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I. Introduction 

We propose in this article a new approach to learning and inductive 

inference. We advocate the use of the rough set concept (Pawlak t 1982) 

as the mathematical basis for these areas. The suggested approach enables 

a precise, mathematical formulation of fundamental concepts of these 

areas, yields new theoretical results and offers simple learning 

algorithms. 

The relevant literature concerning topics discussed in this article 

is enciosed at the end of the paper. 

2. Information System 

In this section we introduce basic concepts needed to define pre- 

cisely the idea of learning from examples, delivered by a teacher, an 

expert, environment etc. 

2.1. Definition of Information System 

We shall start our considerations from the notion of an informa- 

tion system. 

By an information system we understand the 4-tuple 

S = (U,Q,V,~), 

where 

U - is a finite set of ~epts, 

Q - is a finite set of attributes, 

V and Vq - is domain of attribute q, V 
qEU q 
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: U x ~ ~ V - is a total function such that { (x,q) EVq 

for every q6Q, x6u; called information function. 

The function 9x: Q ~ V such that {x(q) = g (x,q) for every 

x6U, q6Q will be called information (data knowledge, description) about 

x in S~ 

Any pair (q,v), q£Q, VEVq is called desqriptg[ in S. 

Any function ~ from Q to V such that ~(q) EV 
q 

an information in S. 

will be called 

Thus an information system may be considered as a finite table in 

which columns are labelled by attributes, rows are labelled by objects 

and the entry in the q-th column and x-th row has the value ~(x,q). 

Each row in the table represents an information (about some object 

in S) . 

An example of information system is shown in Tab~ I. 

Example 2.1.1. 

U p, q, r 

x I 1 0 2 

x 2 0 I I 

x 3 2 0 0 

x 4 I I 0 

x 5 I 0 2 

x 6 2 0 0 

x 7 0 I I 

x 8 I 1 0 

x 9 I 0 2 

0 1 I x10 

Tab. I. 

Let S = (UtQ, V,~) be an information system, and P~Q. An informa- 

tion system S j = (U,P,V I • " ,~') (S = (X,QtV , it)) such that 

f'=f/U x p ( fl=f/X x Q) and V' is the domain of 9 / will be call- 

ed a P-restriction (X-re#triction) of S, and will be denoted S/P(S/X) o 
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2.2. Indiscernibility Relation 

Let ~ = (U,Q,V,{) be an information system and let P ~ Q, x,y6U. 

By P we mean a binary relation on U (called an indiscernibilit ~ 

relation) - defined as follows: 

We say that x and y are indiscernible by the set of attributes 

P in Z (xPy) iff ~ x(q) = 9y(q) for every q 6 P. 

One can easily check that ~ is an e~uivalence relation in U for 

every p c Q. 

The equivalence classes of the relation ~ are called P-elementary 

sets in S. Q-elementary sets are also called atoms of So 

Thus every P ~ Q defines a classification (partition) of U - de- 

note@ P , and the equivalence classes of the relation ~ are classes 

(blocks) of the classification P . 

Certainly P = U/P. 

a b o u t  r e i a t i o n s g  a n d  P 

We shall use the notation U/~ when speaking 

when speaking about classifications. 

Example 2.2.1. 

Some elementary sets in the information system presented in Tab. I 

are shown below: 

i) p-elementary sets 

X t = {Xl,X4,X5,X8,X 9 

X 2 : {x2'x7,x10 ] 

X 3 = {X3,X6] 

ii) ~p, r~-elementary sets 

YI = ~xl xs,xg~ 

Y2 = {x2 x7 x10~ 

{x3 
Y4 {x4 x~ 

iii) atoms 

z~ = {x1~x ~ h {x~ x~] 

~ = ~x~x~ 
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If ~ and R are equivalence relations~ then T = PNR is called 

an intersection of ~ and R, and is defined as follows: 

x T y iff x P y and x R y. 

It can easily be seen that 

= ~ q for every p c Q. 
q6P 

Any finite union of P-elementary sets will be called a P-definable 

set in S. An empty set is P-definable for every P ~ Q in every S. 

An information system S is selective iff all atoms in S are 

one-element sets~ Joe. ~ is an identity relationo 

2.3. Representati0n of an Information System 

Let S = (U,~,V, ~ ) be an information system and let P ~ Qo 

A P-representation of S is an information system 

s~ = (u/Z,P,vp, 9~), 

where U/~ is the family of all equivalence classes of the relation ~, 

= a6~p Vq~ and Vp 

~p: u/~ ~ vp 

is the information function such that 

~p([X]~,q) = g(x,q) 

for every x6U, q£P. ([X]p - denotes an equivalence class of the rela- 

tion P containing the object x). 

Thus in a P-representation of S objects are P-elementary sets, 

an~ the information function ~ p is an extension of the function 

for P-elementary sets. Of course, every P-representation of any informa- 

tion system S = (U,Q,V,~), P ~ Q, is selective~ 

Example 2.3.1 

Examples of representations of the information system shown in 

Tab. I are given below: 
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u/~ p 

X I I 

X 2 0 

X 3 2 

Tab. 2 

U/{p,r~ p r 

YI I 2 

Y2 0 1 

Y3 2 0 

Y4 1 0 

Tab. 3 

U/~ pt~t r~ p q r 

z I 0 2 
I 

Z 2 0 I I 

Z 3 2 0 0 

Z 4 I 1 0 

Tab. 4 

2.4. Approximation of Sets in an Inf0rmatio9. System 

Let S = (U,Q,V,~) be an information system, X ~ U and P ~ Q. 

