
AN EXPERIMENT IN PRACTICAL SEMANTICS*

Maurice Naftalin**

Abstract

me too is a functional language in which executable specifications of software

components are constructed from abstract models and operations defined on them. The

principal data type provided by the language is the set. This paper examines in

detail the extent to which the objects manipulated by me too programs do in fact

behave like the mathematical ideal of sets. It draws conclusions about the design

of the language, and about the feasibility of such projects in 'applied semantics'.

* This work was supported in part by an SERC grant.

**Department of Computing Science, University of Stirlin~, Stirling, Scotland

145

i INTRODUCTION

me too ([Henderson 84]) is a functional language for the specification of software

components. It is similar to a pure Lisp called Lispkit Lisp ([Henderson 80])

except that it has sets, finite functions (mappings) and sequences for data objects

instead of S-expressions. These types, together with the operations that are

provided for manipulating them, are used to construct abstract model specifications,

which are then executed via translation to Lisp.

A short example will illustrate some of its features. The problem of the bill of

materials is well known from database applications. A factory management system is

to record what components each manufactured item is built from. Each of these

components may itself be an assembly. Some parts are atomic; they have no

components (other than themselves). The operation of finding all the components of

a given item, including the intermediate sub-assemblies, is called 'parts explosion'.

The model used here for the database is a finite function from component identifiers

to sets of components. (A finite function in me too is a function with finite

domain, specified by its graph)~ We define the primitive type P (for part

identifier) and construct the type B (for bill of materials) as a finite function

B = ff(P,set(P)).

The parts explosion operation can now be defined in me too as

explode: P X B ÷ set(P)

explode(p,b) ~ Ip) U union{explode(c,b):c ÷ b[p]}

where union denotes distributed union over a family of sets, and square brackets

denote function application. The notation {F(1):I ÷ S} means the image of the set S

formed by pointwise application of the function F.

This function definition is directly executable. The intended use of such

definitions is to allow system specifications, in the style of functional programs~

to be debugged at an early stage. Their execution then provides early feedback to

the requirements analysis. If performance is not important, the corrected

definitions can form a usable system. Otherwise, they are used as the specification

of an imperative program.

The principal data type of me too is the set (its other data types are defined in

terms of sets. They are not dealt with in this paper). A me too user is intended

to think of objects of this data type simply as the sets familiar from classical

set theory. Of course, in practice this type is implemented by completely different

primitive types. So in order to have confidence that the specification as executed

is faithful to the intentions of the user, it is necessary to show the correctness

of the implementation with respect to classical set theory.

146

The usual way of showing that objects in some system 'behave like' sets is to

demonstrate that the system forms a model for the axioms of set theory. This is

done by relativising the axioms, that is to say by rewriting them with

quantification restricted to the domain of the interpretation, and then verifying

the resulting formulae. The problem with using this approach here is that the

domain of the interpretation would be terms of me too, and these contain symbols

claiming to correspond to the derived symbols of set theory as well as primitive

ones. In order to provide a satisfactory semantics for me too, it would be

necessary to extend set theory with an appropriate system of terms so as to treat as

primitive many symbols that in classical theory are derived symbols.

An alternative approach, the one taken here, is to use the denotational model of

me too as a model for set theory. We can then check the correctness of the

implementation by ensuring that the effect of each me too operator on this model

accords with the interpretation of the corresponding set theoretic operator.

The method is illustrated below:

Desired correspondence

me too
terms

meaning g i v e n by Eval
of denotational semantics \,

Sets
defined by function Sval

/
A b s t r a c t i o n f u n c t i o n

Abs

/
Infinite Lists

Section 2 defines the semantic function Eval for me too. Section 3 sketches a

suitable (typed) version of set theory. Section 4 shows how to establish the

correctness of the implementation. The principal result is that a function Abs can

be defined so that Sval = Abs o Eval for every program, and that the domain of

lists, viewed through the equivalence relation that Abe induces, then forms a model

for (some of) the axioms of set theory. Section 5 explores the set theoretic

consequences of some alternative implementations. Section 6 draws some conclusions

about the design of the language and compares the two methods of defining its

semantics outlined in the preceding paragraphs.

