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Abstract 
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i INTRODUCTION 

me too ([Henderson 84]) is a functional language for the specification of software 

components. It is similar to a pure Lisp called Lispkit Lisp ([Henderson 80]) 

except that it has sets, finite functions (mappings) and sequences for data objects 

instead of S-expressions. These types, together with the operations that are 

provided for manipulating them, are used to construct abstract model specifications, 

which are then executed via translation to Lisp. 

A short example will illustrate some of its features. The problem of the bill of 

materials is well known from database applications. A factory management system is 

to record what components each manufactured item is built from. Each of these 

components may itself be an assembly. Some parts are atomic; they have no 

components (other than themselves). The operation of finding all the components of 

a given item, including the intermediate sub-assemblies, is called 'parts explosion'. 

The model used here for the database is a finite function from component identifiers 

to sets of components. (A finite function in me too is a function with finite 

domain, specified by its graph)~ We define the primitive type P (for part 

identifier) and construct the type B (for bill of materials) as a finite function 

B = ff(P,set(P)). 

The parts explosion operation can now be defined in me too as 

explode: P X B ÷ set(P) 

explode(p,b) ~ Ip) U union{explode(c,b):c ÷ b[p]} 

where union denotes distributed union over a family of sets, and square brackets 

denote function application. The notation {F(1):I ÷ S} means the image of the set S 

formed by pointwise application of the function F. 

This function definition is directly executable. The intended use of such 

definitions is to allow system specifications, in the style of functional programs~ 

to be debugged at an early stage. Their execution then provides early feedback to 

the requirements analysis. If performance is not important, the corrected 

definitions can form a usable system. Otherwise, they are used as the specification 

of an imperative program. 

The principal data type of me too is the set (its other data types are defined in 

terms of sets. They are not dealt with in this paper). A me too user is intended 

to think of objects of this data type simply as the sets familiar from classical 

set theory. Of course, in practice this type is implemented by completely different 

primitive types. So in order to have confidence that the specification as executed 

is faithful to the intentions of the user, it is necessary to show the correctness 

of the implementation with respect to classical set theory. 
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The usual way of showing that objects in some system 'behave like' sets is to 

demonstrate that the system forms a model for the axioms of set theory. This is 

done by relativising the axioms, that is to say by rewriting them with 

quantification restricted to the domain of the interpretation, and then verifying 

the resulting formulae. The problem with using this approach here is that the 

domain of the interpretation would be terms of me too, and these contain symbols 

claiming to correspond to the derived symbols of set theory as well as primitive 

ones. In order to provide a satisfactory semantics for me too, it would be 

necessary to extend set theory with an appropriate system of terms so as to treat as 

primitive many symbols that in classical theory are derived symbols. 

An alternative approach, the one taken here, is to use the denotational model of 

me too as a model for set theory. We can then check the correctness of the 

implementation by ensuring that the effect of each me too operator on this model 

accords with the interpretation of the corresponding set theoretic operator. 

The method is illustrated below: 

Desired correspondence 

me too 
terms 

meaning g i v e n  by Eval  
of denotational semantics \,  

Sets 
defined by function Sval 

/ 
A b s t r a c t i o n  f u n c t i o n  

Abs 

/ 
Infinite Lists 

Section 2 defines the semantic function Eval for me too. Section 3 sketches a 

suitable (typed) version of set theory. Section 4 shows how to establish the 

correctness of the implementation. The principal result is that a function Abs can 

be defined so that Sval = Abs o Eval for every program, and that the domain of 

lists, viewed through the equivalence relation that Abe induces, then forms a model 

for (some of) the axioms of set theory. Section 5 explores the set theoretic 

consequences of some alternative implementations. Section 6 draws some conclusions 

about the design of the language and compares the two methods of defining its 

semantics outlined in the preceding paragraphs. 