By the P-lower (P-upper) approximation of X c U 

the sets PX (PX) defined as follows: 

The set 

Bnp(X) = ~X - P_X 

in S, we mean 

is referred to as the P-bgundary of X in S. 

It is easy to check that each information system S = (U,Q,V,~) 

and each subset of attributes P ~ Q define a topological space 

T S = (U,Defp(S)), where Defp(S) is the family of all P-definable 

sets in S, and the lower and upper approximations are interior and 

closure in the topological space T S. Hence the approximations have 

the following properties: 
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I) PX c X c PX 

3) ~{x u Y} ~ P x  u PS 

4) ~(x u Y) = ~x u ~Y 

s) f(x n Y) = ~x n ZY 

6) ~(x n Y) c ~x ~ ~Y 

7) ~(-x} : -~(x} 

8) ~(-x) = -P(X). 

Moreover for the topological space K S we have: 

9) PPX = PPX 

10) ~x = P~X. 

P_X is called the P-positiye re@io_qn of X in S; 

BnpX is called the P-doubtful regio_nn of X in S; 

U - ~X is called the ~P-ne~ative region ........ of X in S. 

Example of approximations in information system given in Tab. I 

are sho%a% below: 

Let X = {Xl,X2,X3,X6½ 

and Q = ~prq,r]. 

~X : X3 = {x3,x6~ 

pX = X I U X 2 U X 3 = U 

_QX = Z 3 : 4x3,x6~ 

~X = Z I U Z 2 U Z 3 ={xl,x2,x3,Xs,X6,X7,X9,X10~o 

2.5. Accuracy of Approximation_ 

With every subset X ~ U we associate a number/4~p(X) called the 

accuracy of approximation of X by P in S, orr in short, the ac- 

curacy of X, where P and S are defined as follows: 
card PX 

/~ pCX} 
card PX 

Because of properties 3] and 6) (section 2.4) we are unable to ex- 

press the accuracy of the union and the intersection of sets X,Y in 

terms of the accuracies of X and Y. 

2.6. Non-Definable Sets 

Let S = (U,Q,V,~) be an information system and let P ~ Q, X ~ U. 
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Note that X is P-definable in S iff PX = PXo 

We shall classify non-definable sets into the following classes: 

a) X is roughly P-definable in S, iff PX # ~ and PX # U. 

b) X is internally P-non-definable in S, iff PX = # and 

Px Cu. 

c) X is externall~ P-non-definable in S, iff PX = U and 

d) X is totally P-non-definable in S, iff P_X = ~ and PX = U. 

Let us remark that if X is definable, roughly definable, or to- 

tally non-definable, so is -X; if X is internally (externally) non- 

definable, then -X is externally (internally) non-definable. 

2~7~ Approximation of Families of Sets 

Let S = (U,Q,V,~) be an information system, P c Q, and let 

= ~{I'X2' .... Xn~' where X i c U i >/ 2, be a family of subsets of U. 

By the P-lower (P-upper) approximation of ~ in S, denoted 

_P ~(P ~) , we mean sets 

and 

.... ,P_X n% 

respectively. 

If ~ is a classification (a partition) of U, i.e. X. N X : ¢ 
i 3 n 

for every i,j ~ n~ i ~ j and ~ X. = U, then X are called 
1 1 i=I 

classes (blocks) of ~ . 

If every class of ~ is P-definable then the classification 

will be calle~ P-definable. 

n 
POSp(~) = ~ ~i will be called the P-positive region of the ~i=I 

classification in S. 

n 
Since U = ~ PXi, there is no P-negative region for any P of 

i=1 
the classification ~ in S. 
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n 

Bnp(~) = E BnpX i will be called the P-doubtful region of the 
i=I 

classification ~ in S. 

=~XI,X2,...,Xn~ is a classification of U, then If 

n 
E card (PX i ) 

i=I 

n 
E card (~Xi) 

i=I 

will be called the accuracy of the approximation of ~ by P in S, 

or s imply  the  a c c u r a c y  of  ~ .  

~p(~) expresses the ratio of all positive decisions to all 

possible decisions, when objects are classified by the set of attrib- 

utes P. 

We can also introduce another coefficient called quality of appro- 

ximation of the classification ~ =~XI,X2, .... ,X n~ by the set P of 

attributes, defined as follows: 

Yp(~) 

n 
E card PX 

- 1 
i=I 

= 

card (U) 

Quality yp(~) expresses the ratio of all P-correctly classified 

oD3ects to all objects in the system. 

Obviously ~p(YC) 4 yp(~) and ~p(~) : yp(~) 

P-aefinable. 

iff ~ is 

2.8. Dependence of Attributes 

Let S = (UtQ,V,~) be an information system and let P,R ~ Q, be 

subsets of attributes° 

We say that set of attributes R depends on the set of attributes 

P in S, P ~ R (or in short P ~ R) iff P ~ R. 

One can show by simple computation the following properties: 

Fact 2.8.1 

The following conditions are equivalent: 
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2) P U R :~ 

3) 

4) 

5) 

R* is P-definable in 

p_(R*) = ~(R*) 

ypCR*) = ~p(R*) = I. 