An important aspect of the project is the use of the automatic proof assistant

Cambridge LCF to verify the formal conditions given in section 4 for the correctness

of the implementation. This work is still in progress.

147

2 DENOTATIONAL SEMANTICS OF me too

The standard semantics of the current implementation of me too are defined in this

section. Since the definitions are given via interpretation of me too into Lispkit

Lisp, the semantics of this are given first. The notational conventions normal in

denotational semantics ([Stoy 77])are used. • and ~ denote respectively the

coalesced sum and coalesced product constructors. A sum domain S = A • B has the

following strict operators associated with it: two injection operators inS (one for

each summand), projection operators outA and outB, and predicates isA and isB. A

product domain P = A ~ B has the associated strict operators fst and snd. The

lifting operator m is defined by

D a = {<true,x>Ix ¢ D} U {i}

with associated operators lift: D ÷ D~ and drop: D~ ÷ D, defined by

lift(x) = <true,x>

drop(<true,x>) = x

drop(Z) = Z

The binary operator + on environments is defined by:

P. * Pl = kI. Pill] = free + p0[I], p1[I]

2.1 Semantics of Lispkit Lis E

Syntactic Domains

A e Ato = Nml + Sym + {T,F,nil} Atoms

I e Ide Identifiers

E ¢ Exp Expressions

A ¢ Dec Declarations

Z e Sxp S-expressions

Abstract Syntax

Z * A I (Z . Z)

E ÷ q u o t e Z I I I a d d E E I ca__[r E I cd__rr E I c o n s E E I

e__q E E t a t o m E I i f E t h e n E e l s e E I le__tt a E I

letrec A E I lambda(l,l I)E I E(E,E E)

A + I = E I A and A

Semantic Domains

N Integers

T Truth values

X = {nil}~ Nil

Y Other symbolic values

A = N s T • Y Atomic values

S = A s L m X S-expressions

L = S~, S± Lists

e ¢ E = S s F • {err} Expressible values

148

F = E n + E Functions

p e U = Ide ÷ (E • {free}) Environments

Semantic Functions

Aval: Ato ÷ (A s S)

Aval[T~= inA(true)
Aval[F~= inA(false)

Aval[nil~ = inS(nil)

Aval: Nml + N

Aval: Sym ÷ Y

Eval: Exp ÷ U + E

(In the following definitions, inXY and outXY are abbreviations for inX o inY

and outX o outY respectively, and e i is an abbreviation for Eval[Ei~P).

Eval[quot e Alp = inES(Aval[A~)

Eval[quote (Z0.Z,)]p = inES(pair(lift(outS(Eval[Z0~p)),

Eval[I~p = p[I~ lift(°utS(Eval[Zl]P))))

Eval[add E 0 E,]p = eheckN(e 0) and checkN(e,) ÷
inESA(outNAS(%) + outNAS(e,)),

err
where checkN = le.(isS(e) + (isA(outS(e)) + isN(outAS(e)),

inESA(false)),
inESA(false))

and the other check functions are defined similarly.

Eval[ca__[r E~p = checkL(e) + inE(drop(fst(outLS(e)))),
err

Eval[cdr E~p = checkL(e) ÷ inE(drop(snd(outLS(e)))),
err

Eval[con~ E 0 EI~p = isS(e 0) and isS(el) + inES(pair(lift(e0),lift(el))) ,
err

Eval[eqq E 0 EI~p = checkA(e 0) and checkA(el) + inESA(e U = e, ,
inESA(false)

Eval~atom E~p = isS(e) + inESA(isA(outS(e))),
inESA(false)

Eval[i_ff E 0 then El else E2~p = checkT(e 0 + (outTAS(e0) ÷ el,e2),
err

Eval[let A E]p = Eval[E~(p + Dval[A~p)

Eval~letrec A E~p = EvaI[E~(Y(lp.o + Dval[A~p))
where Y = kh.((kx.h(xx)) (lx.h(xx)))

def

Eval[lambda(Io,Ii,...,In)E~p =

k~O61...6n. Eval [E~(P[~o/Io,61/II gn/In])

EvaI[Eo(EI,E2,...,En)]p = isF(eo) ÷ (outF(eo))(el,e 2 ,en),

err

Dval: Dec ÷ U ÷ U

Dval[I = E]p = p[e/I]

hval[AQ an dd A,]p= Dval [Ao]p +Dval[A1]p

149

2.2 Semantics of me-too

Because of space limitations, only part of the semantics is given here.