An important aspect of the project is the use of the automatic proof assistant 

Cambridge LCF to verify the formal conditions given in section 4 for the correctness 

of the implementation. This work is still in progress. 
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2 DENOTATIONAL SEMANTICS OF me too 

The standard semantics of the current implementation of me too are defined in this 

section. Since the definitions are given via interpretation of me too into Lispkit 

Lisp, the semantics of this are given first. The notational conventions normal in 

denotational semantics ([Stoy 77])are used. • and ~ denote respectively the 

coalesced sum and coalesced product constructors. A sum domain S = A • B has the 

following strict operators associated with it: two injection operators inS (one for 

each summand), projection operators outA and outB, and predicates isA and isB. A 

product domain P = A ~ B has the associated strict operators fst and snd. The 

lifting operator m is defined by 

D a = {<true,x>Ix ¢ D} U {i} 

with associated operators lift: D ÷ D~ and drop: D~ ÷ D, defined by 

lift(x) = <true,x> 

drop(<true,x>) = x 

drop(Z) = Z 

The binary operator + on environments is defined by: 

P. * Pl = kI. Pill] = free + p0[I], p1[I] 

2.1 Semantics of Lispkit Lis E 

Syntactic Domains 

A e Ato = Nml + Sym + {T,F,nil} Atoms 

I e Ide Identifiers 

E ¢ Exp Expressions 

A ¢ Dec Declarations 

Z e Sxp S-expressions 

Abstract Syntax 

Z * A I ( Z . Z )  

E ÷ q u o t e  Z I I I a d d  E E I ca__[r E I cd__rr E I c o n s  E E I 

e__q E E t a t o m  E I i f  E t h e n  E e l s e  E I le__tt a E I 

letrec A E I lambda(l,l ..... I)E I E(E,E ..... E) 

A + I = E I A and A 

Semantic Domains 

N Integers 

T Truth values 

X = {nil}~ Nil 

Y Other symbolic values 

A = N s T • Y Atomic values 

S = A s L m X S-expressions 

L = S~, S± Lists 

e ¢ E = S s F • {err} Expressible values 
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F = E n + E Functions 

p e U = Ide ÷ (E • {free}) Environments 

Semantic Functions 

Aval: Ato ÷ (A s S) 

Aval[T~= inA(true) 
Aval[F~= inA(false) 

Aval[nil~ = inS(nil) 

Aval: Nml + N 

Aval: Sym ÷ Y 

Eval: Exp ÷ U + E 

(In the following definitions, inXY and outXY are abbreviations for inX o inY 

and outX o outY respectively, and e i is an abbreviation for Eval[Ei~P). 

Eval[quot e Alp = inES(Aval[A~) 

Eval[quote (Z0.Z,)]p = inES(pair(lift(outS(Eval[Z0~p)), 

Eval[I~p = p[I~ lift(°utS(Eval[Zl]P)))) 

Eval[add E 0 E,]p = eheckN(e 0) and checkN(e,) ÷ 
inESA(outNAS(%) + outNAS(e,)), 

err 
where checkN = le.(isS(e) + (isA(outS(e)) + isN(outAS(e)), 

inESA(false)), 
inESA(false)) 

and the other check functions are defined similarly. 

Eval[ca__[r E~p = checkL(e) + inE(drop(fst(outLS(e)))), 
err 

Eval[cdr E~p = checkL(e) ÷ inE(drop(snd(outLS(e)))), 
err 

Eval[con~ E 0 EI~p = isS(e 0) and isS(el) + inES(pair(lift(e0),lift(el))) , 
err 

Eval[eqq E 0 EI~p = checkA(e 0) and checkA(el) + inESA(e U = e, , 
inESA(false) 

Eval~atom E~p = isS(e) + inESA(isA(outS(e))), 
inESA(false) 

Eval[i_ff E 0 then El else E2~p = checkT(e 0 + (outTAS(e0) ÷ el,e2), 
err 

Eval[let A E]p = Eval[E~(p + Dval[A~p) 

Eval~letrec A E~p = EvaI[E~(Y(lp.o + Dval[A~p)) 
where Y = kh.((kx.h(xx)) (lx.h(xx))) 

def 

Eval[lambda(Io,Ii,...,In)E~p = 

k~O61...6n. Eval [ E~(P[~o/Io,61/II ..... gn/In]) 

EvaI[Eo(EI,E2,...,En)]p = isF(eo) ÷ (outF(eo))(el,e 2 .... ,en), 

err 

Dval: Dec ÷ U ÷ U 

Dval[I = E]p = p[e/I] 

hval[AQ an dd A,]p= Dval [Ao]p +Dval[A1]p 
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2.2 Semantics of me-too 

Because of space limitations, only part of the semantics is given here. 

