
The Static Derivation of Concurrency
and Its Mechanized Certification

Christian Lengauer
Chua-Huang Huang

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Abstract

This is an attempt to combine the two research areas of programming methodology and

automated theorem proving. We investigate the potential for automation of a programming

methodology that supports the compile-time derivation of concurrency in imperative

programs. In this methodology, concurrency is identified by the declaration of certain seman-

tic properties (so-called "semantic relations') of appropriate program parts. Semantic declara-

tions can be exploited to transform the sequential execution of the program into a parallel ex-

ecution. We make observations about the automation of correctness proofs of such transfor-

mations for a limited domain of programs: sorting networks.

1. Introduction

This paper is about the feasibility of a research area: programming methodology, or the

formal derivation of programs. Like the formal proof of programs, the formal derivation of

programs will be feasible in a software production environment only if it is mechanically sup-

ported. Program logics in their present form are technically too intricate to be efficiently and

reliably applied by hand on a large scale, and it is doubtful that they will become simpler in

the future. (This is not to say that the formal derivation and proof of programs by hand is

not of considerable academic interest.) The research area that deals with the automation

of formal logics is automated theorem proving. We would like to contribute to the cur=

rently emerging and very important link between programming methodology and automated

theorem proving.

Automating or, more exactly, mechanically certifying the derivation of programs helps

both the programmer and ~he customer who uses the program. The programmer will find an

automated derivation more difficult and tedious than a derivation by hand. This is to be ex-

pected: an automated derivation does not permit any informal steps; each ever so little detail

has to be formalized. However, what is gained, is the near-to-complete confidence that the

132

derivation rules ~ave been applied correctly. The customer reaps mos~ of the reward of an

automated derivation. All he has to believe in order to be convinced of the correctness of the

programmer's product is:

[a) that the program's specification meets his needs, and

(b) that the theorem which states that the program satisfies the specification is cor-
rectly represented in the mechanized programming calculus.

He does not have to be concerned with any aspects of the proof at all. However, both the

programmer and the customer must believe one more thing: that the programming calculus

has been implemented correctly, i.e., that no faulty programs can be certified.

The methodology in whose automation we are interested focusses on the static deriva-

tion of concurrency in imperative programs [9]. In this methodology, the derivation of concur-

rency proceeds by a successive compression of the program's executions based on the declara-

tion of certain useful program properties. Most interesting programs contain recursions or

loops. The most effective and practical transformations of such programs will also be recur-

sive, and their proofs of correctness will require induction. We are therefore interested in the

mechanical t reatment of recursion and induction.

The following section reviews our methodology. Sect. 3 introduces the class of programs

that we explore: sorting networks. After some general observations about the mechanical sup-

port of trace transformations and a justification why we view them as theorems (Sect. 4), we

describe a mechanically supported "proof methodology" of trace transformations and il-

lustrate it on several sorting networks (Sect. 5). We conclude the paper with a discussion of

the challenges in the automation of this proof methodology (Sect. 6).

A more detailed account of our mechanized semantic theory and the full description of a

mechanical proof can be found in [12~.

2. A M e t h o d o l o g y f o r t h e S t a t i c D e r i v a t i o n o f C o n c u r r e n c y

Our goal is to mechanize parts of a particular methodology for the derivation of concur-

rency in programs [9]. This section describes that methodology.

Two different motives may lead to the application of concurrency:

(1) The desire for a specific program behavior.

For instance, one might wish to run an experiment which involves certain

processes executed by designated processors that communicate and synchronize with

each other in some fashion. Such applications are to ensure the correct functioning of

some machine configuration with a specific concurrency structure. Examples are dis-

133

tributed or operating systems.

(2) The desire for fast program results.

For instance, one might wish to execute a numerical or data processing algorithm

with concurrency in order to obtain a result faster. Such applications do not refer to a

specific machine configuration or concurrency structure, but only to some relation of in-

put and output values. Examples are numerical and sorting algorithms.

The programming methodology described here takes the second approach: concurrency

is viewed as a tool for accelerating the acquisition of results, not as a basic characteristic of a

program. Consequently, concurrency will not be part of the problem specification, but will be

derived after the development of the program. We would like to certify this derivation

mechanically.

This methodology can be applied to every programming problem that is completely

specified by an input/output assertion pair. A terminating solution must exist, i.e., the output

assertion must not be false. An execution time limit in form of a function of the input vari-

ables may or may not be added. One could conceive also the addition a storage space limit

but, in its present from, the methodology does not provide for that.

The methodology cannot be applied to a programming problem with additional con-

straints like a specific concurrent behavior. Programs with a specific behavior can be derived

{see, for instance, the Producer/Consumer and the Dining Philosophers in [9]}, but the correct-

ness of such behavior has to be argued informally.

Thus, we permit the specification of a programming problem in three parts:

(a) the input constraints under which the program shall operate,

(b) the results which the program is supposed to achieve, and

(c) an optional time limit imposed on the program's execution.

The program development then proceeds along the following lines:

(1) Perform a formal stepwise refinement of a program that achieves the desired result
under the given input constraints. The program does not address the question of
execution order. It may not require a total order of its operations, but an easy, se-
quential execution can, at this point, serve as a first execution time estimate.

(2) Declare simple relations between program components, so-called "semantic
relations', that allow relaxations in sequencing, e.g., concurrency. Do so until the
execution time of the program satisfies the specified time limit.

