
1

Area-time Optimal Division

f o r T = Q({logn)1+c)

by

K. Mehlhorn* and F.P. Preparata**

* Fachbereich 10, Informatik, Universität des Saarlandes, 6600, Saarbrücken,
West Germany.

* Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801.

This work was supported by the DFG, SFB 124, VLSI Entwurf und Parallelität,
and by NSF Grant ECS-84-10902.

2

A family of area-time (AT2) optimal networks for the computation of the in­
verse of an n-bit number (referred to here as “ dividers") has been proposed some
time ago by Mehlhorn [1]. A network of this type can be constructed for each
computation time T in the range [H(log2 n), Of^/n)]. Since then considerable pro­
gress has been made in the design of faster dividers [2], culminating in the result of
Beame-Cook-Hoover [3] illustrating an 0(logn)-tim e divider (i.e. , a time-optimal
network in the hypothesis of bounded-fan-in components). However the Beame-
Cook- Hoover network (referred to here as the BCH network) does not achieve area
optimality. Thus, it is natural to ask the question of the existence of area-time
optimal dividers for T = o(log2 n). This paper provides an affirmature answer for
T £ [Q((logn)1+c), 0 (log2 n)] for any positive constant e < 1. It must be pointed
out that the proposed networks are so complicated - notwithstanding their area-
time-optimality - that they are exclusively of theoretical interest.

The network (see Figure 1) consists of [1 /e] + 2 cascaded modules. (For simpli­
city we assume that 1/e is an integer.) The first 1/e modules are modified dividers
of the BCH type, computing a sequence of approximations of the inverse with in­
creasing numbers of bits /i < I2 < • • • < ¿i/e < n.

Fig. 1: Block structure of the divider

The last two modules are designed to complete the build-up of the result size
from li/t to n bits by implementing the Newton approximation method, which, at
each iteration doubles the length of the result. This is carried out in two phases,
respectively executed by the “ fast" and “ slow" approximators. The fast approxima­
tor basically consists of a single area-time optimal fastest multiplier, used to execute
the initial iterations; the slow approximator is instead a cascade of affordably slow
multipliers, each executing one of the final iterations. Both approximators execute
0(loglogn) iteration steps. Note that the cascade of the two Newton approximators
structurally coincides with Mehlhorn’s divider [1],

The paper is organized as follows. In section 2 we present a more efficient
implementation of the BCH method leading to a circuit referred to as “ modified
BCH divider". In Section 3 we discuss an alternative method for the computation
of the inverse, which uses the modified BCH method as a subroutine. Finally, in

2.. An efficient implementation o f the BCH method. 3

Section 4 we illustrate the combination of the previous techniques with the Newton
approximation, to yield our proposed network, while Section 5 contains a few closing
remarks.

2.. An efficient implementation of the BCH method.

In this section we first describe (a variant of) the BCH method [3] and then modify
it so as to reduce its area requirement.

The original BCH method computes the inverse of an n-bit number x by adding
the first n powers of u — 1 — x and truncating the n2-bit result to its leading n-bits.
Each power of u is computed individually and the n powers are subsequently added
together; so we just consider the computation of un. The approach consists of taking
the “ logarithm" of u, multiplying it by n, and then taking the “ antilogarithm".

Since taking logarithms of large numbers is very hard, the method resorts to a
modular representation and works as follows:

Algorithm INVERSEl(x)

Input: an n-bit number x in the range [1/2,1). Given are primes . . . , pm such
that

m
n » * (Note that m ~ n2/lo g n)
J—1 (n is assumed to be a power of two)

Output: an (n + 2)-bit number v in the range
(1, 2], so that v X x = 1 + 6 with 6 < 2~n~ 1 (v is given by the first n + 2

1 bits of £ r= o '(l - *)*')
(1) begin u := (1 — z)2n;(*u is an integer *)
(2) for j, 1 < j < m
(3) pardo bj := umodpj;
(4) compute r3 so that a-3 = bj, where

aj is a generator of the multiplicative group of Z*Pj ;
(5) for l = 0 to log n — 1
(6) do := a - 2 mod!pJ-1) (*m ^ = u2,1 modpj*)
(7) od;
(8) Vj := n !=on ‘] + 1)modpj

(;* Vj = £ "Jo ul modpj*)
(9) Vj := VjMjmod(pi. . . pm)

(* Chinese remaindering *)
(10) odpar;

4

(11) v := EJL i Vjmodijh . . .p m);
(12) v : = truncate v to the first m + 2 bits and set

point after the second bit from the left
(13) end

Let us next describe the different steps of this algorithm in more detail. In this
description we will make frequent use of the following two facts.