Syntactic Domains

A e Ato = Nml + Sym + {T,F,ni_~l}

I e Ide

E e Exp

S ~ Set

G ~ Gex = Set + Exp

A e Dec

Abstract Syntax

G + E I S

E is defined as in 2.1

S ÷ {} I{G, G} I S U S I{G:I ÷ S} 1

{G:I ÷ S;E} I if E then S else I let A S I

letrec A S I lambda(l,l I)S ! S(G,G G)

A ÷ I =G I Aand A

Semantic Domains

These are as given above for Lispkit.

Semantic Functions

The function definitions given in 2.1 all still apply.

function Pval is required:

Pval:

Atoms

Identifiers

Lispkit Expressions

Set Expressions

General Expressions
(Set + Lispkit)

Declarations

In addition a new semant

Gex ÷ E

Pval [G ~ : Eval [G ~ [

Eval[letrec

member = lambda(e I)(
if atom I
then quote F
else

if e_q q e (car I)
then quote T
else member e (cd__rr I))

member][]
/member,

Eval[letrec

map = lambda(f I)(
if atom I
then quote nil

else cons (f (car l))(map f (cd___rr I)))
map~ []

/map,

150

Eval[letrec
filter = lambda(f I)(

if atom I
then quote nil
else

if f (car I)
then cons (car I) (filter f (cd__[r I))
else filter f (cdrr I))

f11ter~]
/filter]

Eval is extended to act on the syntactic category Set also. Its functionality is

Eval: Gex + U + E

Eval[{}]p = inES(nil)

Eval[{Go,Gl}~P = Eval~cons (Eval~%]p)(c0n ~ (Eval[G,]p)(quote nil))]p

Eval[S o U Slip = Eval[
letrec

union = lambda(a,b)(
if atom a
then b
else

if member (car a) b
then union (cdr a) b
else union (cdr a) (cons (ear a) b))

union S o Sl l p

Eval[{G:l ÷ S}]p = Eval[map (lambda (I) G) SIp

Eval[{G:I ÷ S; E}]D =
Eval[map (lambda (I) G) (filter (lambda (I) E) S)]p

Eval applied to the constructs if E then S else S, let A S, letrec A S,

lambda(l,I,...,l)S and S(G,G,...,G) gives the same results as the corresponding

cases for Lisp, with S substituted for E where appropriate.

Dval: Dec ÷ U + U

Dval~I = a~ =p~ g/I]

Dval[A o an~ al]~ = Dval ~Ao]~+ hval~a1~p

3 SET THEORY

The theory used is liberally adapted from [Beeson 85]. It has been chosen to

provide an axiomatisation which includes individuals, that is to say objects which

are not sets. It is felt that a theory intended for practical use in computing

science should view numbers and other primitive data types in terms of their own

independent semantics rather than, in the conventional mathematical way, as

special kinds of sets.

The theory presented here goes some way towards this goal, though of the individual

types allowed only the natural numbers are axiomatised. Besides this drawback it

has other features unsatisfactory to the computer scientist. One line of

151

development envisaged from this work is the formulation of a more suitable theory~

in section 6 we anticipate some of its features.

The replacement axioms have been emitted, because the scheme is not true in the

list model. However, since the syntax of me too suggests that some version of the

replacement axioms is still needed, a scheme is used which substitutes the graph of

a function for the arbitrary function formula in the standard scheme. This weaker

rule is a theorem of the system. It is not given here.

Logic and Language

First-order predicate calculus with equality; a binary predicate e; unary predicates

N and S (for numbers,and sets); constants 0 and ~; unary funct±on symbol_s.