Fact 2.~.2. 

I) If R ~ P, then P ~ R. 

2) If P ~ R and 9~ P, then P'~ Ro 

_ R'. 3) If ~ R and R'c R, then P 

4) If P ~ R, then P ST~UR R o 

A simple algorithm for checking whether P ~ R or not results 

from properties I) (Fact 2.8.1) and 4) (Fact 2.8.2). 

Note that 2) (Fact 2.8.1) and 4) (Fact 2.8.2) yield the property 

P ~ k iff SpuR/P is selective. 

This is to say that if we remove all duplicate rows, and all 

columns labelled by attributes not belonging to P U R, then we ob- 

tain P U R representation of S, which is of course selective. 

Having done this we check whether removing from system Spu R all 

columns labelled by attributes from R yields a selective system, 

i.eo~ a system with no duplicate rows. If this is the case, then 

P ~ R holds, otherwise the dependence P ~ R is not valid° 

Lxample 2.8.1. 

For example in order to check whether {p,q% ~ r in the informa- 

tion system given in Tab. I, we first compute {p,q,r} representation 

of that system, which is the following system: 

U/{p,q,r) p q r 

Z I 1 0 2 

Z 2 0 I I 

Z 3 2 0 0 

Z 4 I I 0 

Tab. 6o 

Removing now the column labelled by the attribute r we obtain 

the following table: 
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P q 

I 0 

0 I 

2 0 

I I 

Tab. 7. 

For the sake of simplicity we omit in the table the column contain- 

ing objects. Because all rows are different (the system is selective) 

the ~e2endence ~p,q~ ~ r holds, i.e., ~p,%~ c ~, which is equivalent 
% 

Table 8 below presents the dependence function: 

p q r 

I 0 2 

0 I 1 

2 0 0 

I I 0 

Tab. 8. 

O 

iff 0 < ¥p(R*) < I. We say that R roughly depends on P in S, 

Then we write P ~ R, where k = yp(R*). 

If B ~ R, then the dependence P ~ R holds for some objects only, 

namely for all x { POSp(R*), i.e., the objects belonging to P-possitive 

region of the classification R*. The Yp(R*) indicates the percentage 

of objects for which the dependence P ~ R holds. In other words P ~ R 

iff P ~ R in S/POSp(R*). 

we say that R is totall[ independent on P in S iff Yp(R*)=0. 

The meaning of this definition is obvious. 

2.9. Reduction of Attributes 

Let S = (u,Q,V,~) be an information system and let p _c Q. 

I 

a) P 5 ~ is independent in s iff for every p c p~ ~'m p. 
# 

b) P ~ Q is dependen ~ in S iff there exist p c p, such that 

c) P c Q is reduct of Q in S iff P is the maximal independent 

set in S. 
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It can easily be shown that the following properties hold: 

Fact 2.9~I. 

a) If P is independent in S, then for every p,q £ P neither 

p ~ q nor q ~ p, i~e.t all attributes from P are pairwise independ- 

ent. 

b) If P is dependent in S, then there exists Pie P, inde- 

pendent in S, such that P'~ P-P~ 

Note that an information system may have more than one reduct. 

For example in the information system shown in Tab. I there are three 

reducts: ~p,q~, ~p,r~, and ~q,r~. 

More properties of reducts can be found in Pawlak (1981) . 

3. I!~formation Language 

Our basic concept employed in this article is that of an informa- 

tion language, which will be used to describe learning algorithms - 

called here decision algorithms. 

The information language consists of terms, formation and decision 

algorithms. 

First we define the syntax of the information language and then 

the semantics of the language will be defined. 

3.1. Syntax of an Information Language 

Let us start with the definition of terms in the information 

language L. Terms are built up from some constants by means of 

Boolean operations +, -, -. We assume that there are the following 

constants used to form terms: 0,1 and Q,V are some finite sets of 

constants called attributes and values of attributes respectively. 

U Moreover we assume that V V and V is the domain of qo 

q6Q q q 

The set of terms is the least set satisfying the conditions: 

I) Constants 0 and I are terms in L, 

2) Any expression of the form (q:=v) where q 6 Q and v 6 V 
q 

a term in L, 

is 
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3) If t and s are terms in L~ so are -t, (t+s) and (t-s) 

(or simple (ts)) ~ 

~xample 3.1.1. 

The following: 

- ((q:=0) + (p:=2)) (r:=1) 

(colour := green) (high = 170 cm) 

are terms in some information language. 

The set of formulas in the information language L is the least 

set satisfying the conditions: 

I) Constants T (for true) and F (for false) are formulas in L, 

2) If t and s are terms in Lr then t=s and t ~ s, are 

formulas in L, 

3) If ~ and ~ are formulas in L, then ~ ~, (~v # ), (~^~), 

(4 ~ ~) and (~ ~ ) are also formulas in L. 

Example 3.1.2 

The following : 

~(q:=0) = (p:=2) 

(q:=1) (p:=0) : (r::2) 

(q:=1) ~ (p::0) + (r::1) 

((q:=0) ~ (r:=0)) ~ ((q::1) ~ (p::0)) 

(eyes colous := hard) ~ (hair colour := dark) 

are formulas in some information languages. 

