
THE INTEGRATION AND DISTRIBUTION PHASE IN THE SOFTWARE LIFE CYCLE

G. CASAGLIA - F. PISANI

OLIVETTI - DIDAU/DSM

VIA JERVIS, 77 10015 IVREA - ITALY

ABSTRACT

The software production process may be seen as three main phases:
de f in i t ion and design, implentation and d is t r ibu t ion . I t is obvious that in a
indust r ia l environment the phases must have a comparable throughput.
In past years at O l i v e t t i , design and implementation has been s i gn i f i can t l y
increased, introducing a new set of programming tools such as:

UNIX os plus a number of related tools (make, berkleynet, mail)
Pascal+: an enhanced version of Pascal including monitors, as system program-
ming language.

Special care has also been given to the f ina l part of production process where
a l l software components are integrated, f i n a l l y tested and d is t r ibuted to subsi-
diares and then to customers.
A number of management procedures and automated tools have been defined with the
purpose of enhancing such in tegra t ion /d is t r ibu t ion process; among these, worth of
note are the integrat ion plan, describing the process managed by an integrat ion
control board, and release committee°
Two level d is t r ibu t ion data base, system test and amendment data base are some
tools supporting the process.
The presentation w i l l sketch the whole software l i f e cycle and then w i l l
concentrate in the description of the in tegra t ion-d is t r ibu t ion process. According
to our experience th is step may introduce a s ign i f i cant bottleneck. Removing such
bottleneck can s i gn i f i can t l y increase the performance (and qua l i ty) of the ent i re
process.
A detai led analysis of c r i t i c a l points and problems to be solved is derived,
fol lowing our experience in developing an en t i re ly new operating system.

I . INTRODUCTION

In 1980, star t ing a completely new software project, i t was decided to introduce
a new software l i f e c ic le and a completely new set of tools for software
production. At that time software implementation was based on a number of
d i f fe ren t tools, depending on d i f fe ren t projects, but a l imi ted number of
scenarios can be described:
i) small projects using target machine as support, and assembly languages plus

various types of debugging aids.

i i) medium size projects accessing IBM T.S. system, using cross-tools and
various means for t ransferr ing object code from cross-system to target
systems (i . e . down- l ine loading, transport via compatibile media and so
on). Assembler and, in some cases high-level languages, were used in system
software implementation.

i i i) medium size projects using IBM RJE f a c i l i t i e s , plus cross-tools and assembly

372

languages.
Each project adopted a s p e c i f i c - i m p l i c i t - l i f e cycle model.

Due to the character is t ics of the new project, large system software for a new
l ine of minicomputers with a s ign i f i can t number of successive releases to be
produced, i t was decided to define a uniform software production environment,
sui table for a l l development groups. A plan to have a l l groups migrating from
the i r "pr ivate" environment to the new "software factory" was also defined.

The key points on which the new "software factory" was based are the fo l lowing:
use of minicomputers as development systems (PDP-II/70 and VAX), in order to
be able to dedicate computing power to each project group and to be able to
expand such capacity, according to the speci f ic needs of such project groups.

use of UNIX as operating system and the related development too ls , as the
most advanced development environment.

d is t r ibu t ion of a large number of terminals to the d i f fe ren t project groups.

use of Pascal as high level development language.

network interconnection of a l l development systems in order to have the d i f -
ferent groups exchange mail , documentation, source modules.

connection target systems to development systems for down-line loading of
programs.

de f in i t i on of a sui table global software l i f e c i c le .

2. PRESENT SITUATION

Today the environment is completed and successful ly operational.
Just to give some idea, the present s i tuat ion is as fol lows:

Fig.
base

About 30 development systems (PDP-II/70, VAXi are ins ta l led in seven d i f f e -
rent locat ions: four in I t a l y and three in the USA.

A network is connecting a l l of them using dedicated, switched l ines and
s a t e l l i t e l inks.

About 900 terminals are connected to the development systems serving about
II00 people involved in planning, implementation, QC, Sw d is t r i bu t ion . This
gives 1 terminal per 1.2 person.