Syntactic Domains 

A e Ato = Nml + Sym + {T,F,ni_~l} 

I e Ide 

E e Exp 

S ~ Set 

G ~ Gex = Set + Exp 

A e Dec 

Abstract Syntax 

G + E I S 

E is defined as in 2.1 

S ÷ {} I{G, G} I S U S I{G:I ÷ S} 1 

{G:I ÷ S;E} I if E then S else I let A S I 

letrec A S I lambda(l,l ..... I)S ! S(G,G .... G) 

A ÷ I =G I Aand A 

Semantic Domains 

These are as given above for Lispkit. 

Semantic Functions 

The function definitions given in 2.1 all still apply. 

function Pval is required: 

Pval: 

Atoms 

Identifiers 

Lispkit Expressions 

Set Expressions 

General Expressions 
(Set + Lispkit) 

Declarations 

In addition a new semant 

Gex ÷ E 

Pval [G ~ : Eval [G ~ [ 

Eval[letrec 

member = lambda(e I)( 
if atom I 
then quote F 
else 

if e_q q e (car I) 
then quote T 
else member e (cd__rr I)) 

member][] 
/member, 

Eval[letrec 

map = lambda(f I)( 
if atom I 
then quote nil 

else cons (f (car l))(map f (cd___rr I))) 
map~ [ ] 

/map, 
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Eval[letrec 
filter = lambda(f I)( 

if atom I 
then quote nil 
else 

if f (car I) 
then cons (car I) (filter f (cd__[r I)) 
else filter f (cdrr I)) 

f11ter~] 
/filter] 

Eval is extended to act on the syntactic category Set also. Its functionality is 

Eval: Gex + U + E 

Eval[{}]p = inES(nil) 

Eval[{Go,Gl}~P = Eval~cons (Eval~%]p)(c0n ~ (Eval[G,]p)(quote nil))]p 

Eval[S o U Slip = Eval[ 
letrec 

union = lambda(a,b)( 
if atom a 
then b 
else 

if member (car a) b 
then union (cdr a) b 
else union (cdr a) (cons (ear a) b)) 

union S o Sl l  p 

Eval[{G:l ÷ S}]p = Eval[map (lambda (I) G) SIp 

Eval[{G:I ÷ S; E}]D = 
Eval[map (lambda (I) G) (filter (lambda (I) E) S)]p 

Eval applied to the constructs if E then S else S, let A S, letrec A S, 

lambda(l,I,...,l)S and S(G,G,...,G) gives the same results as the corresponding 

cases for Lisp, with S substituted for E where appropriate. 

Dval: Dec ÷ U + U 

Dval~I = a~ =p~ g/I] 

Dval[A o an~ al]~ = Dval ~Ao]~+ hval~a1~p 

3 SET THEORY 

The theory used is liberally adapted from [Beeson 85]. It has been chosen to 

provide an axiomatisation which includes individuals, that is to say objects which 

are not sets. It is felt that a theory intended for practical use in computing 

science should view numbers and other primitive data types in terms of their own 

independent semantics rather than, in the conventional mathematical way, as 

special kinds of sets. 

The theory presented here goes some way towards this goal, though of the individual 

types allowed only the natural numbers are axiomatised. Besides this drawback it 

has other features unsatisfactory to the computer scientist. One line of 
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development envisaged from this work is the formulation of a more suitable theory~ 

in section 6 we anticipate some of its features. 

The replacement axioms have been emitted, because the scheme is not true in the 

list model. However, since the syntax of me too suggests that some version of the 

replacement axioms is still needed, a scheme is used which substitutes the graph of 

a function for the arbitrary function formula in the standard scheme. This weaker 

rule is a theorem of the system. It is not given here. 