A refinement of program S is, for instance, S: S1;$2. The semicolon denotes

"application". It may be implemented by executing S1 and then S2, but need not be in all

134

c a s e s .

Semantic relations are, for instance, the commutativity of the components S l and $2

(written $1~S2), and the independence of $1 and $2 (written S l j IS2). S1 and $2 are com-

mutative, i.e., 8:t~S2 may be declared if the execution of 81 and then $2 has the same effect

as the execution of $2 and then $1. If 8 1 ~ 2 is declared, 81;82 may also be implemented by

executing 82 and then 3t . S1 and $2 are independent, i.e., S l l IS2 may be declared if the ex-

ecution of S l and 82 in parallel has the same effect as their execution in order. If Sl1182 is

declared, 31;S2 may also be implemented by executing $1 and 82 in parallel. A third seman-

tic relation is the idempotenee of some component S (written !S). 8 is idempotent, i.e., !S may

be declared if S has the same effect as SiS. If iS is declared, we may add to or delete from a

sequence of consecutive calls of S.

Idempotence helps eliminate superfluous parts of an execution, or duplicate parts of an

execution for commutation to appropriate places. Commutativity helps distribute program

components to places in the execution where they can be executed in concurrence with others.

Independence helps add concurrency. Independence implies commutativity.

To declare semantic relations for some program, one does not need to understand the

program as a whole. A local understanding of the components appearing in the declared rela-

tion is sufficient. The concurrency that is induced by semantic declarations is of a very simple

nature: there is no need for synchronization (other than at the point of termination) or

mutual exclusion, as is required for conventional concurrent processes. Most semantic declara-

tions come easily to mind and have a simple proof.

But the foremost benefit of this approach to the derivation of fast programs is that the

more important and better understood question of program refinement is resolved before the

less important and more complex question of concurrency arises. Concurrency is later added in

isolated steps (by invoking semantic relations) without changing the approved meaning of the

program.

For concurrency so be correct, a program has to fulfill intricate requirements. That is

what makes concurrency so hard to understand. It is easier to derive concurrency on an in-

formed basis (as the last step of the program derivation) than on an uninformed basis (as the

first step of the program derivation). The correctness proof of concurrency is easier at a

refinement level where concurrency is simple, e.g., between two independent program parts

than at a refinement level where concurrency is complicated, e.g., between two processes that

require synchronization and mutual exclusion.

Thus, in our methodology, the development of programs with concurrency is divided

into two stages:

135

Stage 1:

Stage 2:

The development and formal semantic description of a program that achieves the
desired result. This requires a formal refinement and the declaration of semantic
relations. Programs are composed by the usual program combinators, e.g., com-
position: S l ;32 (read: "32 is applied to the results of Sl").

The derivation of a fast execution of the program produced at Stage 1. (An execu-
tion of a program is also called a trace.) This is conceptually simple but computa-
tionally complex. It involves the computation of execution times and the invoca-
tion of semantic relations to transform traces and improve execution time. There
are two trace combinators: S1-~$2 (read: "execute S1 and then 32"), and <S1 $2>
(read: "execute SI and $2 in parallel'}.

We call Stage 1 the refinement calculus and Stage 2 the trace calculus. Either of the

two stages has the potential for automation. Automation of Stage 1 would yield a mechanical

system for program refinement. Research along these lines is under way elsewhere [2, 13].

Automation of Stage 2 would yield a very powerful optimizing compiler (since we view con-

currency as optimization). Early work in this area [8] has been without a formal semantic

basis. At that time, formal semantics was in its infancy. Our interest is the mechanical support

of Stage 2 on a formal semantic basis.

The most common approach to programming in which the derivation of concurrency is

divorced from the derivation of the program is data flow programming [1]. A data flow

program makes no explicit reference to the order of execution. It is executed on a special

machine architecture that follows the sequencing imposed by the data dependencies of the

program's variables. Data flow languages are "referentially transparent ' : they ~]o not permit

the re-assignment of variables. This simplifies the identification of data independencies so

much that, commonly, no programmer assistance is needed to identify concurrency. Our ap-

proach is "referentially opaque' , i.e., permits the re-assignment of variables and, con-

sequently, requires a more complicated data flow analysis. We have to explicitly declare and

subsequently exploit data independencies (in our formalism, semantic relations).

The vast majority of software that exists today and is currently being produced is

referentially opaque. The vast majority of today's machine architectures support the referen-

tially opaque programming style. While we must strive for new programming styles and

machine architectures, we must also continue to increase our understanding of the present

technology.

3. Expository Domain: Sorting Networks

Semantic relations can be declared for programs in any imperative programming lan-

guage that has a weakest precondition semantics. For the purpose of our investigation we

choose a very simple language. We do not want to complicate our mechanical proofs of trace

136

transformations by unduly complicated semantics oI " programs and traces. We define the inn=

guage of sorting networks [7]. The general problem that we pursue is to sort an array a0..n

of numbers into ascending order in no more time than O(n). The linear time requirement

~orces us to consider a concurrent execution. In the language of sorting networks, refinements

can have the following structure:

(1) The null statement ~ does nothing.

(2) The comparator module c s (i , j) accesses an array a of numbers. It compares
elements a 1 and aj and, if necessary, swaps them into order. A simpler version of
comparator module with only one argument, c s (i) , deals with adjacent elements
al_ 1 and a I. We call sorting networks that are composed of simple comparator
modules simple sorting networks. The eomparator module is of imperative na-
t.ure, i.e., its implementation requires assignment.