90% of a l l the software produced is wr i t ten in Pascal.

2.1 is showing the general topolog of the network, being th is the powerfull
supporting the development tools and metodology.

373

In the f i r s t two years of the project much care was dedicated to the environment
and tools affecting productivity in the implementation phase (i .e. implementation
language, debugging tools, computing equipments).
While more can be done in this area, that seems to be the area on which research
efforts are concentrated, the two following years of our project have shown a lar-
ge impact of the integration/distribution phase on global productivity.
The following sections are f i r s t l y dedicated to analize the global production pro-
cess we have adopted and then to discuss some implications and then to consider
possible evolutions or alternatives.

DI~$IGM

])ESIGg

DK.~,l G,M

AI

~ . - - , , , INTE&ff-ATiO~

SySTEM~

TEST SysTEM"

MosH osed t 15 :
B

i C

. mail $tcvic~

• Fi le Technic"

• Inures ~)B

• H;~orica[TiJin~
~o ce d ore s

1)ESIC.~ Sy~I"EM~

Fig. 2.1 Development Network Topology

374

3. ORGANISATIONAL ISSUES AND FLOW OF THE DEVELOPMENT PROCESS

Groups dedicated to the implementation of the software system, were organised
according to a funct ional s t ructure, l i ke the one sketched in f i g . 3.1

r 1

I [HUCLEC~Q$~

L . . _ _ _
, , , ;~,~.~ ~

[HTE GI~AT I i

I: I ac , ,~ i~ ,

[1)lSTi~lgUTiOH , m ' !
!

~ ,
RELEASE:

Fig, 3,1° Functional structure organisation

The main character is t ics of such structure are:

- Implementation of a l l software parts is done in para l le l up to completion of
a l l components according to the funct ional specs, p r a c t i c a l l y wi thout feed-
backs from Integrat ion and CQ phases before the end of implementation phase.

- Qual i ty control is performed in a large single external organisat ion indepen-
dent from the implementation groups.

- In tegrat ion control and d i s t r i b u t i o n is performed by a t h i r d independent
group.

- The production process is p rac t i ca l l y divided in two parts:
- Implentation
- CQ, In teg ra t i on /D is t r i bu t i on

375

The process can be described as follows:
implementation of d i f ferent components is completed independently
components are then Quality Controlled
they are then funneled to the integration process, integrated to form
the complete system and then qual i ty controlled, according to the
various system-configuration.
At this point a complex feedback process among project, QC, integration-
/d is t r ibut ion is started, in order to produce the various product
versions.

In past years these structure has proved to be e f f ic ient for:
implementing a large integrated systems
ef f ic ient and fast implementation of a large quantity of d i f ferent packages
to be integrated in a unique systems
organizing a strong control in the quality-control integrat ion/dist r ibut ion
phases while the implementation phase is technology driven for a large period
performing configuration control in the f inal phase of the release
producing and managing a release version at a time.

4. PRESENT SOFTWARE LIFE CYCLE.

Software l i f e cycle we adopted can be described using the cascade model (BOESI)
modified in order to ref lect the independence between sw modules implementation
process and product release production process.
Life cycle shown in f ig . 4.1, has the following characterist ics:

Functionalit ies of sw components to be developed are defined during require-
ments analysis phase (REQA) driven by technological issues, rather than mar-
ket requirements.

Development of software components is following a rather standard cycle, whe-
re components implementation and QC test def in i t ion and implementation are
proceeding in paral le l .
Implementation of al l components is proceeding independently.

Market requirement are introduced later in the development process, in order
to define the set of components to be included in a product release.
Such def in i t ion, plus the components def in i t ion, allows the def in i t ion of
the actual Product Release Contents (PREQA), and the def in i t ion of Integra-
tion and Test Strategy (Integration Tree, Test Plan, ect.)
I t is in this phase that additional developments are defined to complete Pro-
duct Release Functionalit ies.