A, Axioms on Numbers and Sets

t . ~ (N (x) & S (x))

2. N(O) & (Vx)(N(x) ÷ N(s(x)))

3 . x s y + S(y)

B. Number-Theoretic Axioms

i. N(x) ÷ s(x) ~ 0

2. N(x) & N(y) & s(x)=s(y) + x : y

3. A(0) & (Vx)(N(x) & A(x) ÷ A(s(x))) + (Vz)(N(z) ÷ n(z))

C. Set-Theoretic Axioms

i. Extensionality

2. Empty set

3. Pairing

4. Infinity

5. Union

6. Separation

7. Power set

8. Foundation

S(x) & S(y) ~ ((Vz)(z ~ x m z e y) + x = y)

s(¢) ~ (Vz)~(z ~ ~)

(~u)(x ~ u & y c u)

(~u)(S(u) & (vz)(z ~ u ~ N(z)))

(~ u) (S (u) & (V z) (z ~ u ~ (Z y) (y ~ x & z e y))

(~u)(S(u) & (Vz)(z ~ u ~ Z ~ x & A(z))) (u not free in A)

(~u)(S(u) & (Vz)(z e u m S(z) & (Vy)(y s z + y e x))

S(x) & x ~ ~ ÷ (~u)(u ~ x & (Vz)(z E u ÷ ~(z ~ x)))

4 IMPLEMENTATION CORRECTNESS

The result of this section will guarantee that the answer produced by exectuing a

me too model is the same as would be obtained by using the formal theory. It is

demonstrated by defining (in 4.1) the desired interpretation for me too in terms of

sets, and (in 4.2) an abstraction function from lists to sets. We then discuss the

constraints which the standard semantics must satisfy to ensure that the diagram in

section I commutes.

This condition, however, is not sufficient to guarantee the correctness of the

152

implementation, as Eval and Abs could be incorrect in ways that cancel each other

out. Such a situation would only come to light through subsequent extension of Eval

to new syntactic constructs. The possibility can be eliminated, however, if it can

be shown that the axioms of set theory are true in the list model, with equality

interpreted by the equivalence relation induced by the many-to-one function Abs.

The interpretation is outlined in 4.3.

4.1 Set Semantics of me too

Syntax

This is as given in 3.2

Semantic Domains

Ind

Set

p c Env = Ide ÷ Obj

Obj = Ind • Set • Fun

h m Fun = 0 j ÷ Obj

Individuals

Sets

Environments

Objects (in the universe of sets)

Functions

It is intended that individuals shall be identified with the denotations of Lispkit

expressions evaluated by the function Eval.

Semantic Functions

Sval: Gex ÷ Env ÷ Obj

For clarity and reasons of space, the definitions given now omit injections and

projections for sum domains, and the error cases resulting from incorrect typing.

Sval[{}]p = ¢

Sval[E~p = Eval[E]p

Sval[{G0,Gt}]p = {Sval[GG]p, Sval~Gi]p}

Sval[So u s ~ p = u{Sval[So]p,Sval[S~}
Sval[{G:I + S}]p : { xI(3y:Sval[S]P) (x : (Eval[lambda (I) G]P)y)}

Sval[{G:l ÷ S;E}]p =

{xl(Zy:Sval[S]p)(((Eval[lambda (I) E]p)y) & x = (Eval[lambda (I) G]p)y)}

The last two equations are true in the list model only if the functions

Eval[lambda (I) G]p are represented by their graphs. Unfortunately the syntax does

not enforce this restriction.

Once again, the constructs if E then S else S, let & S, letrec A S,

lambda(l,l,...,l)S and S(G,G,...,G) are evaluated in the same way as Eval evaluates

them. For example,

Sval[if E then S o else S~P = EvaI[E~P ÷ Sval~So~P, SvaI[S~P

The definition of me too therefore consists of the definition of Lisp together with

the definition of the data type of sets. The same method will be used for other

data types 'embedded' into Lispkit Lisp.

