitably extend-

ing the operations AMN and Add, it can also be arranged for modules to he assigned priorities

so that message transmission follows the order imposed by these priorities.

Note that in the last line of axiom 2 in SYNCH-COMM we could have used

else AMN(Del(e,m),m,sl,s2)

where Del would replace AMNC~ ,m,NS,NS) in e by e ~ . But then such a choice would have

made it more difficult to alter SYNCH-COMM to ensure that modules receive messages only in

the order in which they were sent.

6. R E M O T E P R O C E D U R E CALLS

An extended form of synchronous communication can be used to describe remote pro-

cedure calls from one module to another. Syntactically, a successful remote procedure call from

module m to module ml can be simulated by four operations : a send request for the call from

m to ml, acceptance of this request by ml, a send request for the reply from mI to m, and

receipt of this by m. But defining this protocol literally in the axioms has several deficiencies :

for example, the call by m and its acceptance by ml may be followed by other communication

requests from m before waiting for a reply from mI, or the definition of the axioms may be

such as to prevent nested remote procedure calls (i.e. calls from ml to other modules before a

reply is sent to m).

It is necessary to introduce some new operations : let RPC be the remote procedure call

and Serve the request to accept such a call :

RPC : env X mod-name X rood-name --~ env
Serve : env X rood-name - , env

The corresponding axioms are :

20 Serve~e,m) = Req(e,m,NS,DelAtl(NewFn3(e),m))

21 RPC(e,m,ml) ----- if -~ISMNE(e,m) then e
else if Eq(m,ml) then e
else if Empty(Strip(e,{ml})) then error
else if Wait(e,m) then e
else if CMatch(e,m,{ml},NS)

then Req(Match(e,m,{ml},NS),m,NS,{ml})
else if AllWait(Add(e,m,{ml},NS)) then deadlock-error
else RP(Add(e,m,{ml},NS),m,ml)

366

22 RP(e,m,m!t) : if Wait(e,m) then RP(e,m,ml) else Req(e,m,NS,(ml})

where NewFn3(e) returns the set of all the modules in the environment e ; RP is a constructor

type operation for which new axioms have to be defined and {ml} = Insert(NS, ml}.

This is a relatively simple solution, but it introduces an additional constructor type opera-

tion RP. Another solution would be to ' tag ' the existing constructor type operations so as to

distinguish between RPC and ordinary Req operations. This type of solution will be used later

in this paper for broadcast communication.

7. A S Y N C H R O N O U S MESSAGE PASSING A N D B R O A D C A S T

The addition of fully general asynchronous communication between modules requires

unbounded buffering, because a module may send an unlimited number of asynchronous mes-

sages to one or more other modules. In any specific case, the number of asynchronous mes-

sages sent by one module and still to be received by another module would be limited only by

module termination, or by the sender attempting a synchronous communication or a remote

procedure call, both of which block the module's execution until completed. There are two

constraints on asynchronous communication : messages sent from one module to another must

be received in the order in which they were sent, and no more messages may be received than

are sent. Permitt ing a module to send a message to a number of other modules, in a single

operation, is equivalent to a multicast or a broadcast operation. Conversely, there is no essen-

tial difference between a broadcast operation with just one destination module and simple

asynchronous send. We shall therefore consider the problem of modelling broadcast communi-

cation.

The data type SYNCH-COMM has two constructor type operations [9], CE and AMN.

One way of adding broadcasts to this data type would be to introduce another constructor

type operation, e.g. BroadCast(e,m,~l), which would allow more than one broadcast request to

be pending for the same module. The addition of a new constructor type operation BC would

require some of the existing axioms to be rewritten and the number of axioms required would

also increase. (Typically, if an operation was originally defined for CE and AMN, it would

then have to be defined for CE, AMN and BC.}

A simpler way of introducing the facility for broadcasts, and one we shall follow here, is to

add an argument to the operation AMN.

BC = BroadCast : env X mod-name X mnseq --* env
AMN ----- AddModName : env X mod-name X mnseq X mnseq X mnseq --, env

Both Req and BC will be handled by the operation AMN (and the number of constructor type

operations will therefore not increase.} The third argument for AMN is the set containing the

names of modules to which messages are to be broadcast. In this set, the oldest broadcast

requests will be at the front, thus guaranteeing a first-come-first-served order for broadcasts to

367

the same module. The new da t a type, ASYNCH-COMM, is defined below.

