THE INTEGRATION AMD DISTRIBUTION PHASE IN THE SOFTWARE LIFE CYCLE
G. CASAGLIA - F. PISANI
OLIVETTI - DIDAU/DSM
VIA JERVIS, 77 - 10015 IVREA - ITALY

ABSTRACT

The software production process may be seen as three main phases:

definition and design, implentation and distribution. It is obvious that in a

industrial environment the phases must have a comparable throughput.

In past years at Olivetti, design and implementation has been significantly

increased, introducing a new set of programming tools such as:

- UNIX os plus a number of related tools (make, berkleynet, wmail,....)

- Pascal+: an enhanced version of Pascal including monitors, as system program-
ming language.

Special care has also been given to the final part of production process where

all software components are integrated, finally tested and distributed to subsi-

diares and then to customers.

A number of management procedures and automated tools have been defined with the

purpose of enhancing such integration/distribution process; among these, worth of

note are the integration plan, describing the process managed by an integration

control board, and release committee.

Two Tevel distribution data base, system test and amendment data base are some

tools supporting the process.

The presentation will sketch the whole software 1ife cycle and then will

concentrate in the description of the integration-distribution process. According

to our experience this step may introduce a significant bottleneck. Removing such

bottleneck can significantly increase the performance {and quality) of the entire

process,

A detailed analysis of critical points and problems to be solved is derived,

following our experience in developing an entirely new operating system.

1. INTRODUCTION

In 1980, starting a completely new software project, it was decided to introduce

a new software 1ife cicle and a completely new set of tools for software

production. At that time software implementation was based on a number of

different tools, depending on different projects, but a limited number of

scenarios can be described:

i) small projects using target machine as support, and assembly languages plus
various types of debugging aids.

ii) medium size projects accessing IBM T.S. system, using cross-tools and
various means for transferring object code from cross-system to target
systems (i.e. down- line Toading, transport via compatibile media and so
on). Assembler and, in some cases high-level languages, were used in system
software implementation.

i11) medium size projects using IBM RJE facilities, plus cross-tools and assembly

372

languages.

Each project adopted a specific-implicit~life cycle model.

Due to the characteristics of the new project, large system software for a new
tine of winicomputers with a significant number of successive releases to be
produced, it was decided to define a uniform software production environment,
suitable for all development groups. A plan to have all groups migrating from
their "private" environment to the new "software factory” was also defined.

The key points on which the new “software factory” was based are the following:

2.

use of minicomputers as development systems (PDP-11/70 and VAX), in order to
be able to dedicate computing power to each project group and to be able to
expand such capacity, according to the specific needs of such project groups.

use of UNIX as operating system and the related development tools, as the
most advanced development environment.

distribution of a large number of terminals to the different project groups.
use of Pascal as high level development language.

network interconnection of all development systems in order to have the dif-
ferent groups exchange mail, documentation, source modules.

connection target systems to development systems for down-line loading of
programs.

definition of a suitable global! software life cicle.

PRESENT SITUATION

Today the environment is completed and successfully operational.
Just to give some idea, the present situation is as follows:

About 30 development systems (PDP-11/70, yAX) are installed in seven diffe-
rent locations: four in Italy and three in the USA.

& network is connecting all of them using dedicated, switched lines and
satellite links.

About 800 terminals are connected to the development systems serving about
1100 people involved in planning, implementation, QC, Sw distribution. This
gives 1 terminal per 1.2 person.

90% of all the software produced is written in Pascal.

Fig. 2.1 is showing the general topolog of the network, being this the powerfull
base supporting the development tools and metodology.

373

In the first two years of the project much care was dedicated to the environment
and tools affecting productivity in the implementation phase (i.e. implementation
language, debugging tools, computing equipments).
While more can be done in this area, that seems to be the area on which research
efforts are concentrated, the two following years of our project have shown a lar~
ge impact of the integration/distribution phase on global productivity.
The following sections are firstly dedicated to analize the global production pro-
cess we have adopted and then to discuss some implications and then to consider
possible evolutions or alternatives.