Integration and test phase include high interaction among development gro-
ups. Distr ibution k i t is prepared and tested during this phase.

Integration phase ends with the actual delivery of the release to a System
Test phase, val idating functional contents through home tests (application
environment emulation) and through beta test (p i lo t user environment test) .

2:
L~

o, t~

U~
u~

o

|

~CleEQ
A

~?ECS

D
s
G

D
V
L
.

,i

T
~
V
L
.

T
'D

S
G

¢

= I'E
 ~

T

t.,t A
J ~

"~
,

If

C
E

~
I~

Q
A

,

"b
S

G

I
D

V
L

SPG
CS

~
:

-'I-,¢>V L

T
E
 .~T

P
t
A
t
~
T
.

g~

e
~J

0

O-

R
e
B
Q
A

,, ,,,,,,,,
, ,,,,,

IP
11,4'1-

:
V

12ELEASE

3
=

I~
L

~

|

F
i
g
.

4
.
1

S
o
f
t
w
a
r
e

L
i
f
e

C
y
c
l
e

377

A complete l i f e cycle include three-four time integration phase i terat ion
for any components development phase.

5. INTEGRATION PROCESS

The Integration is an ordered process of building-up and testing of a set of soft-
ware components of increasing complexity (f ig, 5.1).

l ,J ,i l,l,,, ,

' ~ .~3_~.!~" I :o,,,~o,.~b| !
I'I'Aw I.~¢.,v r.K i I T B ~ ~ ~ l I

i l / ~ L I ~ T ~ ~

IN'I'F-GP,.~TIOI~ ~ ,STEP,,S I I_ I
g X ¢ ~ T * O ~ I

Fig. 5.1 The Integration Process

The integration process is highly variable and i tera t ive, therefore i t must be
s t r i c t l y controlled. (Table 5.1)

378

u Integration Programming

Includes technical planning, monitoring replanning

integration Execution

Construction arid test

~m Integration Administration

Includes Error handling

me Integration Control

Management & Change Change Control

Tab. 5.1 Integration Activities

Control of the process can be obtained having a high v i s i b i l i t y of the process;
such v i s i b i l i t y is obtained having the software components flowing through three
di f ferent and independent organisations:

Development groups seen as producer of the components and the related
documentation.

Integration, in charge of receiving, managing and control l ing the software
l ibrary and organizing the documentation needed to build the product release.

Quality Insurance, control l ing the quali ty of the software received from
Integration.

Fig. 5.2 shows the information flow among the d i f ferent organisations.
An integration control board coordinate change control and conf l ic t resolution
act iv i t ies , in order to have a smoothly converging process.

A typical Integration cycle is shown in f ig 5.3, where c r i t i ca l mile stones are:
delivery to integration of the last relevant software component;
execution of a complete test phase, accepting software changes for errors du-
ring the test phase;
non-regression test on f inal sw version, accepting controlled and authorized
software changes;
production of d istr ibut ion k i t .

F
i
g
.

5
.
2

ID
N

IS
T~
. B

L T

I
PO

/ /

~
T

E
C

~
B

A
T

IO
~

O

T
~

E

£
I J

%
 %

 "
~

....
....
..

i
/

f
l

i
I

\
|

l
1"

II

\
D

EV
E

LO
F.

 I
,

/
~

""

/
I

~,

L.
-

~
I

.....
 !

I
I

"

J
rA

L

/
!

_~
'w

~L
Ye

~p
.