1) One can multiply two fc-bit integers in time T and area A where AT 2 =
0 (k 2) and T E [fi(log k), 0(y/k)]. This is the result of [6].

2) One can add m fc-bit integers in time 0 (logm + log A:) and area 0(km •
logm). This can be achieved by expressing the m integers in redundant repre­
sentation (see, e.g. [4,5,6]) and then adding them in a tree-like fashion. The tree
has depth O(logm) and requires area O (m logm) for every bit position. Each le­
vel of the tree introduces a delay of just 0 (1) thanks to the redundant number
representation.

We are now ready to describe the circuit in more detail. We start with the
parallel loop, lines 2-10.

Line 3: This line is easily executed in time O(logn) and area 0(n(logn)P) by
expressing u by its binary expansion u = X S cT 1 ut2\ut E {0 ,1 }, storing the
numbers 2tmodpJ in a table and performing the required additions in redundant
number representation. We leave the details of this step to the reader.

Line 4: Step 4 is realized by a table-look-up, i.e. by a loop-up in a table which gives
the value of r3 for each possible value of bj. Since pj can certainly be expressed
using 2 log n bits this table has n2 extries of 2 log n bits each. We realize this table
by 2 log n H-trees each requiring area 0 (n 2). Thus the total area is 0 (n 2 log n) and
a table-look-up takes time O(logn).

Note that the 2 logn slices of the table are accessed in parallel. Also note
that this circuit is pipelinable, (its period is 0 (1) in technical terms) and therefore
O(logn) look-ups can also be performed in time O(logn) using the same area. This
observation is important for step 6.

Line 5,6,7: Consider a fixed l first. We first compute

R^P — r j2lmod(pj — 1)

as outlined in line 3. Note that the /-place shift does not have to be executed
explicitly; it only determines which powers of two need to be looked-up. The
computation of R p takes time O(logn) and area 0 (n (logn)2). We perform this
computation in parallel for all /, 0 < l < logn — 1.

The integer is computed from R.p by look-up in a table of “ antilog­
arithms". The logn. look-ups are pipelined and take time O(logn) and area
0 (n 2 log n) (refer to the description of line 3).

2.. An efficient implementation o f the BCH method. 5

Finally note that = of-2 mod(p3 1) = b2- modpj — u2* modpj.

Line 8: We use a tree of multipliers. This tree has depth O(loglogn) and has
log n nodes. Each node contains a circuit multiplying two 2 log n bit numbers and
reducing the result modpj in time O(loglogft) and area O^lognJ2). This shows
that step 8 takes time (logn) and area O(n). Both estimates are very generous.

Finally note that

logn—1 logn—1 n—1

Y [(1 + m ^ °)= Y l (l + u (2i)) =] T V
1=0 /=0 1=0

Line 9: Let Mj — [(pi . . . pm)/Pj]Pi~1{m odpi. . . pm). Then Mj is the coefficient
of Vj required for Chinese remaindering [7]. The number M j is precomputed and
stored in a register of length 0 (n 2). We multiply Vj by M j by dividing M j into
n2/lo g 7i pieces of length O(logn), performing ft2/lo g n multiplications in parallel
and then summing the results. This can certainly be done in time O(logn) and
area 0 (n 2 logn). Also the reduction m od(pi. . . pm) can be done in that area and
time. •

Summary: Line (3) to (9) take time O(logn) and area 0 (n 2 logn) for each p} .
Since un has n2 bits we have m = 0 (n 2/ logn) and each modulus is representable
in 2 log ft bits. We realize loop (2) to (10) by having a module for each modulus
and hence the loop takes time O(logn) and area 0 (n 4).

Line 11: In Line 11 we add m numbers of ft2 bits each. This takes time
0(log ft) and area 0 (m log m • r?)= 0 (n 4).

Lemma 1. There exists a circuit which computes the ft-bit inverse of an n-bit
number in time O(logft) and area 0(ft4).

Proof: Immediate from the discussion above. I

The enormous space requirement of the method sketched above is essentially due to
the fact that the powers of u are computed with ©(ft2) bits of precision. However,
only the leading ft + logn. bits are truly needed for the computation of v. This
observation is the key to the “ modified" BCH method, to be described next. In
the modified method we compute the powers of an l-bit integer u in m rounds
(this m has nothing to do with the m in algorithm INVERSEl), where m is a
design parameter to be selected. In each round we compute the sum of s = (/)1//m
consecutive powers using the method of Lemma 1. We call s the depth of the
method. This takes time O(logZ) and area 0 ((/s)2) and yields a result of O(ls)
bits. The space requirement results from the fact that only Zs/log(/s) different
prime moduli, each of length 2log(Zs) bits, must be used. We truncate this result
to l T [*log 12m] bits and start the next round. The details are as follows.