Any formula of the form t ~ s will be called a decision rule 

in L; t is referred to as a ~redecessor and s the successor of 

the decision rule respectively. 

Any finite set of decision rules in L is called a decision 

algorithm in L. 

_Example 3.1.3 

The following is a decision algorithm in a certain decision 

language : 
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(q:=0) + (p::1) ~ (r::1) 

(p:=1) ~ (p::2) 

(q:=2) ~ (r:=2))p::]) o 

With every decision algorithm [~,,= o[t  i ~ Sihm, 
m 

we associate the formula " ~v'~= A (t i s i ) 
i=I 

formula of ~ in L o 

1 4 i~ m in L 

called the deCision 

3.2. The meaning (the semantics of terms and formulas in L 

Now we shall define formally the meaning of terms and formulas 

of the information languager in a certain information system S = (U, 

Q,V,~). Terms are intended to mean subsets of the universe U and 

the meaning of formulas is truth or falsity. Of course the meaning of 

a certain term or formula can be different in various information 

systems. 

In order to define the meaning of terms and formulas we shall use the 

meaning function ~S : Ter U For ~ ~(U) U {T,F~, where Ter and For 

denote the set of all terms and formulas of a information language res- 

pectively. 

The meaning function ~s for terms in defined as follows (we 

omit the subscript S if S is understood): 

I) ~(0) : ¢; ~(I) : U 

21  cq:=vl ={x.u :  (x,ql : v 

3) O-(-t) = u- T(t) 

~(t÷s) : ~(t) u T(s) 

~(ts) = ~(t) n ~(s). 

Example 3.2oi 

The meaning of the term (q:=0) (p:=1) 

shown in Table I is the subset {Xl,X5,X9~. 

in the information system 

The meaning of formulas is defined thus: 

I) ~(T) = T; ~(F) : F, 

T, if T(t) : T(s) f 
2) ~(t=s) = 

F, otherwise 

T, if ~(t) = ~{s) 
3) ~(t-s) : 

F, otherwise 
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_fT, i f  j(~) = F 
4) 

F, if ~(~) = T 

If ~S(~) = T we say that ~ is true in S; if O'S(~) = F then 

is said to be false in S. If ~ is true in S we shall write 

~S ~ or simply ~ ~ when S is known. 

If kS (t=s) we say that terms t and s are e~uivalent in S; 

if ~S (t ~ s) we say that term t implies term s in S. If 

mS (~ we say that formulas ~ and are equivalent in S and if 

~S (~ ~ ~) we say that formula ~ implies formula ~ in S. 

Example 3.2.2 

The formula (q:=0) = (p;=1) is false in the information system 

shown in Table I and the formula (p:=1) ~ (r:=2) is true in the 

system. 

For the transformation of terms we shall use the axioms of 

Boolean algebra and the following specific axiom 

(q:=v) = - Z (q:=u) ° 
u~v,U6Vq 

For the transformation of formulas we shall employ the axioms of 

propositional calculus. 

A term t in L is P-elementary (P ~ Q) if t = U (q:=Vq). 
qEQ 

A term in L is in P-normal form (p c Q) if t = Zs, where 

all s are P-elementary. 

Example 3.2.3 

The terms 

(p:=1) (q:=0) 

(p:=2) (q:=1) 

(p:=0) (q:=l) 

~p,q~-elementary in the information system shown in Table I, and are 

terms 
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(p:=1) (q:=1) (p:=2) 

(p:=0) (q:=0) (r::1) 

]p,q,r~-elementary in the information are system. 

The following terms 

0(p:=1) (q:=0) + (p:=2) (q:=1) 

(p-=1) (q:=1) (r:=2) + (p:=0) (q:=0) (r:=1) 

in ~p,q~ and ~p,q,r~ normal form respectively in the information are 

system. 

Let S = (U,Q,V,~) be an information system, P ~ Q subset of 

attributes, and Lp - an information language with the set of attrib- 

utes P. 

Fact 3.2.1 

For every term t in Lp there exists the term s in Lp in 

P-normal form, such that ~S t=s; s is referred to as the P-normal 

form of t in Lp. 

Example 3.2.4 

The ~p,q~-normal form of the term (p:=1) in the information system 

shown in TaDle I is the term (p:=1) (q:=0) + (p:=1) (q:=1). 

Subset X c U is said to be P-definable in L (P c Q) if there 

exists a term t in Lp such that ~s(t) = X; the term t is called 

the P-description of X in L. 

Example 3.2.5 

The ~p,q~-description of the subset ~xl,xS,x9~ of objects in the 

information system shown in Table I is the term (p:=1) (q:=0). 

If set X ~ U is not P-definable in L, then the terms t and s 

such that __~s(t) = P X and ~s(S) = PX are called the P-lowe [ and 

P-uppe< descriptiQns of X in L respectively. 

This is to mean that some subsets of objects can be described by 

a given subset of attributes not exactly but with some approximation 

only. 
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3.3. Decision R111es 

Our basic concept is that of a decision rule. We shall discuss 

this concept in same details in this section. 

Let t ~ s be a decision rule in L~ and let P,R be two sub- 

sets of attributes (P,R ~ Q), which occurs in t and s respective- 

ly. We shall call then t ~ s a (P,R)-decision ruleo If P and R 

are single element sets, for the sake of simplicity, we shall use the 

expression (p,r)-decision rule. 