DESIGN SYSTEMS

D4 -7
Ca
DESIGN SysTems
DESIGN |
SySTEMS

Ao

TEST SysTEM

Mostly used feols :

.Pascal+, C

. Synb. ddwjjcc
Al . Mail Seevice

AMENDMENTS
B add . File Tram*er

. |n3res DB

Aa | _ INTEGRATON
bB's

8 . Accoon‘\'ing
. Historical {ilina

ffoc'.e dores

B Ba

DESIGN SySTEMS

Fig. 2.1 Development Network Topology

374

3. ORGANISATIONAL ISSUES AND FLOW OF THE DEVELOPMENT PROCESS

Groups dedicated to the implementation of the software system, were organised
according to a functional structure, like the one sketched in fig. 3.1

g’"""“”"'"“”"”W”’“m"’"“"—"'“‘""‘"“““l
|
i
APPLICAT, 1
I [NucLeoos.| |Laneuse.] |common, - ‘: CAT| [APPLICAT e
; NVIRAL |ENVIR. g [€T
S N A A= g A
] 1
i i
§ INTE GRATION 3
@ H
R o
[] PRI I p—
; ; 1 v i
bl l
Py QcC ¥
by {
HIE T 1
§ ; Ko e erm e e o o ke e e -4
R S .
i i
! !
; DISTRIBUTION !
3 i
]
i..-.mm qqqqqqq P mnmm— pu |
RELEASE
Fig. 3.1. Functional structure organisation

The main characteristics of such structure are:

- Implementation of all software parts is done in paraliel up to completion of
all components according to the functional specs, practically without feed-
backs from Integration and CQ phases before the end of implementation phase,

- Quality control is performed in a large single external organisation indepen-
dent from the iwplementation groups.

- Integration control and distribution is performed by a third independent
group.

- The production process is practically divided in two parts:
- Implentation
- €Q, Integration/Distribution

375

The process can be described as follows:
implementation of different components is completed independently
components are then Quality Controlled
they are then funneled to the integration process, integrated to form
the complete system and then quality controlled, according to the
various system-configuration.
At this point a complex feedback process among project, QC, integration-
/distribution is started, in order to produce the various product
versions.,

In past years these structure has proved to be efficient for:

4,

implementing a large integrated systems

efficient and fast implementation of a large quantity of different packages
to be ‘integrated in a unique systems

organizing a strong control in the quality-control integration/distribution
phases while the implementation phase is technology driven for a large period
performing configuration control in the final phase of the release

producing and managing a release version at a time.

PRESENT SOFTWARE LIFE CYCLE.

Software life cycle we adopted can be described using the cascade model (BOE. 81)
modified in order to reflect the independence between sw modules implementation
process and product release production process.

Life cycle shown in fig. 4.1, has the following characteristics:

Functionalities of sw components to be developed are defined during require-
ments analysis phase (REQA) driven by technological issues, rather than mar-
ket requirements,

Development of software components is following a rather standard cycle, whe-
re components implementation and QC test definition and implementation are
proceeding in parallel.

Implementation of all components is proceeding independently.

Market requirement are introduced later in the development process, in order
to define the set of components to be included in a product release.

Such definition, plus the components definition, allows the definition of
the actual Product Release Contents (PREQA), and the definition of Integra-
tion and Test Strategy {(Integration Tree, Test Plan, ect.)

It is in this phase that additional developments are defined to complete Pro-
duct Release Functionalities.

Integration and test phase include high interaction among development gro-
ups. Distribution kit is prepared and tested during this phase.

Integration phase ends with the actual delivery of the release to a System
Test phase, validating functional contents through home tests {application
environment emulation) and through beta test (pilot user environment test).

REQM

N GDS6

REGA _, Dse | DVL

_.N. . Test MAINT, |
E SPECS T)
s TDsSG , TbVL
0 v — j o
g ¥ I IZI-ZI-ZTI-ZIZZIZZCZcC
¥ 3 CPEQA , DSG . DVL
w W SPECS - TEST . MAINT.
TS , TdBVL |
RREQA P INT v RELEASE
4 o +
MAINT,
2] .atm., v BT o
ﬁ v FIELD
< m._ RELEASE
W
b % 4 =
W o RRE®A 1 T
o 0.

Fig. 4.1 Software Life Cycle

377

A complete 1ife cycle include three-four time integration phase iteration
for any components development phase.

5. INTEGRATION PROCESS

The Integration is an ordered process of building-up and testing of a set of soft-
ware components of increasing complexity (fig., 5.1).

HanAGeE & l PLAN 2
-« MONITOR
DEVELOP 4 & ConTiRoL.
TeST imEws "4 \ a4 \
INTEGRATION
PLAN
ADMINISTER
INTERNAL
INTEGRATION RELEASE
INTEGRATION
HANDOVER o ey
VALIDATE 2
PERFORM DISTRIBOTE
INTEGRATION RELEASE
INTEGRATION STEPS A
ExEcUuTion

Fig. 5.1 The Integration Process

The integration process is highly variable and iterative,

therefore it must be
strictly controlled. {Table 5.1)

378

_— Integration Programming
® Includes technical planning, monitoring replanning
an Integration Execution
s Construction and test
- Integration Administration
» Includes Error handling
. Integration Control

@ Management & Change Change Control

Tab. 5.1 Integration Activities

Control of the process can be obtained having a high visibility of the process;
such visibility is obtained having the software components flowing through three
different and independent organisations:

Development groups seen as producer of the components and the related
documentation.