Logic and Language 

First-order predicate calculus with equality; a binary predicate e; unary predicates 

N and S (for numbers,and sets); constants 0 and ~; unary funct±on symbol_s. 

A, Axioms on Numbers and Sets 

t .  ~ ( N ( x )  & S ( x ) )  

2. N(O) & (Vx)(N(x) ÷ N(s(x))) 

3 .  x s y + S(y) 

B. Number-Theoretic Axioms 

i. N(x) ÷ s(x) ~ 0 

2. N(x) & N(y) & s(x)=s(y) + x : y 

3. A(0) & (Vx)(N(x) & A(x) ÷ A(s(x))) + (Vz)(N(z) ÷ n(z)) 

C. Set-Theoretic Axioms 

i. Extensionality 

2. Empty set 

3. Pairing 

4. Infinity 

5. Union 

6. Separation 

7. Power set 

8. Foundation 

S(x) & S(y) ~ ((Vz)(z ~ x m z e y) + x = y) 

s(¢) ~ (Vz)~(z ~ ~) 

(~u)(x ~ u & y c u) 

(~u)(S(u) & (vz)(z ~ u ~ N(z))) 

( ~ u ) ( S ( u )  & ( V z ) ( z  ~ u ~ ( Z y ) ( y  ~ x & z e y ) )  

(~u)(S(u) & (Vz)(z ~ u ~ Z ~ x & A(z))) (u not free in A) 

(~u)(S(u) & (Vz)(z e u m S(z) & (Vy)(y s z + y e x)) 

S(x) & x ~ ~ ÷ (~u)(u ~ x & (Vz)(z E u ÷ ~(z ~ x))) 

4 IMPLEMENTATION CORRECTNESS 

The result of this section will guarantee that the answer produced by exectuing a 

me too model is the same as would be obtained by using the formal theory. It is 

demonstrated by defining (in 4.1) the desired interpretation for me too in terms of 

sets, and (in 4.2) an abstraction function from lists to sets. We then discuss the 

constraints which the standard semantics must satisfy to ensure that the diagram in 

section I commutes. 

This condition, however, is not sufficient to guarantee the correctness of the 
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implementation, as Eval and Abs could be incorrect in ways that cancel each other 

out. Such a situation would only come to light through subsequent extension of Eval 

to new syntactic constructs. The possibility can be eliminated, however, if it can 

be shown that the axioms of set theory are true in the list model, with equality 

interpreted by the equivalence relation induced by the many-to-one function Abs. 

The interpretation is outlined in 4.3. 

4.1 Set Semantics of me too 

Syntax 

This is as given in 3.2 

Semantic Domains 

Ind 

Set 

p c Env = Ide ÷ Obj 

Obj = Ind • Set • Fun 

h m Fun = 0 j ÷ Obj 

Individuals 

Sets 

Environments 

Objects (in the universe of sets) 

Functions 

It is intended that individuals shall be identified with the denotations of Lispkit 

expressions evaluated by the function Eval. 

Semantic Functions 

Sval: Gex ÷ Env ÷ Obj 

For clarity and reasons of space, the definitions given now omit injections and 

projections for sum domains, and the error cases resulting from incorrect typing. 

Sval[{}]p = ¢ 

Sval[E~p = Eval[E]p 

Sval[{G0,Gt}]p = {Sval[GG]p, Sval~Gi]p} 

Sval[So u s ~ p  = u{Sval[So]p,Sval[S~} 
Sval[{G:I + S}]p : { xI(3y:Sval[S]P) (x : (Eval[lambda (I) G]P)y)} 

Sval[{G:l ÷ S;E}]p = 

{xl(Zy:Sval[S]p)(((Eval[lambda (I) E]p)y) & x = (Eval[lambda (I) G]p)y)} 

The last two equations are true in the list model only if the functions 

Eval[lambda (I) G ]p are represented by their graphs. Unfortunately the syntax does 

not enforce this restriction. 