Algorithm INVERSE2(z)

6

Input: an /-bit number x € [1/2,1) and an integer s = (/ / / m.
Output: an (/ + 2)-bit number v E (1, 2]

begin uQ := 1 — x;
for % — 0 to m — 1 do

begin compute u®-1 , u®;
E s—1 j

j=0 Ui
Ui+1 := truncate u® to <7 = l + [log 12m] bits right of point;

end;
v :=truncate <70<7i. . . 0m- i to / bits right of point;

end.

To prove the correctness of this algorithm we must show that v gives the (/ + 2)
leading bits of 1/(1 — u) (of which the rightmost / bits represent the fractional part).
To this end, we must show that the error of the approximation is < 2~l.

For any variable a used by the above algorithm let a denote the corresponding
exact value (note that, since all numbers are nonnegative, the truncation mechanism
gives a > a), and ¿(a) the absolute error on a, such that a = a — ¿(a). Recall also
that 6(a-b) < ¿(a)6+^(6) a and that <$(a+6) = <5(a) + <5(6). Using these relationships,
we readily have

6 (C7q . . . Om _ 1) <C Oq . . . bm _ 1 K ° q)
£0

+ . . . + ¿(O m -l)\
° m -1 J

Since do . . . <rm_ 1 < 3 and ct, > l(f = 0 , . . . , m — 1), we obtain

6 { (7 o . . . <7m_i) < 3(<$(<Jo) + • • . + ¿ (< J r n - 1))-

From b{ = we have

s — 1 s— 1

6(ai) = < ^(^*)/(l - a ,)2 < 4 6(ui)
jz=0 j = 0

since Ui < 1/2 for i = 1 , . . . , m — 1. (Obviously ¿(ifo) = 0.)

Thus ¿(op . . . &m— 1) < 12mmax(5(u1) and the condition

12mmax<5(u,) < 2~l

ensures the correctness of the method. We claim that 6(ui) < 2~q as a result of
truncating to q bits right of the point. Indeed ¿(i^) < 2~q, trivially. For i > 1,
assuming 6(ut) < 2~q, let u*+1 = u® (before the truncation). Then

3.. An Accelerating Technique 7

¿ K + i) < su* 1S(ui) < 6(ui)

since u, < 1/2. If we assume s > 4, then ¿ (u ^ J < 2~g_1, which shows that its
[q + 1) bits to the right of the point are correct. Thus, the prescribed truncation
yields 8(ut+i) < 2~g, and the induction step is complete. In conclusion, we choose

q> l-\ - log 12 m

(Note that for any choice of s, [log 12m] < 4 + log log / by the definition of m.)

Noting that m • 0 (lo g /) = 0 (lo g / / logs), we have:

Lem m a 2. For any 2 < s < / there exists a circuit computing the l-bit inverse
of an l-bit number in time 0 (log2 / / logs) and with area (^((/s)2).

The AT2-performance of the above circuit is given by

AT2 = 0 (V lo g 4 / • j“ T ^) (!)

By choosing the depth s as s = le(e > 0), the resulting circuit achieves T =
0((1 /e) log l) and A T 2 = 0(Z2(1+e)), i.e. it is a moderately AT2-suboptimal divider
still achieving T = 0 (log /), for fixed e. We are aware that this result had been
previously obtained by F. T. Leighton [8], presumably by a similar argument.

3.. An Accelerating Technique

We now describe an alternative approach to the computation of the inverse of an l-
bit number, which capitalizes on the presence of leading zeros in the representation
of the number to be inverted. This method is best described for an /-bit integer
x € [l , 2).

The number x G [1, 2) can be written as

x — X\ -f- 2~llzu

where x\ is an / i —bit number (the leading l\ bits of x) and w is an (/ — 4)-bit
number (the trailing l — Zi-bits of x). Then x\ £ [1, 2) and 2 llw £ [0, 2). Let Vi
be an 4 -bit approximation to xi (i.e. xiV\ = 1 -j- r),r) < 2-Zl). Then

8

V\X = V\X\ + V\w2 ll — 1 + rj + viw2 l l ,

that is, V\X has at least l\ — 1 consecutive 0’s immediately to the right of the point.