(3) The composition $1;$2 of refinements S1 and 82 applies $2 to the results of S1.

Sorting networks are well-suited for our methodology because they terminate and only

their results, not their behaviors matter. They also have a wide range of applications and are

extensively researched. It is important to realize that we are not trying to do research in sort-

ing networks. We chose them as a well-understood first domain in which to test our ideas of

automation.

Since we are concerned with the trace calculus of the methodology, we do not dwell on

the refinement of programs but accept the particular sorting network whose trace transfor-

mations we want to study as given. So far, we have studied three sorting networks: the inser-

tion sort, the odd-even transposition sort, and the bitonic sort [7]. The insertion sort and the

odd-even transposition sort can be expressed as simple sorting networks. The bitonic sort ex-

pects array a already presorted in bitonic order. Let us describe each of the three sorting net-

works in turn.

8.1. I n s e r t i o n S o r t

The following refinement describes the insertion sort:

insertion-sort (n) : sort (n)

sort (0) : skip
(i>O) sort(i) : sort(i-l) ; S(i)

S (o) :
(i>O) S(i) : cs(i) ; S(i-l)

Comparator modules may be declared idempotent. Consecutive applications of the same

comparator module do not yield any new results. For l± - j I>l, i.e., if i and j are not

"neighbors", cs (l) and cs (j) are disjoint: they do not share any variables. Components that

137

do not share variables may be declared independent.

! c s (1)

i l - j l > l ~ cs(1) l l c s (j)

Note that the prerequisite [l - j I>1 makes cs(1) l i e s (j) a semantic rather than syn-

tactic condition. (Semantic declarations can also be qualified with respect to a postcondition.

For the underlying theory see [11].)

For, say, a six-element array (n=5), the refinement has the following sequential execu-

tion, if we interpret composition ' ; ' as execution in order '~,' and expand components s o r t (i)

and S(l) (1_<5) of s o r t (5) :

t au(5) = cs (1)-*cs (2)-~cs (1)
-*cs (3)-*cs (2) -*cs (1)

-~cs (4)-~cs (3) -*cs (2) ~cs (1)
-*cs (5)-*cs (4)*cs (3)-*cs (2)-*cs (1)

If we count the number of comparator modules cs, tau(5) has length 15. In general, tau(n)

has length n(n+l) /2 , i.e., is quadratic in n. To derive a linear execution, we have to exploit

the independence declaration for s o r t (n) and compress tau (n) into a trace with concurrency.

We have already laid out the sequential trace tau(5) in a form which suggests how this can

be done. We commute comparator modules in tau(5) left, and then merge adjacent modules

whose indices differ by 2 into a parallel command:

t a u - (5) =
/ c s (i) \ / c s (2) \ / c s C i) \ / c s (2) \ /csCi) ' \

cs(1)-~cs (2)-~) - ~) * (c s (3)) - ~ () - ~ ()-~cs (2)-~cs (1)
\ c s (3) / \ c s (4) / \ c s (5) / \ c s (4) / \ c s (3)]

If we assume instantaneous initiation and termination of parallel commands (instantaneous

forks and joins), this execution is of length 9. In general, t au - (n) is of length 211-1, i.e., linear

in n. The degree of concurrency increases as we add inputs. This is a property of all three

sorting networks. They are not limited to a fixed number of concurrent actions. However, if

only a fixed number k of processors is available, the independence declaration may be ex-

ploited only to generate a concurrency degree of k or less.

Note that the idempotence declaration of comparator modules does not help in the

derivation of concurrency for the insertion sort. As we shall see in the next section, array

a0..~ can be sorted faster than by t au - (n) , but not when we start with the refinement of the

insertion sort.

138

3.2. O d d - E v e n T r a n s p o s i t i o n So r t

The odd-even transposition sort is the simplest possible .example of the transformation of

a sorting network. Here is the refinement:

odd-even-sort(n): s o r t (n+l, n)

s o r t (0, j) : s ki~
s o r t (i , j) : S (j - 1)

(i> i) s o r t (i , j) : S (j - 1) ; S (j) ; s o r t (i - 2 , j)

S (0) :
S(1) : cs (1)

(I>1) S(±) : c s (i) ; S (i - 2)

As a simple sorting network like the insertion sort, the odd-even transposition sort

adopts the semantic declarations of the previous section:

! cs (i)

! i - j l > l =¢~ c s (i) [I c s (j)

The sequential trace of this refinement for a five-element array (n=4) is:

t a u (4) = cs (3)-~cs (i) -~cs (4)-~cs (2)-~cs (3) ~ c s (1)~cs (4)-~cs (2)*cs (3)-~cs (1)

The number of comparator modules in t au(4) is 10. In general, t au (n) has length n (n+l) /2 .

In every S (i) , the indices of all comparator modules differ at least by 2. Thus we can convert

each S (i) into one parallel command. The resulting parallel trace is:

t a u - (4) = ~/cs (1) ~_ , (c s (2) ~ _ ~ (c s (1) ~ . ~ (c s (2) ~ .~ (c s (I) ~

\ c s (3) / \ c s (4) / \ c s (3) / \ c s (4) / \ c s (3) /

t a u - (4) is of length 5. In general, t a u - (n) is of length n+l.