153

4~2 Requirements for Implementation Correctness

Some preliminary definitions are required. The many-to-one function

Abs: S + Obj

which maps the list interpretation of a me too term to its set interpretation is

derived from the definitions of Eval and Sval. It is therefore implementation-

dependent. The definition can be written

Abs(x) = isA(x) ÷ x,
def {Abs(y)Imember_of(y,x)}

where for the current implementation member of is defined by

member of: S ÷ S

member_of(x,y) =def

isL(y) +

false

÷ T

object_equals(x,drop(fst(outL(y))))
or

member of(x,drop(snd(outL(y)))),

object_equals is derived from the equivalence relation induced by Abs on S.

object_equals: S + T + T

object_equals(x,y) =def isL(x) and isL(y) ~ Abs(x) = Abs(y),

isA(x) and isA(y) + individual_equals(x,y),
false

individual_equals depends on the definitions of the domains N and Y. Its exact

definition is unimportant here.

The major requirement for the correctness of the implementation is that

(+) Abs(Eval[T~#) = Sval[T~p

should hold for every me too term T. This is proved by induction on the structure

of me too terms. First, we require a lemma, whose proof will come later:

Lemma For any me too term T composed of subterms %,...,Ti,...,Tn, if the

inductive hypothesis holds for each subterm, so that for each i

Abs(Eval[Ti~P) = Sval[Ti]P
then

(Vx:S)(member_of(x,Eval[T~p) ~ Abs(x) e Sval[T~p)

154

The motivation for this equation can be shown diagrammatically as

T (a me too term) / - , ,
Eval Sval

Eva l [T~ ~ Abs ~ S v a l [T10

f
member of

I 1
X Abs - - ~ Abs (x)

s ob_3j

The broken line represents the property to be established, and the lemma is the

result of a "diagram chase" round the necessary conditions to establish it.

Using the lemma, the proof of (+) is straightforward.

represents an individual or the empty set:

Abs(Eval[T~p) = Eval[T~p

= Sval[T]~
For the inductive step

Abs(Eval[T]p) ={Abs(x)Imember of(x,Eval[T]P)}

={Abs(x)IAbs(x) e Sval[T]p}

= Sval[T~p

For the base step, assume T

...defn. Sval

...ind. hyp.

...defn
object equals

...defn Abs

...defn Sval

...defn Abs

...by the lemma

Constraints on the evaluation of the other me too constructs can be deeuced in a

similar way:

member_of(x,Eval~p) ~ false

member of(x,Eval[S o U SI~P)
member of(x,Eval[So~p) v member_ef(x,Eval[S1~P)

member of(x,Eva~{G:I ÷ S}~p) a
(2yTS)(member of(y,Eval[S~p) & x = (Eval[lambda (I) G~p)y)

member of(x,Eval~{G:I ÷ S;E}]p)
(zy?S)(member_of(y,Eval~ p) & (Eval[lambda (I) E ~P)y &

x = (Eval~lambda (1) G~p)y)

It remains to establish the lemma. This must be done by eases, one case for each

me too operator. The inductive hypothesis will appear in these proofs, applied to

the constituent terms of T. The fact that Abs induces an equivalence relation on S

allows us to avoid using Obj, as we can adjust the formulae to involve only terms

and relations in S. For example, in the case that T = {G0,Gl}

member_of(x,Eval[{G o,G,l}~p) ~ Abs(x) e Sval[{G o,G1}Ip

Abs(x) = Sval[Go~p v Abs(x) = Sval[Gi~p

z Abs(x) = Abs(Eval[Go~p) v Abs(x) = Abs(Eval[G1~p)

object_equals(x,Eval[Go~p) v object_equals(x,Eval[GI~p)

155

There are no such constraints on the evaluation of the constructs if E then S else S,

let A S, letrec A S, lambda(I,I,...~I)S and S(G,G,...,G), as their evaluation is

independent of the semantics of the particular data type in use.

Work is in progress to prove the above equivalences using Cambridge LCF. For

reasons of space, it is not reproduced here.