Define

y = l/v1x

Then, if v2 denotes an approximation of 1 /y, we have viv2 — l/x. Also, if
v\ y = 1 -f- r}' then V1 V2 X — 1 + rj1, i.e. V1 V2 is an approximation of precision ?/. The
process can be iterated for the computation of the inverse of y, thereby obtaining

1 /x = Vi v2 . . . vk

This leads to the following algorithm:

Algorithm INVERSE3(z)

Input: an /-bit number x G [1,2), and an integer sequence 4 < h < • • • < Ik = l-
Output: an /-bit number v E (1/2,1], such that vx = 1 + e, e < 2~l

(1)
(2)
(3)
(4)
(3)

(6)

begin z := x
for i = 1 to k do

begin Xi := leftmost /, bits of zt\
Vi := (/̂ + l)-bit inverse of a;,-;
z%+\ := ZiVi

end;
v := viv2 . . . vk

end

The correctness of the method follows from the fact that ¿>(u) = V\ . . . Vk-i *
6(vk)< 2 • 2~/_1= 2~l.

Step 4 is the crucial action in the above algorithm. To analyze its performance,
we need the following result.

Lemma 3. If an /-bit number a; € [1, 2) has 4 - 1 zeros immediately to the
right of the point, the /-bit inverse of x can be computed in time T = 0 (lo g (///i)-
log / / log s) and area A — for any 2 < s < l/h. (Note that this result
subsumes Lemma 2 for l\ = 1.)
Proof: Indeed u = 1 — x is a (negative) number with l\ zeros immediately to the
right of the point. This implies that < 2_ / , so that only the first |"///i]
consecutive powers of u need to be computed. 1

4. The Divider Network 9

The numbers x,-, i = 1, . . . , k, used in Step 4 meet the conditions of Lemma 3,
since 1 — 2,u, is a (negative) number with /, leading zeros. Step 4 is therefore carried
out by applying Algorithm INVERSE2 so that the i-th iteration is characterized
by length Z, and depth sf . An implementation of this accelerating technique is
therefore completely specified by the two sequences:

Zi j ¿2) • • • > Zfc

and

> 2̂> • ■ • ?

Before closing this section we note that Step 5 involves a multiplication of
(/, l)-bit numbers at the z-th step; thus this operation is no more complex than
the execution of the homologous Step 4, and will not be further mentioned in this
discussion.

4. The Divider Network

We have all the premises to illustrate in detail the structure of the divider sketched
in Figure 1.

The first 1/e stages are collectively designed to implement the accelerating tech­
nique; each module implements the modified BCH algorithm. For i — 1, 2, . . . , 1/e,
let U be the (output) operand length, s,- the depth, A i)t the area, and Ti)t the
time of the z'-th module. We seek a solution where all such modules have identical
area (i.e. = A' for i = l , . . . , l / e) and identical computation time, equal to
the target time (i.e. , Tlit = 0((logn)1+e), i = l , . . . , l / e) . By the requirement of
optimality, we have

/a n n fo\
vM l’ ’ = Î Ï7 = (l o g n) ^ '

We also choose:

(log n)1+e.st ’

St = 2(logn)1 7(i+ (i°g«)‘)’ 1 (i = l , . . . , l / e) .

10

Since the area of the ¿-th module is 0((Z,s,)2), condition (2) is obviously verified.
Next note that log /,• = 0 (lo g »), 't = 1, . . . , 1/e. We therefore infer from Lemma 2:

T,,i = 0 (lo g /1l ^ L)log Si
= O ((logn)2/(lo g n)1_c)
= 0 ((lo g n)1+c)

and for i — 2, . . . , 1/e

ri.i = o (i o g d i - .
t»-i logs,-

= 0 (l o g ^ . h i l L)

= 0(log/,

s, log s,
log S,_

log Si

since /,s,' = li-iS i-i

-) since Si > 1

— Of log n (1° gn)1 e(1 + (1°g ”)•)•' \
(1 + (logn)e) l-2 (logn)1"_e^

= 0 ((log n)1+e)

thus verifying the objective for the computation time.

With these choices, each module of the chain is AT2-optimal, and the global
computation time is c i(l/e)(lo g n)1+e = 0((log n)1+c), for some constant ci. The
value of li/C) the number of bits of the result, is bounded from below as follows:

l — n n
1//£ (logn)1+t2(lo8n)1_e/(i+(log «)6)1/<_1 > (logn)1+c • 2 ’

This value /t represents the length of the operand supplied to the cascade of
the two Newton approximators, to be described next.