3.3. Bitonie Sor~

An array no..~ is in bitonic order if ao_>..._>ai_<....<.an for some 0<_i_<n. Let us write ar-

ray no..~ as a sequence (a0, a I an). The bitonic sorting algorithm sorts an array a that is

already in bitonic order into ascending order by sorting the subsequences (a 0,a 2) and
(a l ,a , 3) independently, and then comparing and interchanging (a 0 , a t) , (a 2 ,a 3),... .

Since the subsequences of a bitonic sequence are also bitonic, {a 0, a~) and {a 1, a, 3) can

be sorted by the same algorithm, until all subsequences have length i. The bitonic sort is not

a simple sorting network. It requires the general comparator module cs (±, j) .

The refinement of the bitonic sort is:

139

(leng>l)

b l t o n l c - s o r t (n) : so r t (0,1, n+l)

sor t (base , s tep, 0):
sor t (base , s tep, 1): skip
sor t (base , s tep, leng): sor t (base , step*2, [leng/2]);

sort(base+step, step*2, [leng/2J);
S(base, s tep, step*2, [leng/2])

S(base, d l s t , s tep, 0): skip
(leng>0) S(base, d i s t , s tep, leng): cs(base, base+dlst) ;

S(base+step. dlst, step, leng-l)

Refinement so r t performs the bitonic sort as described. It is qualified by three

parameters, base, step, and leng, that identify a subsequence of a: base is the index of the

first element, s tep is the difference of the indices of any two adjacent elements, and leng is

the number of elements in the subsequence. Refinement S performs the step of comparisons

and interchanges. It is qualified by four parameters, base, d ls t , step, and leng, that iden-

tify a sequence of comparator modules that access array a: base is the index of the left array

element accessed by the first comparator module, d i s t is the distance of the left and right ele-

ments accessed by any comparator module, s tep is the distance of the left elements (or right

elements) of any two adjacent compara~or modules, and leng is the number of eomparator

modules in sequence.

Like simple comparator modules, general comparator modules may be declared idem-

potent. Also, disjoint comparator modules may be declared independent. General comparator

modules cs(i l ,12) and cs (j i , J2) are disjoint if they do not overlap, i.e., if l l # j i , it#J2 ,

12~Jl, and 12~ j2.

! c s (1 1 , 12)

i l#Jl ^ l l#j2 ^ 12fJl ^ 12#j2 ~ cs(i l ,12) l ics (J l , J2)

Let us construct a binary tree of bitonic sequences whose root is the entire array a, and

whose left and right subtrees are recursively constructed by splitting the root into sub-

sequences as prescribed by the bitonic sorting algorithm. We call this tree the sequence tree of

a. The sequence tree of an eight-element array (n=7) is:

(a0, al, a~. a3, a4, as, aB, at)
/ \

/ \ I \
(~ , a4) (~ , ~) (%, as) (~ , ~)

I k I \ I \ I \
(a o) (a 4) (~) (as) (a~) (as) (a3) (~)

At each node (all, ai2, ais,ai4), the bitonic sorting algorithm requires an application of

140

comparator moduies cs (±i, 12);cs (230 ±4) ; ' ' ', which we shall call a segment. The following

segment tree corresponds to the previous sequence tree:

ca (0 ,1) ;cs (2,3) ; cs (4,5) ;ca (6,7)
/ \

cs (0,2) ; c s (4 , 6) c a (l , 3) ; c s (5 , 7)
/ \ 1 \

cs (0,4) CS(2.6) c s (l . 5) CS(3.7)

Segments of leaves in the sequence tree are null and are not represented in the segment tree.

Note that, in the refinement of the bitonie sort, segments are represented by calls of S.

We can now view the sequential trace gnu of the bitonie sort as the post-order traversal of

segments in the segment tree:

t~.u(7) = cs(O,4)'~cs(2,~)~cs(O,2)-~cs(4,6)
-~cs (1,5)-~cs (3,7)-~cs (1,3)-~cs (5,7)

*cs (0. l) *c s (2.3)-~cs (4.5)÷cs (6.7)

t au(7) has length 12. In general, t a u (2 k - l) has {ength 2k-ik. (The refinement works for all

bitonie arrays, but we choose to consider only arrays whose length is a power k of 2. Such ar-

rays yield complete sequence and segment trees.) Observe that any two distinct segments x

and y in the segment tree which are not in an ascendant/descendant relationship have no

common elements. Such x and y are independent, and we can commute them or make them

parallel. For instance, we can commute all segments that are on the same level in the tree

{i.e, that have the same distance from the root) into adjacency:

tau" (7) = cs (0.4) -~cs (2.6) -~cs (1.5)- ,cs (3.7)
->cs (0~ 2) -~cs (4.6) -~cs (I . 3)-~cs (5.7)

~cs (0 ,1)*cs (2,3)-~cs (4,5)-*ca (6,7)

Then we can merge each level into one parallel command:

tau" (7) = <cs(O.4) es (2 .5) c s (l . 5) c s (3 .7)>
-~<cs (0.2) cs (4.6) cs (I . 3) cs (5.7) >

-~<cs(O.l) cs (2 .3) c s (4 .5) cs (6 .7)>

t, au" (7) is of length 3, with a concurrency degree of 4. In general, t a u - (2 k - t) is of length k,

with a concurrency degree of 2 k-1.