Integration, in charge of receiving, managing and controlling the software
library and organizing the documentation needed to build the product release.

Quality Insurance, controlling the quality of the software received from
Integration.

Fig. 5.2 shows the information flow among the different organisations.
An 1integration control board ccordinate change control and conflict resolution
activities, in order to have a smoothly converging process.

p-gd

typical Integration cycle is shown in fig 5.3, where critical mile stones are:

delivery to integration of the last relevant software component;

execution of a complete test phase, accepting software changes for errors du-
ring the test phase;

non-regression test on final sw version, accepting controlled and authorized
software changes;

production of distribution kit.

379

S 1YHONY
S100.L " N2 (NOD

?.

ASISIL o) NaWANEW
- 1204403 MmS 433393 1N
wsiq =324
" ‘ \ SLNaWANILY]
- 04N "91aN0D
SWILl MS
20 S100L
SJads
N\ 1 |
a3 o __ /
P 1S
43 Mtzam < \ \ VI
// , 1
/
\ | | \\
\ { -~ .
SR e ! 4013A3q
N\ by -~ !
\ Pl /
Nl - /
N - - \
21 OdlI
dcviag oan) A9Bavass 1S3 20018 " 31S1q
332 A1 aam A331 olVAD3IN|

NOLLONOA

Wall ™S [#51vi

suoTjesTuedio JUSIIITD

sy3 Buowe MOTJ UOTIJBHJIOJIUT

>33
"11Woav

2*s "8id

Nvd

Sasvaay

380

1TEM HANDOVER

repeat ¢ ITEM ACCEPTED LJ

CONTROLLED SW HANDOUT - %
FIRST TEST CYCLE 74

TEM REVISION HANDOVER

repeat { ITEM REVISION ACCEPTED

CONTROLLED SW HANDOUT L

FIRST DISTRIBUTION KIT

NO REGRESSION TEST N

PATCH HANDOVER - N

repeat 4 PATCH ACCEPTED l.
CONTROLLED SW HANDOUT

LAST DISTRIBUTION KIT

¥

RELEASE S?

Fig. 5.3 Integration Life Cycle

6. INTERMEDIATE STATUS,

The environment described has shown the following caracteristics:
. Provides an efficient implementation process

. Implementation process, not integrated with the functional specs definition
and plan definition, gives too loose connection and feedbacks between this
two phases which are proceeding practically in parallel, up to the integra-
tion phase.

. Strong QC and Integration phases at the end of the process; this gives:
+ capacity of producing large complex configurations; but
+ long feedback-time among definition, implementation and integration
potential boottleneck in the final phase, as soon as the first versions
are available and a significant number of different releases has to be
managed.,

7. EVOLUTION OF PRODUCTION PROCESS AND SOFTWARE LIFE CYCLE,

As the first release of the new product was distributed it became apparent a new
problem, we can try to summurize as follows:

Present structure is targeted to manage a very long implementation period of a
sophisticated technology driven software system; i.e. implementation period has

381

weak feedback from the market and is performed with Targe authonomy of project
and programming people.
As soon as the sw product is marketed and installed, driving points are different:
. add to the system the largest amount of application oriented features
generate many application oriented versions
mantain and keep updated the system software.

It is quite clear that these aspects are influencing the way development steps
are performed (technology driven implementation and market driven implementation
can be handled with different approaches), but the <integration/distribution
phases are heavely influenced, with heavy feedbacks on the organisation of
production process.

A possibility is to change the organisation structure indicated in fig. 3.1 into
a structure in which the implementation groups are organised in a more product
oriented view. A proposal is shown in figure 7.1.

The total elapsed time in order to obtain a product in the suggested process is
Tonger then the one shown in fig. 3.1, but the structure has more intrinsic paral-
lelism. As soon as the Basic System SW exists, developments for different market
sectors can proceed and be distributed in parallel. Furthermore, while the basic
system sw is working on the Nth release, developments for different Market Sec-
tors, based on (N-1)th release, can be performed and distributed.