4.3 Interpreting Set Theory in S

Only an outline of the interpretation is given. The language sketched in section 3

is interpreted as follows: the domain of the interpretation is S, = is interpreted

by object_equals, ~ by member_of,

N(x) by isA ÷ (isN 0 outA), false

S(x) by not isA(x)

and ~ is interpreted by nil. Because in this work we are primarily interested in

the subtheory of sets, the symbol s is interpreted by addition of i in end idea~sed

model of Lisp arithmetic.

Interpreted in this way, the axioms of section 3 are satisfied, except for the

Foundation and Power set axioms. Formal proofs of satisfaction are being produced

using Cambridge LCF; they are again omitted for reasons of space.

5 SEMANTIC VARIATIONS IN RECURSIVE TYPE MODELS FOR SET THEORY

As explained in section 4, a condition for the correctness of the implementation is

that the domain S should form a model for the axioms of set theory, when equality is

interpreted by the equivalence relation induced by Abs. Clearly, not all the axioms

can be true in S, since S can model at most countably infinite sets. In fact, the

semantics of S may not be defined only in order that it can function as a model for

set theory; implementation considerations will intrude. Such considerations, for

example, led to the current implementation containing no type scheme and using lazy

evaluation throughout. This section examines the effect of such decisions by

presenting a series of recursive type models corresponding to different typing and

evaluation strategies. Regarding each as an interpretation of the language of sets,

we state which of the axioms are true in the interpretation. It is hoped that this

study will show a way, for future work, of clearly relating the execution semantics

of computer languages with sets to the power of the set theory they support.

The standard representation of sets as lists suggests, for a model of the theory of

section 3, variations on the domain constructions:

156

Object = Individual • Set

Set = Nonempty s {nil}

Nonempty = Object ~ Set

where Individual is a type variable whose instantiation is implementation-dependent.

Implementations will also differ in the strictness of the evaluation of the

components of Nonempty. In the current implementation, Object is represented by S,

Individual is instantiated by A, Set is represented by the anonymous domain L • X,

Nonempty is represented by L, and both the components of Nonempty are evaluated

lazily. (It also contains the anomaly that L is defined as S± ~ S i instead of

S± ~ (L s X), corresponding to the fast that in Lisp a dot expression can have any

atom as its second component).

We first consider variations in the strictness of evaluation of the components of

Nonempty. To provide domain theory semantics for lazy evaluation, it is necessary

to treat, instead of the simple domains given above, isomorphic subdomains of a

universal domain which also contains subdomains of infinite Cartesian products.

(Details are given in [Cartwright 82]). It fellows that if either component of

Nonempty is lifted, the resulting type will contain infinite objects. The truth of

the Axioms of Foundation and Infinity, interpreted in the type, depend on this. The

Axiom of Foundation will be true in a type if and only if that type is strict in the

first component, and the Axiom of Infinity can be true in a type only if that type

is lazy in the second.

The second dimension of variation is the instantiation used for Individual. This

can be A, or either of the types Finite S Exp or Infinite S Exp, corresponding to

Lisp S-expressions evaluated respectively strictly or lazily. The only theoretical

interest in this variation is in whether equality between individuals is decidable,

which depends on whether or not Infinite_S_Exp is used. It is only necessary to

consider using A to instantiate Individual because the current implementation lacks

a type scheme. To ensure that all objects can be unambiguously analysed, sum

constructions must therefore use disjoint domains. In fact the semantics of the

current implementation are rather unclear, since Individual is in effect

instantiated by Infinite S Exp, which is isomorphic to Object.

Four types (labelled A - D) with different combinations of these factors have been

considered. They are summarised in the table below, which is followed by brief

discussion of each type. Fse and Ise are abbreviations for Finite S Exp and

Infinite S Exp respectively.

157

TABLE i

Evaluation Rule for Object

Evaluation Rule for Set

Instantiation of Individual

Theory

A B C D

Strict Strict Strict Lazy

Strict Strict Lazy Lazy

A Fse Ise Ise

Theories A and B are similar from a set-theoretic point of view, both providing

models for a finite theory, that is for all the axioms of section 3 except the

Infinity Axiom. The difference between them is in their ease of implementation:

theory A is included only because it can be implemented without a type scheme.