ASYNCH-COMM

CE ~ CreateEnv :
EMN = En te rModName : env X mod-name
A M N ---- A d d M o d N a m e : env X mod-name
A d d : env X rood-name
Req ~ Request : env X rood-name
BC ~ BroadCast : env X rood-name
CMatch ~- CanBeMatched : env X mod-name
M a t c h : e a r X mod-name
RMN ~ RemoveModName : env X rood-name
D M N ~- Dele teModName : env X mod-name
ISMNE -~ IsModNameInEnv : env X rood-name
Wai t ----- Wai t ing : env X mod-name
Al lWai t ----- Al lWai t ing : env
Str ip : env X mnseq

for all e in env, m , m l in mod-name,

X mnseq X mnseq X mnseq
X mnseq X mnseq X mnseq
X mnseq X mnseq
X mnseq
X mnseq X mnseq
X mnseq X mnseq

sl,s2,s3,s4,s5,s6 in mnseq

1 EMN(e,m) = ff ISMNE(e,m) then e else AMN(e,m,NS,NS,NS)

Req(e,m,sl ,s2) ~ if -~ISMNE(e,m) then e
else if In(sl,m} V In(s2,m) then e
else if Empty(Str ip(e ,s l)) A Empty(Str ip(e,s2)) then error
else if Wai t (e ,m) then e
else if CMatch(e,m,sl ,s2} then Match(e,m,sl ,s2)
else if AllWait(Add(e,m,sl ,s2,NS}} then deadlock-error
else Add(e,m,sl ,s2,NS}

BC(e,m,NS) ---- e
BC(e ,m,Inser t (s l ,ml)) == if -qSMNE(e,m) then e

else if In (s l ,ml) V Eq(m,ml) then BC(e,m,sl)
else if -~ISMNE(e,ml) then BC(e,m,sl)
else if Wait(e ,m) then e
else if CMatch(e ,m,Inser t (NS,ml) ,NS)

then BC(Match(e ,m,Inser t (NS,ml) ,NS) ,m,s l)
else BC(Add(e,m,NS,NS,Inser t (NS,ml}) ,m,s l)

5 CMatch(CE,ml , s l , s2) ~ false
6 CMatch(AMN(e,ml,s3,s4,s5) ,m,sl ,s2) -~ if Eq(m,ml) then CMatch(e,m,sl ,s2)

else if In(s2,ml) A In(s3,m) then true
else if I n (s l ,ml) A In(s4,m) then true
else if In(s2,ml) A In(sS,m) then true
else CMatch(e,m,sl ,s2)

7 Match(CE,m,s l , s2) --~ error
8 Match(AMN(e, ml,s3,s4,s5),m,sl ,s2)

if Eq(m,ml) then AMN(Match(e,m,sl ,s2) ,ml,s3,s4,sS)
else if In(s2,ml) A In(s3,m) then AMN(e,ml ,NS,NS,sS)
else if In(s l ,ml} A In(s4,m) then AMN(e,ml ,NS,NS,s5)
else if In(s2,ml) A In(s5,m) then AMN(e,ml,s3,s4,Dell(s5,m))
else AMN(Mateh(e,m,sl ,s2) ,ml,s3,s4,s5)

9 Add(CE,m,s l , s2 ,s3) ~--- error
I0 Add(AMN(e,ml,s4,sS,s6),m,sl ,s2,s3)

= if -~Eq(m,ml) then AMN(Add(e,m,sl ,s2,s3),ml,s4,s5,s6)
else if Empty(s3) then AMN(e,m,sl ,s2,NS)
else AMN(e,m,s4,s5,Concat(s3,s6))

l l RMN(e,m) - - if Wai t (e ,m) then e else DMN(e,m)

--* env
--* e n v

--~ e n v

--~ env
- ~ e n v

- ' * e n v

--* boolean
- , env
--~ e n v

--~ e n v

- , boolean
-* boolean
--* boolean
--* mnseq

368

12 DMN(CE,m) := CE
13 DMN(AMN(e,ml,sl,s2,s3),m)

---- if Eq(mLm) then DMN(e,m)
else if-~(Empty(sl) A Empty(s2)) A Empty(DelAll(sLm)) A Empty(DelAll(s2,m))

then error
else AMN(DMN(e,m),ml,DelAll(sl,m),DelAll(s2,m),DelAlt(s3,m))

14 ISMNE(CE,m) ~ false
15 ISMNE(AMN(e,m,sl,s2,s3),ml) = if Eq(m,ml) then true else ISMNE(e, mI)

16 Wait(CE,m) ----- false
17 Wait(AMN(e,m,sl,s2,s3),ml) = if ~Eq(m,mI) then Wait(e,ml)

else if Empty(s1) A Empty(s2) then false
else true

18 AllWait(CE) ~-~ true
19 AllWait(AMN(e,m,sl,s2,s3)) ~ if Empty(sl) A Empty(s2) then false else AllWait(e)

20 Strip(e,NS) ---- NS
21 Strip(e,Insen(s,m)) ~ if ISMNE(e,m) then Insert(Strip(e,s),m) else Strip(e,s)

The data type ASYNCH-COMM can be augmented in a straightforward way to provide

operations for deadlock detection. In the term AMN(e,m, sl, s2,s3), s3 is not involved in

deadlock detection and hence the extension for ASYNCH-COMM would be very similar to that

suggested for SYNCH-COMM.