4. On the ~leehanlcM Support of Trace Transformations

Given a sequential trace that we know to be correct, we would like to derive an equiv-

alent but faster parallel trace. Let us assume a recursive sequential trace. We can prove its

equivalence with the parallel trace by a recursive appliea£ion of a sequence of trace transfor-

mations. Although such trace transformations are in many cases quite simply described in in-

141

formal English, their formal application is extremely tedious (as is effectively demonstrated by

our manually derived proof of the insertion sort transformation in Sect. 5.4 of [11]). We do

not want to rely on an informal description but would like some mechanical aid in the formal

application.

We might be tempted to view the trace transformation as a recursive algorithm. Say,

algorithm t r a ~ s (n) transforms sequential trace t au (n) into parallel trace t a u - (n) by ap-

propriately commuting and ravelling tau ' s comparator modules. The computational com-

plexity of t r a n s (n) will depend on the particular transformation it performs. For instance,

[12] contains a cubic algorithm for the transformation of the insertion sort. If we intend to

sort frequently it is very reasonable to ' buy" a linear execution with cubic compilation.

However, the algorithmic approach to transformation has one fundamental problem: an un-

bounded trace can never be completely transformed in finite time - and recursive or looping

programs yield unbounded traces.

A better approach is to treat trace transformations as theorems, not algorithms. A trace

transformation theorem states the semantic equivalence of a sequential trace and its parallel

transformation:

semantics of parallel trace = semantlcs of sequential trace

In particular, recursive transformations are inductive theorems. Transformation theorems of

sorting networks are of the form:

TAU.MAIN: For a l l n>O,
seman t i c s of t a u - (n) = semant ics of t au (n)

The proof essentially rewrites one side of the equation into the other. Because it uses induc-

tion (on n), it can deal with unbounded traces in finite time. In other words, the length of the

proof does not depend on the length of the trace.

Our current focus is the automation of such proofs. For this purpose, we use a powerful

induction prover [4] that is based on a mechanized functional logic particularly suitable for

program verification [3]. The prover is designed to prove theorems about recursive functions

but is not an expert on sorting networks and their trace transformations. Our attempts to

turn it into such an expert are described in the following section.

Ultimately we would like the mechanical support not only in the proof but also in the

discovery of transformation theorems. We imagine a set of mechanized heuristics that trans-

form sequential traces correctly into equivalent parallel traces, using induction. A formal cor-

rectness proof of these heuristics would save us from proving the transformation of every

single trace separately. However, for the time being, we prefer to deal with the simple seman-

142

tics of traces, not with the ~aore complicated semantics of heuristics for the transformation of

traces.

5. T h e M e c h a n i c a l C o r r e c t n e s s P r o o f o f T r a c e T r a n s f o r m a t i o n s

We are applying Boyer & Moore's mechanical treatment of recursion and induction i3].

All the reader has to know about Boyer & Moore's mechanized logic to understand this paper

is that terms in first-order predicate logic are expressed in a LISP-like functional form. (We

will here actually keep basic logic and arithmetic operations in infix notation.) Predicates are

functions with a boolean range. There are no quantifiers. A variable that appears free in a

term is taken as universally quantified. For example, the term

(hXJMBEP2 X) ~ X < X+I

expresses the fact that any number is smaller than the same number incremented by 1. Func-

tions can be declared (without, a function body) or defined (with a function body), and facts

can be asserted (introduced as an maxiom') or proved (introduced as a "lemma*).

This section sketches the implementation of the semantic theory that is necessary to

prove trace transformation theorems for sorting networks in Boyer & Moore's logic. We shail

gloss over a lot of details. For instance, we shall not display the bodies of the defined func-

tions that we introduce.

5.1. T r a c e R e p r e s e n t a t i o n

We represent a trace by a LISP list. The elements of the list are executed in sequence. If

a list element is itself a list, it is called a parallel command and its elements are executed in

parallel. If an element of a parallel command is again a list, its elements are executed in se-

quence, etc. Thus, a trace is a multi-level list whose odd levels reflect sequential execution,

and whose even levels reflect parallel execution. In the realm of simple sorting networks, we

can represent traces by multi-level lists of integers. For example, traces t a u (5) and t a u - (5)

of the insertion sort,

t a u (5) = cs (1)+cs (2)+cs (I)
+cs (3)+cs (2)+cs (I)

+ c s (4) +cs (3) +cs (2) +cs (I)
+cs (5) +ca (4)+cs (3)+cs (2)+cs (I)

tau" (5) =
/ c s (1) \ , l o s (2) \ /CS(1)%\ / C S (2) \ / C S (1) \

(4) 1 \ c s (5) / \ c s (4) / \ c s C S) /

143

are represented by

(TAU5) = "(1 2 1 3 2 i 4 3 2 1 5 4 3 2 1)

(TAU- 5) : "(1 2 (3 1) (4 2) (5 3 1) (4 2) (3 1) 2 1)

In our formalism [10], parallel commands are binary, i.e., can have at most two parallel

components. An n-ary parallel command is expressed as nested binary parallel commands.

This coincides with LISP's (and Boyer & Moore's) representation of a list as a nesting of pairs.

E.g., the parallel command " (5 3 1) of trace (TAU- 5) is really "(5 . (3 . (I . NIL))).

In the realm of general sorting networks, traces are represented as multi-level lists of

pairs of integers.

5.2. Trace S e m a n t i c s

Traces have weakest precondition semantics [10]. Since a weakest precondition is a

function from programs and predicates to predicates [5], the weakest precondition calculus can

be directly implemented in Boyer & Moore's logic.