Once again, the constructs if E then S else S, let & S, letrec A S, 

lambda(l,l,...,l)S and S(G,G,...,G) are evaluated in the same way as Eval evaluates 

them. For example, 

Sval[if E then S o else S~P = EvaI[E~P ÷ Sval~So~P, SvaI[S~P 

The definition of me too therefore consists of the definition of Lisp together with 

the definition of the data type of sets. The same method will be used for other 

data types 'embedded' into Lispkit Lisp. 
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4~2 Requirements for Implementation Correctness 

Some preliminary definitions are required. The many-to-one function 

Abs: S + Obj 

which maps the list interpretation of a me too term to its set interpretation is 

derived from the definitions of Eval and Sval. It is therefore implementation- 

dependent. The definition can be written 

Abs(x) = isA(x) ÷ x, 
def {Abs(y)Imember_of(y,x)} 

where for the current implementation member of is defined by 

member of: S ÷ S 

member_of(x,y) =def 

isL(y) + 

false 

÷ T 

object_equals(x,drop(fst(outL(y)))) 
or 

member of(x,drop(snd(outL(y)))), 

object_equals is derived from the equivalence relation induced by Abs on S. 

object_equals: S + T + T 

object_equals(x,y) =def isL(x) and isL(y) ~ Abs(x) = Abs(y), 

isA(x) and isA(y) + individual_equals(x,y), 
false 

individual_equals depends on the definitions of the domains N and Y. Its exact 

definition is unimportant here. 

The major requirement for the correctness of the implementation is that 

(+) Abs(Eval[T~#) = Sval[T~p 

should hold for every me too term T. This is proved by induction on the structure 

of me too terms. First, we require a lemma, whose proof will come later: 

Lemma For any me too term T composed of subterms %,...,Ti,...,Tn, if the 

inductive hypothesis holds for each subterm, so that for each i 

Abs(Eval[Ti~P) = Sval[Ti]P 
then 

(Vx:S)(member_of(x,Eval[T~p) ~ Abs(x) e Sval[T~p) 
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The motivation for this equation can be shown diagrammatically as 

T (a me too term) / - , ,  
Eval Sval 

Eva l [  T~ ~ . . . . .  Abs . . . . .  ~ S v a l [  T10 

f 
member of 

I 1 
X Abs - - ~  Abs (x) 

s ob_3j 

The broken line represents the property to be established, and the lemma is the 

result of a "diagram chase" round the necessary conditions to establish it. 

Using the lemma, the proof of (+) is straightforward. 

represents an individual or the empty set: 

Abs(Eval[T~p) = Eval[T~p 

= Sval[T]~ 
For the inductive step 

Abs(Eval[T]p) ={Abs(x)Imember of(x,Eval[T]P)} 

={Abs(x)IAbs(x) e Sval[T]p} 

= Sval[T~p 

For the base step, assume T 

...defn. Sval 

...ind. hyp. 

...defn 
object equals 

...defn Abs 

...defn Sval 

...defn Abs 

...by the lemma 

Constraints on the evaluation of the other me too constructs can be deeuced in a 

similar way: 

member_of(x,Eval~p) ~ false 

member of(x,Eval[S o U SI~P) 
member of(x,Eval[So~p) v member_ef(x,Eval[S1~P) 

member of(x,Eva~{G:I ÷ S}~p) a 
(2yTS)(member of(y,Eval[S~p) & x = (Eval[lambda (I) G~p)y) 

member of(x,Eval~{G:I ÷ S;E}]p) 
(zy?S)(member_of(y,Eval~ p) & (Eval[lambda (I) E ~P)y & 

x = (Eval~lambda (1) G~p)y) 

It remains to establish the lemma. This must be done by eases, one case for each 

me too operator. The inductive hypothesis will appear in these proofs, applied to 

the constituent terms of T. The fact that Abs induces an equivalence relation on S 

allows us to avoid using Obj, as we can adjust the formulae to involve only terms 

and relations in S. For example, in the case that T = {G0,Gl} 

member_of(x,Eval[{G o,G,l}~p) ~ Abs(x) e Sval[{G o,G1}Ip 

Abs(x) = Sval[Go~p v Abs(x) = Sval[Gi~p 

z Abs(x) = Abs(Eval[Go~p) v Abs(x) = Abs(Eval[G1~p) 

object_equals(x,Eval[Go~p) v object_equals(x,Eval[ GI~p) 
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There are no such constraints on the evaluation of the constructs if E then S else S, 

let A S, letrec A S, lambda(I,I,...~I)S and S(G,G,...,G), as their evaluation is 

independent of the semantics of the particular data type in use. 