Relatively few changes were needed to convert SYNCH-COMM to ASYNCH-COMM, and

the operations and axioms of the new data type show a high degree of similarity with those

defined earlier. This was accomplished partly by treating mnseq objects both as sequences

(using the operation Dell) and as sets (using the operation DelAl O. Another reason for achiev-

ing this high similarity was that the number of constructor type operations in both data types

was the same. It is also interesting to note that the blocking effect of synchronous communica-

tion can be preserved, despite the introduction of asynchronous communication, merely by

choosing an appropriate order of checking in the axioms. Thus, by axiom 4, no broadcast

requests (BC) are accepted from a module waiting for a synchronous communication request

(Req) : when a new request is added, synchronous communication requests are matched before

broadcast requests (axiom 8).

CONCLUSIONS

In this paper we have modelled a number of different interprocess communication schemes

used in concurrent and distributed programming by specifying them algebraically as abstract

data types.

Two criteria can be used to judge the usefulness of such specifications. First, how faith-

fully do they represent the commonly understood semantics of the communication mecha~

isms? Secondly, how well do the specifications for different communication mechanisms illus-

trate any inherent similarities between them?

The importance of achieving the first criterion lies in the fact that, in practice, each

369

communication mechanism is defined either informally, or operationally as part of a program-

ruing language. Once a formally defined and operationally acceptable specification has been

produced, there appears to be many operational similarities between the mechanisms.

The design of the specifications described in this paper proceeded with these criteria act-

ing as constraints. The specification of the data type ASYNCH-COMM shows that mechanism

as different as broadcasts and synchronous communication can be modelled in a common

framework. Simple extensions to this data type permit more complex operations, such as

remote procedure calls, to be specified. Global properties, like the presence of deadlocks, can

also be quite easily considered.

R E F E R E N C E S

1. A.J. Bernstein, Output guards and nondeterminism in "Communicating Sequential
Processes", ACM Trans. Prog. Lang. and Sys., 2, 2, April 1980, pp. 234-238.

2. K.M. Chandy, J. Misra, L.M. Haas, Distributed deadlock detection, ACM Trans. o n

Comp. Sys., 1, 2, May 1983, pp. 144-156.

3. P.R.F. Cunha, T.S.E. Maibaum, A communication data type for message oriented pro-
gramming, Proc. IV Intl. Syrup. on Prog., Springer-Verlag, Lecture Notes in Computer
Science, Vol. 83, 1980, pp. 79-91.

4. E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing computations, Inf. Proc.
Left., 11, 1, August 1980, pp. 1-4.

5. J.A. Feldman, High level programming for distributed computing, Comm. ACM, 21, 11,
November 1978, pp. 934-941.

6. N. Francez, Distributed termination, ACM Trans. on Prog. Lang. and Sys., 2, 1, January
1980, pp. 42-55.

7.

8.

J.A. Goguen, Abstract errors for abstract data types, in Formal Description of Program-
ming Concepts, E.J. Neuhold (Ed.), North Holland, 1978, pp. 491-525.

J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specifi-
cation, correctness, and implementation of abstract data types, in Current Trends in Pro-
gramming Methodology Vol. IV : Data Structuring, R.T. Yeh (Ed.), Prentice-Hall, Eagle-
wood Cliffs, 1978, pp. 80-149.

9. J.V. Guttag and J.J. Homing, The algebraic specification of abstract data types, Aeta
Inform., 10, 1, 1978, pp. 27-52.

I0. C.A.R. Hoare, Communicating sequential processes, Comm. ACM, 21, 8, August 1978,
pp. 666-677.

11. M.E. Majster, Limits of the 'algebraic' specification of abstract data types, SIGPLAN
Notices, lg, 1O, October 1977, pp. 37-42.

12. A. Moitra, Direct implementation of algebraic specification of abstract data types, IEEE
Trans. on Software Eng., SE=8, 1, January 1982, pp. 12-20.

370

13. B.ff. Nelson, Remote procedure call, Tech. Rep°, Computer Science Department,
Carnegie-Mellon University, May 1981.

14. J.W. Thatcher, E.G. Wagner and J.B. Wright, Data type specification : parameterization
and the power of specification techniques, in Prec. of the Tenth Aunual ACM Syrup. on
Theory of Computing (1978) 119-132.

15. N. Wirth, Programming in Modula 2, Springer-Verlag, 1982.