Let S = (U,Q,V, ~) be an information system and t ~ s a (P,R)- 

decision rule in L. 

We say that a (P,R)-decision rule is R-deterministic in S if 

~s(S) 6 R*, i.e. ~s(S) is a description of some equivalence class of 

the equivalence relation R; otherwise the decision rule is R-nonde- 

terministic. 

We say that a (P,R)-decision rule t ~ s is in POR-normal form 

if t and s are in PUR-normal form. 

Fact 3o3.1 

A (P,R)-decision rule t ~ s is true in S iff all non-empty 

PUR-elementary terms occuring in PUR-normal form of t occur also in 

the PUR-normal form of s. 

This property enables us to prove the validity of any decision 

rule in a simple syntactical way° 

Example 3.3.1 

Consider the information system given in Tab. 9, 

U p r 

x I I 0 

x 2 I I 

x 3 0 2 

Tab. 9. 

and the (p,r)-decision rule (p:=1) ~ (r:=0) ~ In order to check whether 

this rule is true or not, we present it in {p,r]-normal form as shown 

below: 

(p:=1) (r:=0) + (p:=1) (r:=1) ~ (p:=1) (r:=0) 
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Because the elementary term (p:=1) (r:=1) occurs only in the predeces- 

sor of the normal form decision rule, for the rule (p:=1) ~ (r:=0) is 

false. 

We can also check the validity of the formula directly from the 

definition of the semantics of formulas, namely: 

~'Ip:=I) =~xl,x2% 

and 

~(r : =0) =~x1~ 

hence the decision rule is not true. 

On the other hand the decision rule (r:=0) ~ (p:=1) 

because the normal form of the rule has the form: 

is true 

(p:=1) (r:=0) ~ (p:=1) (r:=0) + (p:=1) (r:=1) 

and the only one {p,rl-elementary term (p;=1) (r:=0) 

occurs in the successor of the rule. 

From the semantic definition we have that 

~(r:=0) c 0Jp:=1) 

hence the decision rule is true. 

in the predecessor 

3.4. Decision Al~orithms 

Now we shall discuss the most important concept of our approach - 

the decision algorithm. 

A decision algorithm ~ in L is said to be correct in S if 

Example , 3.4. 

It is easy to see that the decision algorithm 

(p:=1) (q:=0) ~ (r:=2) 

(p:=0) ~ (r:=1) 

(p:=2) + (p:=1) (q:=1) = (r:=0) 

is correct in the information system shown in Table 4 whereas the 

decision algorithm 
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(p:=1) ~ (r:=2) 

(p:=0) ~ (r:=1) 

(p:=2) ~ (r:=0) 

is not correct in the information system. 

A decision algorithm ~ in L is P-deterministic in S (pc_Q) 

if all its decision rules are P-deterministic in S; otherwise the 

algorithm is P-nondeterministico 

Example 3.4.2 

The algorithm 

(p:=1) (q:=0) ~ (r:=2) 

(p:=0) ~ (r:=1) 

(p:=2) ~ (r:=0) 

(p:=1) (q:=1) ~ (r:=0) 

is r-deterministic in the information system shown in Table 4, whereas 

the algorithm 

(p:=0) + ((p:=1) (q:=0)) ~ (r:=2) + (r:=1) 

(p:=2) ~ (r:=0) 

(p:=1)(q:=1) ~ (r::0) 

is r-nondeterministic in this system. 

If P and R are the sets of all attributes occuring in the 

predecessors and successors of the decision rules in an decision algo- 

rithm ~/ then ~/ will be called the (P,R)-decision algorithm. 

A (P,R)-decision algorithm is total in S if for every equivalence 

class X of the equivalence relation ~, there exists a decision rule 

s i in ~ such that U S (si) m Xj otherwise the decision algo- t i 

rithm is partial in S. 

Example 3.4.3 

The algorithm 

(p:=1) (q:=0) ~ (r:=2) 

(p:=0) ~ (r:=1) 

(p:=2) + (p:=1)(q:=1) ~ (r:=0) 

is total in the information system shown in Table 4, whereas the 

algorithm 

(p:=1) (q:=0) ~ (r:=0) 
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(p::0) ~ (r::1) 

is partial in the information system. 

In order to transform decision algorithms we assume the follow- 

ing rules. 

First we allow to replace decision rules in the algorithm by its 

equivalent counterparts. 

Next replacement of decision rules according to the following 

property is allowed: 

Fact 3.4. I 

m m 

I] ~S A (ti~s) ~ ( ~ t ~S) 
i=I i=I z 

2) ~s((t~s) A ((t~s) ~ (p~r)]) ~ (p~r) 

Let us notice that property 2) can be regarded as a "modus ponens" 

for decision rules. 

To this end let us give an important property, which establishes 

relation between the concept of dependency of attributes and the 

decision algorithm. 

Let ~ be a (P,R)-decision algorithm in L. 

Fact 3°4.2 

~ iff P ~ R. 

Thus we have two methods of checking whether P ~ R or not: we 

can use the semantic method using property 2.8.1, or we can use the 

syntactic method, proving the validity of the corresponding formula. 

Let us notice that the total decision algorithm is a counterpart of the 

dependence function; in other words, the decision algorithm is a 

linguistic representation of the dependence function. 