Our methodology divides the development of programs into two stages. Stage 1, the

refinement calculus, is concerned with the derivation of program semantics~ i.e., the derivation

of a refinement. Stage 2, the trace calculus, is concerned with the preservation of program

semantics, i.e., the transformation of sequential executions into concurrent executions. Con-

sequently, we need not implement a complete weakest precondition generator in order to

implement Stage 2. We are only interested in the equality of weakest preconditions, not in

their actual values. A weakest precondition that is not affected by the trace transformations

need not be spelt out but may be provided as a Wblack box m. In Boyer & Moore's logic, a

black box is represented by a function that has been declared (without a function body) rather

than defined (with a function body). The primitive components of sorting networks are com-

parator modules. For the purpose of trace transformations, we are not interested in the inside

of a comparator module. Therefore we declare the weakest precondition of a comparator

module cs as a function

Declared Function: (CS I S)

where I represents an integer if cs is simple and a pair of integers if cs is general, and S

denotes the postcondition (or Wpoststate"). Since function CS is declared, not defined, we

must provide by axiom some essential information about CS that is not evident from the

declaration. We add two axioms. One restricts the domain of simple comparator modules to

numbers:

144

Axiom CS.T.~/fES.NLr~ERS: (NOT (hX/MBEP2 I)) ~ ((CS I S) = F)

Axiom CS. ThKF_~. ~ J ~ E l ~ states that the prestate of CS for any non-number and poststate is

false, i.e., that such a CS is not permitted. A respective axiom for general comparator modules

tests for pairs of numbers rather than numbers. The other axiom expresses the ' ru le of the

excluded miracle ~ (Dijkstra's first healthiness criterion [5]) for comparator modules:

Axiom CS.IS.NOT.MIRACLE: (CS I F) = F

Axiom CS. IS. NOT.MIRACLE states that the prestate of any CS with false poststate is false, i.e.,

comparator modules cannot establish "false ' .

To determine the weakest precondition of some trace L that is composed of comparator

modules CS for poststate S, we define a "cs-maehine' , a function

Defined Function: (M.CS H.,AG L S)

that composes calls to CS as prescribed by trace L. Beside L and S, M. CS takes a FLAG that

signals whether the trace is to be executed in sequence (FLAG='SF~) or in parallel (FLhG='PAR).

In accordance with our trace representation, F L A 6 = ' 5 ~ in top-level calls and FLA6 alternates

with every recursive call.

When FLAG='PhR, the trace represents a parallel command and its elements must be

checked for independence. We can make use of the semantic declarations provided at Stage 1.

The smallest component that a semantic declaration for a sorting network will mention is the

comparator module. We may therefore, from Stage l , assume knowledge about the indepen-

dence of comparator modules and may express this knowledge by a declared function

Declared Function: (IND.CS I J)

that evaluates the independence of comparator modules I and J. Again, look at I and J as

integers or pairs of integers, as appropriate. We then define a function

Defined Function: (ARE. IND. CS LI L2)

that uses IND.CS to determine the mutual independence of all comparator modules of trace L1

with all comparator modules of trace L2. If the two members of a parallel command

(remember the restriction to binary parallel commands) pass test ARE.IND.CS their execution_

has identical semantics in parallel as in sequence - only their execution time differs.

The execution time of traces plays a role in the selection of proper transformation

theorems. At present, we take transformation theorems as given and only prove them by

mechanical means. Therefore, execution time is left out of the current implementation.

145

The semantic equivalence of t a n - and t a n for any of the three previously described

transformations is formally expressed as

Lemma TAU.MAIN: O<N ~ ((M.CS "SEQ (TAU- N) S)
= (~.CS "SEq (TAU N) S))

5.3. Trace Transformations

Independence declarations are exploited via transformation rules that express commuta-

tions and parallel merges of independent program components.

The theorem for para}lel merges corresponds to transformation rule (G3i) of Sect. 5.2 of

[10].

Lemma 63±: (ARE, IND, CS L1 L2)
((M.CS 'SEQ <L1 L2> S)
= (M.CS 'SEQ LI-~L2 S))

For clarity, we return here to our previous notation for traces. Traces must, of course, be

fully represented in the mechanized logic.

To express commutations, we must be more specific about the meaning of

"independence". The declaration of IND.CS does not provide any clues. We do not need to

know everything about independence; otherwise we would define, not declare IND.CS. But we

must be able to conclude that independent comparator modules may be commuted. A~ we did

with CS, we characterize IND. CS by axiom:

A~iom GLOI~. IND. CS:
(IND~CS I J)

~--~ ((CS J (CS I S)) = (CS I (CS J S)))

If we instantiate both FLA61 and FLA62 to "SE•, the following theorem enables com-

mutations:

Lemma ARE. INI).CS. IMPLIF£.COM~ft}TATIVITY:
(ARE. IND. CS L1 L2)

((M.CS FLAG1 L1 (bl.CS FLAG2 L2 S))
= (M.cs F I ~ 2 L2 (M.CS FLACi L1 S)))

S.4. Independence Criteria

For simple sorting networks, we have introduced the concept of °non-neighbors m to

declare independence. Two simple comparator modules are non-neighbors if their indices dif-

fer by at least 2. We may provide this known fact by axiom:

I46

Axiom NON.NEIGiK~RS.ARE. IIIiD.CS:
(NON.NEIGHBORS I J) =~ (IND.CS 3: J)

where function NON.NEIGHBORS identifies non-neighbors. NON . NEIGHBORS is defined while

IND.CS is declared. With IND.CS alone we could not decide the independence of anything;

with this axiom we can decide the independence of simple comparator modules. We may, for

example, apply theorem G3± with c s (5) for L1 and c s (3) + c s (1) for L2, since cs (5) is not

neighbor of cs (3) and cs (i) :

(M.CS "SE~ <cs(5) c s (3) c s (1)> S) = (M.CS "SEQ <cs(5) c s (S) + c s (1) > S)

Two more applications of G3i, exploiting also the non-neighborhood of c s (3) and c s (1) ,

yield:

(M.CS "SEQ <cs(5) c s (3) c s (1)> S) = (bi. CS 'SEQ c s (5) + c s (3) + c s (1) S)

This formula expresses the equivalence of the parallel and sequential execution of eomparator

modules cs (5), cs (3), and cs (1).

For general sorting networks, we characterize independence by the concept of "non-

over lap ' . Two general comparator modules do not overlap, if they do not touch the same ar-

ray element. This fact is provided by axiom:

Axiom NO. 0VERIAP .ARE. IND. CS:
(N0.OVERIAP I J) ~ (IND.CS i J)

where function NO. 9VERIAP establishes non-overlap.

5.6. A p p l i c a t i o n T h e o r e m s

Ideally, we would like to submit to the prover nothing else but an application theorem

- ours are of the form:

TAU.MAIN: O<N ~ ((M.CS "SE[~ (TAU" N) S)
= (M.CS 'SEQ (TAU N) S))

where TAU and TAU- are defined appropriately - and have it certified without any further in-

put. However, no existing prover is expert enough in the theory of trace transformations of

sorting networks to accomplish such a proof on its own. To educate the prover, we must

implement our theory on it, i.e., express the theory in the mechanized logic, and have it cer-

tified and at disposal for further proofs.

Up to this point, we have described the implementation of the basic semantic theory, the

147

part that applies to all simple, resp., general sorting networks. It consists of the semantics of

traces of comparator modules, a set of trace transformation theorems, and an independence

criterion for comparator modules. The semantic theory is not fully represented in the

mechanized logic: we introduced two declared (not defined) functions. The theory is also not

fully certified: we made four axiomatic assumptions. They reflect the knowledge that is

presumed in the theory.

Even with the basic semantic theory in place and after proper definition of the initial

trace TAU and the final trace TAb'-, the work required to make the proof of an application

ThU.Y/tIN succeed is substantial. Essentially, we have to communicate our proof strategy to

the prover. Where the transformation consists of several steps, the prover may have to be in-

formed about each individual step. For instance, since we can commute at any place where

we can merge (remember that independence implies commutativity), we must tell the prover

about the transformation that we prefer: commutation or merge. Our transformations of the

insertion sort and the bitonic sort each consist of two steps: one of commutations and one of

merges. The transformation of the odd-even sort consists of only one step of merges. For

every step of the transformation, the trace parts that are manipulated must be identified, and

their independence must be established. This generally involves educating the prover about

useful facts of number theory. For our simple sorting networks, we had to tell the prover

about properties of maximization, for our general sorting network about properties of division.

Establishing these prerequisites before the proof of the application theorem is the most tedious

aspect of a mechanized certification. For an effective use of a mechanized theory in many ap-

plications, clean and widely applicable proof strategies are of central importance.

BASIC

THEORY

independence
criterion

a lg e b r aic
prerequisites

APPLICATION transformation
strategy

auxiliary
lemmas

main theorem

all comparator modules

trace semantics
trace transformation rules

simple comp. roods, general comp. roods.

non-neighbors no overlap

insertion sort

maximization

1st step: commute
2nd step: merge

see [121

TAU .PAIN

odd-even 8ort

maximization

one step: merge

TALl .MAIN

bitonic sort

division

1st step: commute
2nd step: merge

see [6]

TAU.MAIN

We shall provide no further details of the individual proofs of our three applications.

The previous table displays the overall proof structure. The proof of the insertion sort is

I48

documented in [t2I, ~hat of the bitonic sort in f6t.

While the basic theory may contain some declared functions and axioms (and our's

does), the application part of the proof should not (and ours do not). That is, with respect to

the basic theory, applic;~tions should be completely certified. It is important that every

axiomatic assumption is fully understood. An inconsistency in an axiom is not recognized by

the prover and puts the entire mechanized theory into jeopardy!

$. C o n c l u s i o n s

By its very name, the area of automated theorem proving invites high expectations: the

hope is kindled that, whene~cer the human prover seems lost or uncertain in a proof, the

mechanism will take over and guide him along. A presently more fitting name would be

automated proof checking: the human has to conceive and carry out the proof; but he can

count on a mechanized certification of his proof steps, if these steps are chosen appropriately.

In order to make the mechanized certification succeed, the human prover has to be familiar

not only with the abstract theory on which his proof relies but also with its mechanized coun-

terpart. Like it is the crux of numerical analysis that floating point numbers do not have the

nice properties of real numbers, it is the dilemma of automated theorem proving that the

mechanization of a logic does not preserve many of its desirable properties. Therefore, a proof

certified by a mechanism is actually more difficult than a proof certified by a human. But it

is also more reliable.

Let us summarize some of the difficulties that we encountered in the automated as op-

posed to human certification of trace transformations.