Finally, two feedback cycles are included; the first one-let call it technology
driven - targeted to keep updated the basic System Software and the second one -
Tet call it product driven - targeted to a fast reaction to market requirement.
The second one can be significantly faster than the one in fig. 3.1, in which
technology and product feedbacks are mixed and therefore the product feedbacks
can be conditioned or even de-prioritized, in order to support apparently more
urgent technological requirements.

In order to stress all the consequences from such production process organisa-
tion, it is interesting to structure a new software life cycle, that we can call
the "Technology Market Compound Life Cicle" (See fig. 7.2).

Again, supported by the production process organisation shown in fig. 7.1, we
have to pipelined phases with high degree of parallelism, which sharply separate
the process of producing a new technologically advanced system and the process of
releasing products driven by market requirement.

Important points to note on fig. 7.2 are:

Architecture Definition is corresponding, at the technology level, to Pro-
duct Definition at Market Level.

The different steps of such 1ife cycle may be described in greater details
utilising one of the well known models {(for example "Cascade" (BOE 81) or
"Iterative"(BAL 84)}), even if in this case we have sketched Baltzer's
approach,

Congifuration management is a very important phase also in technology driven
development, where the fast prototiping technigue is introducing a potential-
1y unstructured development process.

382

T e Gvmm Wi O RGN @ T Sen Sles D SRW MWD Kt o MRS ol SAWS (v TGS MM s D s e

NDCLED

LANGUAG.
-3
DEV. TOOLS

QC
y
INTEGRAT
) A
DISTRIBUT,
f‘—'"“"i""""ﬁ o= fe— r“-’L“““l
| SW SYSTEM | |Sw sysTEM | [SW SYSTEM |
| MARCET SECTORl | MARKET SECTOR), |MARKET SECTOR Je
H
L___.,_E:w.,_.? L.._--lB _____ j L__i.___j
acC
2 i/ s 4
INTEGRAT.
DISTRIBOT, fd s

Fig. 7.1

Technology -~ Market Compound Production Process

383

HOVND NN (MO LY IOD 14080D
‘NIHAD0Q 7 S 21144V AMWMMA.M“MWGQ ‘HIA0d3IA L
A c3gr ms | M NI LYDI 14 AV _ n
Qo.rS:%{ | @™N3ag WIo4ASNVYR | e 5
A y A y
“ ‘A TddY .
A20Q0%d ASYWACH [Ditady \/
A3LNIFO) A
A3oruK an1oafdo
LBAAYH
(a31vaivay
0LOBd MSdD
R v} NIDJOR 2 e
Annaoad Asvaar ms MSa9 [Waoastival [FTA9010803)
< e asoddnd € < &
2S0AANS 1P BINZD Jadwlww =LY A9oomuoay Man
*o3y
QAIVANY IS
ANHIMI NOLLVE 0D 140D UIILIWOAY |
3stvvdod|
v
sanridalfao ;_,
Ao0qodd ivaacag /3ION3I0S
oT0£y 2317 punoduwo) 3edaep — ASoTouynsj 2*L 814

£9010NHDT |

\s\dm..—ba Wo) y

384

Many parallel Market oriented cycles mesy be conmected fo one Technology cy-
cles and therefore two different phases and distinct organisations are
needed for Configuration Management.

8. CONCLUSIONS

Large enphasis is often given to programming tools, metodology and equipments, in
order to increase software productivity. At Olivetti, starting a completely new
project, a significant effort was dedecated to adopt modern and up-to-date tools
and metodology. The project - "design and implementation of an entirely new
general purpose multifunctional operant system and environment software for a
minicomputer line" - found very beneficial the use of new tools up to the end of
the first release,

A cascade software life cycle was adopted, with a Targe parallelism in the imple-
mentation fase and a single sequential integration, quality control and distribu-
tion phase.

When the software project is completely new and very complex, if the functional
specs are well defined, this life cycle offers a strong control of the production
process. It increases the probability of obtaing required functional characteri-
stics while it offers lower control on delays and cost, because of lack of
significant number of frequent feedbacks. Furthermore, the single integration
quality control and distribution phase become to limiting, in order to exploit
market potential of new system software while copying with it evolution.

A new process organisation, and software life cycle has been suggested in order
to have a two phases process: one dealing with technologycal evolution and the
other with market requirements. Each phase is supporting paraliel development
activities and offers many short feedback loops.

Because we are starting to experiment such approach, we are unable to report ri-
sults or criticisms.

BIBLIOGRAPHY

{BAL 84) R. Baltzer - Programming in the 1990's, Information Sciences Institute
1984.

(BOE 81} B.W. Boehm - Software Engineering Economics, Prentice Hall Inc, Engle-
wood CY1iffs.