4o Application to Learning 

Machine learning from examples can be very easily formulated in 

our approach leading to new important theoretical and practiCal results. 
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In order to avoid confusion with the existing terminology we in- 

troduce new terms for machine learning: static and dynamic learning, 

discussed in two successive sections of this paper. 

4.1. Static Learning 

Suppose we are given a finite set U of objects. Elements of U 

are called trainin9 examples (instances) and U is called training 

set. Assume further that U is classified into disjoint classes 

XI,X2,...,X n (n>2) by a ~eacher (expert, environment). The classi- 

fication represents the teacher's knowledge of objects from U. 

Furthermore let us assume that a student is able to characterize each 

object from U in terms of attributes from set P. Description of 

objects in terms of attributes from P represents the student's know- 

ledge of objects from U. 

We can say that the teacher has semantic knowledge and the student, 

syntactical knowledge of objects from U. 

The problem we are going to discuss in this section is whether 

the student's knowledge can be matched with the teacher's knowledge, 

or, more precisely, whether the teacher's classification can be described 

in terms of attributes available to the student. 

Thus static learning consists in describing classes XI,X2,.o.,X n 

in terms of attributes from P, or more exactly, in finding a classi- 

fication algorithm which provides the teacher's classification on the 

basis of properties of objects expressed in terms of attributes from P. 

The problem of static learning can be formulated precisely in terms 

of concepts intorudced in the previous sections as follows: 

Let S = (U,P,V,9) be an information system, associated with the 

student's knowledge of elements of U. Note that ~x is student's 

knowledge (information) about x in S, Let us extend system S by 

adding a new attribute e representating the classification provided 

by the teacher, ioe., e* = ~XI,X 2 .... ,Xn~. Thus we obtain a new infor- 

mation system S "= (U,Q,V°,~'), where Q = P U ~e~, P n ~e~ = 4, 

V" : V U ~1,2,...,n~, ~?U x P : ~, ~(e) = i iff x@x i. ~(e), 

called teacher's knowledge on x in Z', is the number of the class 

to which x belongs according to the teacher's knowledge. 

Thus the problem of static learning reduces to the question 

whether the classification e* is P-definable. In virtue of property 
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2,~.I, e* is P-definable iff P ~ e, i.e., the problem of 

whether there exists an algorithm to "learn" classification e* by 

checking the properties of objects reduces to proving whether the at- 

tribute e depends on the set of attributes P in S'. 

This can easily be done by methods shown in previous sections. 

If the dependence P ~ e holds, one can formulate a (P,e)-de- 

cision algorithm 6~, which represents the dependence function. In 

other words the algorithm can be used directly as a learning algorithm. 

Because the algorithm is a set of decision (classification) rules, 

this means that learning a classification consists in finding classi- 

fication rules. 

Example 4.1.1 

Let us consider for example an information system given in Tab. I, 

section 2.1, and let us assume that the attribute r in that system 

represents a classification r* I provided by the teacher. We ask 

whether the classification can be expressed by attributes p and qo 

Because the dependence {prq~ ~ r holds, the learning algorithm 

exists, and it has the form (see Tab. 8): 

(p::1) (q::0) ~ (r:=2) 

(p:=0) ~ (r:=1) 

(p:=2)Hp:=1) (q:=1) = (r:=0) 

Note that we are not allowed to remove p or q because the set 

{p,q] is independent in S. 

It may happen, however, that the teacher classification e* is 

not Q-definable. That is to mean that the learning algorithm does not 

exist, and it is impossible to classify objects correctly by examining 

their features. 

In such a case it is possible to classify objects only approxima- 

tely, i.e., to approximate the classification e* by the set of at- 

tributes Q. This is to say that we are unable to classify every ob- 

ject correctly; only some objects (possibly zero) can be classified 

properly in this case. 

Obviously there is no deterministic classification algorithm in 

the case of an approximate classification, but there is non-deterministic 

one. 
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The dependence function must be replaced by dependence relation 

(or dependence multifunction} for approximate classifications. 

The co-efficients of accuracy and qu<~lity of the approximate clas- 

sification show what part of objects can be classified correctly 

(quality) and what part of decisions can be correct (accuracy). 

Of course both co-efficients are less than one. 

The example below illustrates the above situation. 

Example 4..I.2 

Let us consider an information system shown in Tab.10 

U p q r 

X I I 0 2 

X 2 0 I I 

X 3 2 0 0 

X 4 I 0 2 

X~ I 0 0 
D 

X 6 0 1 1 

X 7 2 0 0 

X 8 I 0 0 

X 9 0 I I 

XI0 2 0 0 

X11 I 0 0 

X12 I 0 2 

Tab. 10 

Let us assume that the attribute r represents the teacher know- 

ledge t so that r* is the teacher classification. 

The representation of the system (with respect to all attributes) 

is shown in Tab. 11. 

U/Q p q r 

Z I I 0 2 

Z 2 0 I I 

Z 3 2 0 0 

Z 4 I 0 0 

Tab. 11 

where 
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Z I : ~Xl,X4,X12 

Z 2 : {x2,x6,x 9 

Z 3 = ~x3,x7,x10]~ 

z 4 = ~x~,xs,x11 

are atoms of the system. 

It can easily be seen from Tab. 11 that the classification r* 

is not (p,q)-definable. Hence we can approximate the classification 

r* by set of attributes ~p,q~. 