Automated provers work by a set of heuristics. The human who develops the proof is

best advised to follow these heuristics. Good heuristics are, of course, those that are naturally

followed in many proofs. When the heuristics fail, the human has to document his proof

strategy with aproof hints N. If a proof is loaded with proof hints, it is probably not tailored

very well to the automated prover. (This could indicate a bad proof or a bad prover.) We

have spent considerable effort on minimizing and structuring proof hints.

A proof assertion may have many different representations. For instance, all of the for-

mulas below represent the same assertion about a, b, and c :

(a) a2÷b 2 = c 2

(b) a 2 + b 2 - c 2 = 0

(c) c 2 - a 2 - b 2 = o

(d) aa+bb = cc

149

An automated prover may not recognize an assertion in all representations - unless it happens

to be an expert on this particular class of assertions. Boyer & Moore's prover, for instance, is

not enough of an expert in algebra to treat representations (a) to (d) equivalently. The human

has to make sure that the proof uses only representations that the prover can treat as is

desired. This can be accomplished by either disciplining the proof or educating the prover, i.e.,

making it aware of equivalent representations. Education of the prover is a two-edged sword.

With too much knowledge, it may spend a long time searching for appropriate facts or even

apply at points inappropriate proof rules.

One major concern of automated certification is execution efficiency. The most fun-

damental efficiency requirement is termination. An inappropriate choice of proof steps may

lead to an infinite computation. For instance, many automated provers, like Boyer & Moore's,

rewrite equalities only in one direction in order to avoid infinite looping. E.g., "with the

knowledge of A=B, Boyer ~ Moore's prover will substitute B for h in proofs, but not vice versa.

This has immediate consequences for the implementation of our theory: semantic declarations

may be exploited only in one direction. In any particular proof, we may commute left or com-

mute right, but not both; we may use idempotence to compress traces or expand traces, but

not both; we may increase or decrease the parallelism in a trace, but not both. Even if we

stick with one direction, we may have termination problems if our transformation sequence is

not well-founded. For instance, decreasing parallelism is always well-founded, while increasing

parallelism is not. Therefore, we actually let the prover transform traces "backwards M, from

parallel to sequential.

When solving a programming problem, a programmer has the choice of programming in

an existing language, or designing a new language which is particularly suited for the class of

problems that he is investigating. A new "special purpose" language may permit him to write

more natural programs and may yield more efficient executions. An existing "general

purpose" language may grant him more flexibility in reformulating the problem or moving to

a different problem class altogether. The same choice presents itself in mechanizing certifica-

tion. One might use an existing general purpose prover, or one might build a new special pur-

pose prover. In choosing Boyer & Moore's mechanized logic, we have taken the "general

purpose" option, exactly for the reasons stated: we prefer general certification power for the

development of our mechanized theory of trace transformations and, in the long run, we do

not want to confine ourselves to the language of sorting networks. Boyer & Moore's prover is

a suitable and user-friendly tool for the implementation of specialized theories.

~50

A c k n o w l e d g e m e n t s

We are grateful ~o J Moore and Bob Boyer who patiently answered our countless ques-

tions about their prover.

References

1. Ackerman, W.B. ~Data Flow Languages. ~ Computer 15, 2 (Feb. 1982), 15-25.

2. Bates, J. L., and Constable, R. L. Proofs as Programs. Tech. Rept. TR 82-530, Corner
University, 1982.

8. Boyer, R. S., and Moore, J S. A Computational' Logic. Academic Press, 1979.

4. Boyer, R. S., and Moore, J S. A Theorem Prover for Recursive Functions, a User's
Manual. Computer Science Laboratory, SRI International, 1979.

5. Dijkstra, E. W. A Discipline of Programming. Series in Automatic Computation,
Prentice-Halt, 1976.

6. Huang, C.-H., and Lengauer, C. The Automated Proof of a Trace Transformation for a
Bitonic Sort. Tech. Rept. TR-84-30, Department of Computer Sciences, The University of
Texas at Austin, 1984.

7. Knuth, D. E. The Art of Computer Programming, Vol. 3." Sorting and Searching.
Addison-Wesley, 1973. Sect. 5.3.4.

8. Kuek, D. J. "A Survey of Parallel Machine Organization and Programming." Comput-
ing Surveys 9, 1 (Mar. 1977), 29-59.

9. Lengauer, C., and Hehner, E. C.R. "A Methodology for Programming with Concurrency:
An Informal Presentation." Science of Computer Programming 2, 1 (Oct. 1982), 1-18:

I0. Lengauer, C. ~A Methodology for Programming with Concurrency: The Formalism."
Science of Computer Programming 2, 1 (Oct. 1982), 19-52.

11. Lengauer, C. A Methodology for Programming with Concurrency. Tech. Rept.
CSRG-142, Computer Systems Research Group, University of Toronto, Apr., 1982.

12. Lengauer, C. "On the Role of Automated Theorem Proving in the Compile-Time
Derivation of Concurrency.' Journal of Automated Reasoning i (1985). To appear. Earlier
version: On the Mechanical Transformation of Program Executions to Derive Concurrency.
Tech. Rept. TR-83-20, Department of Computer Sciences, The University of Texas at Austin,
Oct., 1983.

13. Manna, Z., and Waldinger, R. "A Deductive Approach to Program Synthesis." ACM
TOPLAS ~, 1 (Jan. 1980), 90-121.