Work is in progress to prove the above equivalences using Cambridge LCF. For 

reasons of space, it is not reproduced here. 

4.3 Interpreting Set Theory in S 

Only an outline of the interpretation is given. The language sketched in section 3 

is interpreted as follows: the domain of the interpretation is S, = is interpreted 

by object_equals, ~ by member_of, 

N(x) by isA ÷ (isN 0 outA), false 

S(x) by not isA(x) 

and ~ is interpreted by nil. Because in this work we are primarily interested in 

the subtheory of sets, the symbol s is interpreted by addition of i in end idea~sed 

model of Lisp arithmetic. 

Interpreted in this way, the axioms of section 3 are satisfied, except for the 

Foundation and Power set axioms. Formal proofs of satisfaction are being produced 

using Cambridge LCF; they are again omitted for reasons of space. 

5 SEMANTIC VARIATIONS IN RECURSIVE TYPE MODELS FOR SET THEORY 

As explained in section 4, a condition for the correctness of the implementation is 

that the domain S should form a model for the axioms of set theory, when equality is 

interpreted by the equivalence relation induced by Abs. Clearly, not all the axioms 

can be true in S, since S can model at most countably infinite sets. In fact, the 

semantics of S may not be defined only in order that it can function as a model for 

set theory; implementation considerations will intrude. Such considerations, for 

example, led to the current implementation containing no type scheme and using lazy 

evaluation throughout. This section examines the effect of such decisions by 

presenting a series of recursive type models corresponding to different typing and 

evaluation strategies. Regarding each as an interpretation of the language of sets, 

we state which of the axioms are true in the interpretation. It is hoped that this 

study will show a way, for future work, of clearly relating the execution semantics 

of computer languages with sets to the power of the set theory they support. 

The standard representation of sets as lists suggests, for a model of the theory of 

section 3, variations on the domain constructions: 
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Object = Individual • Set 

Set = Nonempty s {nil} 

Nonempty = Object ~ Set 

where Individual is a type variable whose instantiation is implementation-dependent. 

Implementations will also differ in the strictness of the evaluation of the 

components of Nonempty. In the current implementation, Object is represented by S, 

Individual is instantiated by A, Set is represented by the anonymous domain L • X, 

Nonempty is represented by L, and both the components of Nonempty are evaluated 

lazily. (It also contains the anomaly that L is defined as S± ~ S i instead of 

S± ~ (L s X), corresponding to the fast that in Lisp a dot expression can have any 

atom as its second component). 

We first consider variations in the strictness of evaluation of the components of 

Nonempty. To provide domain theory semantics for lazy evaluation, it is necessary 

to treat, instead of the simple domains given above, isomorphic subdomains of a 

universal domain which also contains subdomains of infinite Cartesian products. 

(Details are given in [Cartwright 82]). It fellows that if either component of 

Nonempty is lifted, the resulting type will contain infinite objects. The truth of 

the Axioms of Foundation and Infinity, interpreted in the type, depend on this. The 

Axiom of Foundation will be true in a type if and only if that type is strict in the 

first component, and the Axiom of Infinity can be true in a type only if that type 

is lazy in the second. 