In order to do that let us first compute classes of the classifi- 

cation r* (equivalence classes of relation ~), which are as follows: 

YI =~x1'x4'x12q 

¥2 : {x2'x6'x9~ 

Y3 = {x3'x5'x7'x9tx10'x1~" 

The equivalence classes of relation ~p,q~ are following 

X I = ~x1,x4,x5,x8Fx11,x12 ~ 

x 2 = {x2,x6,x 9 

x 3 = {x3,xT,x10 % 

Let us set P = ~p,q~. Then the following sets are the lower 

P-approximation of r*: 

~¥i =¢ 

fY2 : x2 
~¥3 = x3 

and the upper P-approximation of r* is: 

PYI = Xl 

PY2 = X2 

PY3 = XI U X 2 U X 3 

Thus the class YI is internally P-non-definable, Y2 is P-de- 

finable, and Y3 is roughly P-definable. 

The corresponding accuracy co-efficients are: 
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/~p(Y1 ) = 0 

/~p(Y2 ) : i 

/~(Y3) : 0,5. 

Thus it is impossible to learn positive instances of YI' but it 

is possible to learn negative instances of YI' (if x6Y2UY 3 we know 

that x is not in YI ) . 

In other words, it is impossible to classify correctly x1,x4,x12 

by observing their features expressed by p and q. 

Y2 can be learned fully, i.e., all elements of Y2 can be classi- 

fical correctly on the basis of their features expressed by p and q. 

Y3 can be learned only roughly, i.e., only objects x3,x7,x10 can 

be recognized on the basis of p and q as elements of Y3; objects 

x2;x6,x9 can be excluded from Y3' and X I = ~Xl,X4,X5,X8,X11,x12~ is 

the doubtful region of Y3' i.e., it cannot be decided on the basis of 

p and q whether the elements of X I are, or are not, in Y3" 

The non-deterministic classification algorithm is shown below: 

(p:=0) (q:=1) ~ (r:=2) + (r:=0) 

(p:=1) (q:=0) ~ (r::1) 

(p:=2) (q:=0) ~ (r:=0) 

The dependence relation (multifunction) is shown in Tab. 12. 

p q r 

0 I 420  

I 0 I 

2 0 0 

Tab. 12. 

The accuracy and quality of learning are: 

card(PY2) + card(PY3) 
~p(r*) = = 9/18 = 0,5 

card(~Y I) + card(PY 2) + card(PY 3) 

card(_PY2) + card(PY 3) 
¥p(r*) = = 9/12 = 0,75, 

card (U) 

which means that at most 75 per cent of instances can be classified 

correctly and at most 50 per cent decision can be correct. 
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Note also that {p,q~ has one reduct, namely p. This means that 

it is not necessary to have both p and q to learn the classifica- 

tion r* but it is enough to use p only. The classification 

algorithm can thus be simplified as follows: 

(p:=0) ~ (r:=2) + (r:=0) 

(p:=1) ~ (r:=1) 

(p:=2) ~ (r:=0) 

and the dependence relation takes on the form: 

p r 

0 

1 1 

2 0 

Tab. 1 3 

[] 

The ideas presented in this section were applied to computer-sup- 

ported medical diagnosis algorithms, resulting in a new simple method 

of medical data analysis° 

4.2. Dynamic Learning 

Static learning consists in a description of objects by a student 

classification provided by the teacher, or in other words, in learning 

classification (decision) rules on the basis of training examples 

provided by the teacher. The classification rules learned from train- 

ing examples can be assumed as the background knowledge of the student. 

The question arises whether the background knowledge can be used to 

classify correctly new objects not occurring in training examples. 

Classification of new objects on the basis of background know- 

ledge previously acquired from training examples will be called dynamic 

learning. 

The problem of dynamic learning can also be viewed as a kind of 

inductive generalization (inference), but we shall not consider this 

problem here. 

Discussion on induction can be found in Barr and Fingenbaum (1981) .  

Orlowska (198'4) discusses inductive generalization from the rough 

set theory point of view, however in our approach we assume a somewhere 

different approach. 
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We shall consider in this section the problem of dynamic learning 

in terms of concepts introduced in previous sections. 

Let S = (U~Q, Vt~) be an information system, where U is the 

training set, Q = P U ~e~, P - is the set of attributes associated 

with student, e - is the teacher attribute providing classification e * 

of training examples, and let ~/~ be the classification algorithm re- 

sulting from the set U of training examples. 

Assume that the student has to classify a new object x (not 

belonging to the training set U) using the classification algorithm 

~. Let t x be a P-elementary term describing object xo 

If in the classification algorithm ~ there is a classification 

rule t i ~ t[ such that t i = tx, the student will assign object x 

to the set ~(t~) (one class if the algorithm is deterministic; 

union of some classes if the algorithm is non-deterministic). 

If there is no such rule the student is unable to classify the 

new object by means of algorithm 

We assume that the teacher also classifies the new objects accord- 

ing to his knowledge. If both decisions, that of the student and that 

of the teacher, agree, the student classification is correct - otherwise 

the classification is incorrect. 

Thus by adding a new object x, we face the following possibili- 

ties: 

I) the student classification of x is correct, 

2) the student classification of x is incorrect, 

3) the student is unable to classify the new object x. 