I C
O

~I
=I

G
. t~

FO

/
k

,

d
i
f
f
e
r
e
n
t

~
P

E
C

~

D

~
T

~
.

or
ga

ni
sa

ti
on

s
/

T ~
G

£A
TE

 ~
S~

S

U
P

P
o~

--
-]

C
o

~
J

~
tG

.
T

O
O

L
S

LA

~o
 H

A
L I

E~

¢.O

380

ITEM HANDOVER

repeat ~ITEM ACCEPTED

~CONTROLLED SW HANDOUT

FIRST TEST CYCLE

~ TEM REVISION HANDOVER

repea~IITEM REVISION ACCEPTED

~0NTROLLED SW HANDOUT

FIRST DISTRIBUTION KIT

NO REGRESSION TEST

PATCH HANDOVER

repeat~PATCH ACCEPTED

~CONTROLLED SW HANDOUT

LAST DISTRIBUTION KIT

RELEASE

...... i

r
V

• V

Fig. 5.3 Integration Life Cycle

6. INTERMEDIATE STATUS.

The environment described has shown the fol lowing carac ter is t i cs :
Provides an e f f i c i e n t implementation process

Implementation process, not integrated with the functional specs de f in i t i on
and plan de f i n i t i on , gives too loose connection and feedbacks between th is
two phases which are proceeding p rac t i ca l l y in pa ra l l e l , up to the integra-
t ion phase.

Strong QC and Integration phases at the end of the process; th is gives:
+ capacity of producing large complex configurations; but
+ long feedback-time among de f i n i t i on , implementation and integrat ion

potent ial boottleneck in the f i na l phase, as soon as the f i r s t versions
are avai lable and a s ign i f i can t number of d i f fe ren t releases has to be
managed.

7. EVOLUTION OF PRODUCTION PROCESS AND SOFTWARE LIFE CYCLE.

As the f i r s t release of the new product was d is t r ibuted i t became apparent a new
problem, we can t r y to summurize as fol lows:

Present structure is targeted to manage a very long implementation period of a
sophisticated technology driven software system; i . e . implementation period has

381

weak feedback from the market and is performed with large authonomy of project
and programming people.
As soon as the sw product is marketed and ins ta l led , dr iv ing points are d i f fe ren t :

add to the system the largest amount of appl icat ion oriented features
generate many applicat ion oriented versions
mantain and keep updated the system software.

I t is quite clear that these aspects are inf luencing the way development steps
are performed (technology driven implementation and market driven implementation
can be handled with d i f fe ren t approaches), but the in tegra t ion /d is t r ibu t ion
phases are heavely influenced, with heavy feedbacks on the organisation of
production process.
A p o s s i b i l i t y is to change the organisation structure indicated in f i g . 3.1 into
a structure in which the implementation groups are organised in a more product
oriented view. A proposal is shown in f igure 7.1.

The to ta l elapsed time in order to obtain a product in the suggested process is
longer then the one shown in f i g . 3.1, but the structure has more i n t r i n s i c paral-
le l ism. As soon as the Basic System SW exists, developments for d i f fe ren t market
sectors can proceed and be d is t r ibuted in para l le l . Furthermore, while the basic
system sw is working on the Nth release, developments for d i f fe ren t Market Sec-
tors, based on (N- l) th release, can be performed and d is t r ibuted.
F ina l l y , two feedback cycles are included; the f i r s t one-let ca l l i t technology
driven - targeted to keep updated the basic System Software and the second one -
l e t ca l l i t product driven - targeted to a fast reaction to market requirement.
The second one can be s ign i f i can t l y faster than the one in f i g . 3.1, in which
technology and product feedbacks are mixed and therefore the product feedbacks
can be conditioned or even de-pr io r i t i zed , in order to support apparently more
urgent technological requirements.

In order to stress a l l the consequences from such production process organisa-
t ion , i t is in terest ing to structure a new software l i f e cycle, that we can ca l l
the "Technology Market Compound Li fe Cicle" (See f i g . 7.2).
Again, supported by the production process organisation shown in f i g . 7.1, we
have to pipelined phases with high degree of paral le l ism, which sharply separate
the process of producing a new technological ly advanced system and the process of
releasing products driven by market requirement.
Important points to note on f i g . 7.2 are:

Architecture Def in i t ion is corresponding, at the technology leve l , to Pro-
duct Def in i t ion at Market Level.
The d i f fe rent steps of such l i f e cycle may be described in greater deta i ls
u t i l i s i n g one of the well known models (for example "Cascade" (BOE 81) or
" I terat ive"(BAL 84)), even i f in th is case we have sketched Bal tzer 's
approach.