The second dimension of variation is the instantiation used for Individual. This 

can be A, or either of the types Finite S Exp or Infinite S Exp, corresponding to 

Lisp S-expressions evaluated respectively strictly or lazily. The only theoretical 

interest in this variation is in whether equality between individuals is decidable, 

which depends on whether or not Infinite_S_Exp is used. It is only necessary to 

consider using A to instantiate Individual because the current implementation lacks 

a type scheme. To ensure that all objects can be unambiguously analysed, sum 

constructions must therefore use disjoint domains. In fact the semantics of the 

current implementation are rather unclear, since Individual is in effect 

instantiated by Infinite S Exp, which is isomorphic to Object. 

Four types (labelled A - D) with different combinations of these factors have been 

considered. They are summarised in the table below, which is followed by brief 

discussion of each type. Fse and Ise are abbreviations for Finite S Exp and 

Infinite S Exp respectively. 
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TABLE i 

Evaluation Rule for Object 

Evaluation Rule for Set 

Instantiation of Individual 

Theory 

A B C D 

Strict Strict Strict Lazy 

Strict Strict Lazy Lazy 

A Fse Ise Ise 

Theories A and B are similar from a set-theoretic point of view, both providing 

models for a finite theory, that is for all the axioms of section 3 except the 

Infinity Axiom. The difference between them is in their ease of implementation: 

theory A is included only because it can be implemented without a type scheme. 

Theory C is a model for all the axioms except the Power set axiom. Theory D is 

similar to Theory C except that the lazy evaluation of Object renders the 

interpreted Foundation axiom false, raising the potentially interesting possibility 

of modelling non-well-founded sets. The primary motivation for studying this type, 

however, is that it corresponds to the semantics of the current implementation if 

a type scheme were added. 

6 CONCLUSIONS 

6.1 me too 

One objective of the work has been to examine how far the assumption of the 

mathematical correctness of me too is actually justified. In general, it has been 

shown that the language could provide a dependable model for axiomatic set theory 

if certain changes were made. The defects that it has lie in two areas: 

- The absence of a type scheme means that the 'best' semantics that can be given 

to the language prevents the use of S-expressions as individuals. 

- The syntax of the me too replacement scheme permits the user to 'import' an 

arbitrary S-expression into the model of me too, and then to interpret it as a 

set. This is the reason why the interpreted Foundation Axiom is not true in 

the current system, although no me too operation can create a 'set' that 

falsifies it. The simplest remedy would be to allow only the graphs of 

functions (for example, me too finite functions) in the replacement formulae. 

6.2 The investigation 

The chief result obtained has been to establish the conditions for the correctness 

of the implementation. Moreover, the method used will provide an economical way to 

show the correctness of the implementation of any new data type embedded into Lisp. 
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The main theoretical difficulty encountered has been the problem of determining a 

suitable version of set theory. There seems to have been no attempt to deal 

systematically with individuals in an axiomatic framework, at least until 

[Beeson 85]. As pointed out in section 3, this deficiency is generally a problem 

for computer scientists hoping to implement systems modelling set theory. Further, 

a comprehensively useful theory would probably employ constructive logic and would 

certainly provide "an elaborate system of" terms (Beeson). Important work remains 

to be done in this area. 

If such a theory had been used in this work, it would have been possible to devise a 

term model for me too which would also serve directly as a model for the axiomatic 

theory. This approach is attractive because it would make the language-theory 

relationship clear at the syntactic level, and it would establish immediately the 

expressive power of me too relative to the theory. The latter result has not yet 

been determined by the present method. However, checking the correctness of the 

implementation would involve comparing the term model with the execution semantics 

of the language, and this might well generate problems comparable with those 

encountered using the present approach. 

The use of a proof assistant has greatly improved the rigour of the work. It has 

allowed proofs to be performed that would never have been attempted by hand. 

Learning to use Cambridge LCF is hard, however. For routine use, automatic theorem- 

provers and proof assistants need to be easier to work with, so that they do not 

require a user to devote weeks of work to acquiring specialist knowledge about them. 

In conclusion, the work shows that a complete formal analysis of real-life software 

engineering tools is indeed possible, and that the design of such tools will benefit 

from it, if it is done at the outset. But more experiments along these lines are 

necessary before such anlysis becomes sufficiently cheap and easy to be done as a 

normal part of the design process. 
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