Starting with the downstream approximator, we recall (see figure 2) that this
module is in turn the cascade of p submodules (p is an integer to be defined shortly),
where the ¿-th submodule has area and time and T3,,-, respectively, and

A3(, = 2A3(1_ i , T3(l = \/2T3j,'_i i = 2, 3 , . . . , p.

With this choice (originally proposed in [1]), the global area and time of the
slow approximator are respectively proportional to the area A3(P and time T3>p of

4- The Divider Network 11

A

1st submodule
p-th

submodule

Fig. 2: The module structure of the slow “ Newton approximator".

the p-th (last) submodule. Since we are aiming for an AT2-optimal network with
computation time O(T), we must have

A 3,PT 3,p = 0 (n 2)

and

T»,P = T.

This condition enables us to specify the parameter p. Indeed, the speed of the
submodules increases as we proceed upstreams (by decreasing submodule index),
and each submodule must satisfy the condition that its multiplication time is at
least logarithmic in the operand length. Since the operand length is halved in going
from index i to index i — 1 (due to the mechanism of the Newton approximation),
and the most stringent condition occurs for i = 1, we have

T . n
g {^ ’

which is certainly satisfied if we select p as follows:

p = 2 log = 2elog log n. (3)

12

Finally we turn our attention to the “ fast approximator". This module receives
an approximation of length li/e = n /(logn)1+e • 2 and delivers an approximation
of length n /(logn)2e. Thus, this module must execute (1 — e) log log n + 1 iteration
steps, each of them within time 0(logn). The module essentially consists of a
“ fastest" multiplier of numbers of length n /(logn)2e, and can be realized with area
A2 such that A2(logn)2 = 0 ((n /2 p)2), i.e. , A2 = 0 ((n /(lo g n)1+2e)2). Thus, the
resulting AT2-measure for this module is

A2T2 = &(((log ™y+J7 lo8 n ' (1 ” <0 log log n f) = 0 (n 2)

and the optimality condition is clearly satisfied.

Since each of the three major units of our divider - the chain of modified BCH
dividers, the fast Newton approximator and the slow Newton approximator - has
area O ((n /(logn)1+e)2) and time 0 ((log n)1+e), we conclude with the following
result:

Theorem 1 For any fixed 1 > e > 0, the n-bit inverse of an n-bit number can be
calculated with optimal AT*2-performance for any T E [H((log n)1+e), 0 ((log n)2)].

5. Conclusion.

We constructed an AT2 -optimal divider with computation time (logn)1+c for any
e > 0. The reader may wonder whether one can choose c as a decreasing function of
n (tending to zero as n goes to infinity). This is indeed the case if the construction
is slightly modified. In the construction as it is now we use a chain of modified
BCH dividers each with the same area and speed. Thus both area and time grow
as l /e and hence AT2 grows (at least) as (1 /e)3.

If t is chosen as a function of n, then this simple chain of equally sized modules
does not suffice. Rather one has to use a chain of increasingly larger (and slower)
modules as we did for the Newton iteration. Omitting the tedious and not particular
illuminating details we have:

Theorem 2. There is an AT2-optimal divider for n-bit integers for any T £
[Q(log n • 2(log log ”)8/4), 0 ((log n)2)].

Note that 2(log log n)3/4 = 0 ((lo g n)e) for any e > 0.

5. Conclusion. 13

References

[1] K. Mehlhorn: “ AT2-optimal VLSI Integer Division and Integer Square Rooting",
Integration, 2, 163-167, 1984.

[2] J. Reif: “ Logarithmic Depth Circuits for Algebraic Functions", 24th FOCS, 138-
145, 1983.

[3] RW . Beame, S.A. Cook, H.J. Hoover: “ Log Depth Circuits for Division and Related
Problems", 24th FOCS, 1-6, 1984.

[4] W.K. Luk, J. Vuillemin: “ Recursive Implementation of Optimal Time VLSI Integer
Multipliers", VLSI 83, Trondheim, Norway, 1983.

[5] O. Spaniol: “ Arithmetik in Rechenanlagen", Teubner Verlag, Stuttgart, 1976.

[6] K. Mehlhorn, F.P. Preparata: “ AT2-optimal VLSI Integer Multiplier with Minimum
Computation Time", Information and Control, 58, 1-3, 137-156, 1983.

[7] D.E. Knuth: “ The Art of Computer Programming", Vol. 2: Seminumerical Algo­
rithms, Addison-Wesley, Reading, Mass. 1981, 2d ed.

[8] F.T. Leighton, personal communication, May 1985.