Congifuration management is a very important phase also in technology driven
development, where the fas t protot iping technique is introducing a potent ia l -
l y unstructured development process.

382

1 BA%Ic S/sTeM S~

| N O c . . L ' ~ o I | 2 | P . ~ . I ~ k - - h - - - - -

[
i b ISTeIBI)T.

t
c i I c--- ~ i , ~ I

I SW SysTeM ', I$1~ sys'1~Vl J J $w sysTeM I ~

I, B ,
t | ----.A

k i "D I & T I Z I ~ 5 O T , ,

L_
!

I
,,,,

I
,L

I
m~.E

Fig. 7.i Technology - Market Compound Production Process

TE
CR

N0
 LO

Gy
 S

SC
IE

N
C

E/

CE
pJ

F-
IZ

AL
 l"R

o'
bo

cT

J
J~ °

'B
'T

~c
T'

q~

.jr
"

__
.j

~O
lZ

HA
L|

S.
 i

•
A

~
C.

~ t
'T

 E
 C

T.
J

" ~.
VA

 I"l
 I~

AT
IF

']~
:

I

I A.
?P

 Lt
 C

A
T.

F
i
g
.

?
.
2

fil
l

T
e
c
h
n
o
l
o
g
y

-

M
a
r
k
e
t

C
o
m
p
o
u
n
d

L
i
f
e

C
y
c
l
e

co
.,~

.F
t G

od
"n

o,
o.

...
. M

~c
.,~

'r"

~ ll'll ~

~
~

2E
<~

0
I£

E~
 H

.
I

e.
~o

c~
JH

EL
~.

tl
I IIII

I

AP
PL

IC
. ~

F ~
rl'

©

C
VA

LI
bA

TE
b

Illl
ll

II III

H
A2

J<
'E

T"

l:~
ol

:>
O

C
't-

L,
B

.
Il

l"

I
I

CO

~F
n ~

U
~A

T~
O

~
H

~
r.

~
~

co

384

Many para l le l Market oriented cycles may be connected to one Technology cy-
cles and therefore two d i f fe ren t phases and d is t inc t organisations are
needed for Configuration Management.

8. CONCLUSIONS

Large enphasis is often given to programming tools, metodology and equipments, in
order to increase software product iv i ty . At O l i v e t t i , s ta r t ing a completely new
project, a s ign i f i can t e f f o r t was dedecated to adopt modern and up-to-date tools
and metodology. The project "design and implementation of an en t i r e l y new
general purpose mult i funct ional operant system and environment software for a
minicomputer l ine" - found very benef ic ial the use of new tools up to the end of
the f i r s t release.
A cascade software l i f e cycle was adopted, with a large para l le l ism in the imple-
mentation fase and a single sequential in tegrat ion, qua l i t y control and d is t r i bu -
t ion phase.
When the software project is completely new and very complex, i f the functional
specs are well defined, th is l i f e cycle of fers a strong control of the production
process. I t increases the probab i l i t y of obtaing required functional character i -
s t ics while i t o f fers lower control on delays and cost, because of lack of
s ign i f i can t number of frequent feedbacks. Furthermore, the single integrat ion
qua l i t y control and d is t r ibu t ion phase become to l im i t i ng , in order to exp lo i t
market potent ial of new system software while copying with i t evolut ion.
A new process organisation, and software l i f e cycle has been suggested in order
to have a two phases process: one dealing with technologycal evolution and the
other with market requirements. Each phase is supporting para l le l development
a c t i v i t i e s and offers many short feedback loops.
Because we are s tar t ing to experiment such approach, we are unable to report r i -
sul ts or c r i t i c i sms.

BIBLIOGRAPHY

(BAL 84) R. Baltzer - Programming in the 19gO's, Information Sciences Ins t i t u te
1984.

(BOE 81) B.W. Boehm - Software Engineering Economics, Prentice Hall Inc, Engle-
wood C l i f f s .