In order to show how the background knowledge influences the cor- 

rectness of student decisions we have to investigate how the accuracy 

anG quality of learning changes in all above mentioned three situations. 

Since adding a new object x to the set U results in a new in- 

formation system S', our task is to compare the co-efficients 5p 

and ~p, for S and S', respectively, in the three above mentioned 

situations (correct, incorrect, classification impossible). 

Let us remark that adding a new object x to the set U changes 

the teacher classification too. The new object can match one of exist- 

ing classes or it can form a completely new single element class. 
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The accuracy co-efficient for these three situations is given below: 

a) Correct classification: 

card ~(e*)+1 
~-(e*) = 

card P(e*) + kp(X) 

where 

_F(e*) (~(e*)) is the lower (upper) approximation of the classification 

e* = ~X1,X2,...,Xn}~. in S, 

n 
card P_(e*) = E card PXi, 

i=I 
n 

card P(e*) = I card PXi, 
i=I 

kp(X) - arity of x in S with respect to P; 

The arity of x with respect to P in S, kp(x) is the maximal 

number of classes XiltXi2~...rX i in the classification e* such that 
m 

m 
x 6 N PX. 

j =I lj 

b) Incorrect classification: 

~p- (e*) = 
card ~(e*) - card[x] 

card P(e*) + kp(X) 

where Ix] is the set of all objects in U U ~x~ having the same descrip- 

tion as x. 

c) Classification impossible: 

~p- (e*) = 
card ~(e*) 

card P(e*) + I 

The quality co-efficient has the value: 

d) Correct classification: 

¥p- (e*) = 
card P(e*) + I 

card U + I 

e) Incorrect classification: 

card ~(e*) - card[x] 
Y (e*) = p "  

card U + I 
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f) Classification impossible: 

y p .  (e*)  
card P(e*) 

card U + I 

Let us discuss briefly the above formulas. Consider first the de- 

terministic case, when the classification algorithm is deterministic. 

In this case both co-efficients ~" and ~ are the same and have 

the form: 

g) Correct classification:: 

card U + I card U 
6p~(e*) = yp-(e*) . . . . .  

card U + I card U 

= ~p (e * )  = y p ( e * )  = 1 

h) Incorrect classification: 

card U - card[x] 
~p-(e*) = yp~(e*) = 

card U + I 

i) Classification impossible: 

card U 
6 ~ - ( e * )  = y p - ( e * )  

card U + I 

This is to say that: 

Correct classification does not change the accuracy and quality 

of learning. 

Incorrect classification decreases the accuracy and quality of 

learning "essentially". 

Impossibility of classification decreases the accuracy and quality 

of learning "slightly". 

Informally this can be explained as follows: 

If the training set U has all possible types of objects, adding 

a new object does not improve the background knowledge and this know- 

ledge is sufficient to learn properly how to classify any new object. 

If the set of attributes P is not large enough then the student 

may face a situation in which the new object x has the same descrip- 

tion as another object y in the training set U, but x and y be- 
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long to two different classes according to the teacher knowledge. This 

is to say that these two objects are different in the teacher opinion, 

while the student is unable to distinguish them by checking their pro- 

perties (attributes from the set P), which leads to an incorrect 

classification. Thus the background knowledge does not suffice to clas- 

sify a new object correctly in such a case. 

If the set of examples U is not large enough it may happen that 

the new object x has a completely new description in terms of attri- 

butes from Pt and this description does not match any description of 

objects in the training set U. So the student is unable to classify 

this object by means of the classfication algorithm. Also in this case 

the background knowledge does not suffice to classify the new object 

correctly. 

The above discussion could be more precise if we used the concept 

of a sample of a set (see Pawlak (1982)), but this lies outside the 

scope of the article. 

Let us now discuss the case when the classification algorithm is 

non-eeterministic~ 

The accuracy of learning in this case is the following: 

j} Correct classification: 

card P(e*) + I card P(e*) 
~9~(e *) = ~ = Bp(e*) 

card P(e*) + I card P(e*) 

k) Incorrect classification: 

card P(e*) - card[x] 

card P(e*)+ kp(X) 

I) Classification impossible: 

~9~ (e*) = 

card P(e*) 

card ~(e*) + I 

It can easily be seen that in the case of correct classification 

the accuracy is not decreasing with new experience (new objects). This 

means that the background knowledge can be improved by proper new 

examples unlike in the previous case of deterministic algorithm. 
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The case of incorrect classification by non-deterministic classi- 

fication algorithm needs some more explanation. Incorrect classifica- 

tion means that the student is unable to assign the new object to any 

single class although he is able to point out several classes to which 

the object may belong. This is, however, according to our definition, 

not a proper classification. Therefore the accuracy is decreasing in 

this case. 

The last case is obvious. 

Similar discussion can be provided for the quality coefficient and 

is left to the reader. 

To sum up, if the student background knowledge is in a certain 

sense complete (the classification algorithm is deterministic) it 

provides the highest accuracy and quality, and it is impossible to 

increase the classification skills of the student by new examples. 

If the background knowledge is incomplete (the classification algorithm 

is non-deterministic) the classification skills of the student can be 

improved by properly chosen new training examples. 

Acknowledgments. Thanks are due to dr. A. Skowron for helpful discuss- 

ions and critical remarks. 
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