Theory C is a model for all the axioms except the Power set axiom. Theory D is

similar to Theory C except that the lazy evaluation of Object renders the

interpreted Foundation axiom false, raising the potentially interesting possibility

of modelling non-well-founded sets. The primary motivation for studying this type,

however, is that it corresponds to the semantics of the current implementation if

a type scheme were added.

6 CONCLUSIONS

6.1 me too

One objective of the work has been to examine how far the assumption of the

mathematical correctness of me too is actually justified. In general, it has been

shown that the language could provide a dependable model for axiomatic set theory

if certain changes were made. The defects that it has lie in two areas:

- The absence of a type scheme means that the 'best' semantics that can be given

to the language prevents the use of S-expressions as individuals.

- The syntax of the me too replacement scheme permits the user to 'import' an

arbitrary S-expression into the model of me too, and then to interpret it as a

set. This is the reason why the interpreted Foundation Axiom is not true in

the current system, although no me too operation can create a 'set' that

falsifies it. The simplest remedy would be to allow only the graphs of

functions (for example, me too finite functions) in the replacement formulae.

6.2 The investigation

The chief result obtained has been to establish the conditions for the correctness

of the implementation. Moreover, the method used will provide an economical way to

show the correctness of the implementation of any new data type embedded into Lisp.

158

The main theoretical difficulty encountered has been the problem of determining a

suitable version of set theory. There seems to have been no attempt to deal

systematically with individuals in an axiomatic framework, at least until

[Beeson 85]. As pointed out in section 3, this deficiency is generally a problem

for computer scientists hoping to implement systems modelling set theory. Further,

a comprehensively useful theory would probably employ constructive logic and would

certainly provide "an elaborate system of" terms (Beeson). Important work remains

to be done in this area.

If such a theory had been used in this work, it would have been possible to devise a

term model for me too which would also serve directly as a model for the axiomatic

theory. This approach is attractive because it would make the language-theory

relationship clear at the syntactic level, and it would establish immediately the

expressive power of me too relative to the theory. The latter result has not yet

been determined by the present method. However, checking the correctness of the

implementation would involve comparing the term model with the execution semantics

of the language, and this might well generate problems comparable with those

encountered using the present approach.

The use of a proof assistant has greatly improved the rigour of the work. It has

allowed proofs to be performed that would never have been attempted by hand.

Learning to use Cambridge LCF is hard, however. For routine use, automatic theorem-

provers and proof assistants need to be easier to work with, so that they do not

require a user to devote weeks of work to acquiring specialist knowledge about them.

In conclusion, the work shows that a complete formal analysis of real-life software

engineering tools is indeed possible, and that the design of such tools will benefit

from it, if it is done at the outset. But more experiments along these lines are

necessary before such anlysis becomes sufficiently cheap and easy to be done as a

normal part of the design process.

7 ACKNOWLEDGEmeNTS

I am grateful to Roy Dyckhoff, Alan Hamilton, Simon Jones and Muffy Thomas for their

patience and good advice in many discussions. Peter Aczel, Cliff Jones and a

referee made helpful comments on an earlier draft of this paper.

159

8 REFERENCES

[Beeson 85] Beeson M.J., Foundations of Constructive Mathematics, Springer-

Verlag, 1985

[Oartwright 82] Cartwright R. and Donahue J., The Semantics of Lazy (and

Industrious) Evaluation, ACMSymposium on Lisp and Functional

Programming (1982), pp 253-264

[Henderson 80] Henderson P., Functional ProgrammiNg: Application and

Implementation, Prentice-Hall International, 1980

[Henderson 84] Henderson P., me too- a Language for Software Specification and

Model Building, Report FPN-9, Department of Computing Science,

University of Stirling

[Paulson 83] Paulson L., The Revised Logic PPLAMBDA: A Reference Manual,

Technical Report No. 86, Computer Laboratory, University of

Cambridge, 1983

[Stoy 77] Stoy J.E., Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory, MIT Press, 1977

