ALGEBRAIC SEMANTICS OF

EXCEPTION HANDLING

Gilles BERNOT ", Michel BIDOIT', Christine CHOPPY "

ABSTRACT

In this paper, a new semantics for exceplion handling in algebraic specifications is provided.
Qur formalism allows all Torms of exception and error handling (several error messages,
implicit error propagation rule, exceplion recovery policy), while preserving the existence of
initial modeis. It handles complex examples where various exceptional cases (leading to
different processings) can be specified. The main concept of our approach is the distinction
between exception and error. This formalism allows use of congruences in a similar manner
as in the classical abstract data type theory. Moreover, we show how a functorial semantics of
enrichment can be carried over to our framework, and we show how hierarchical consistency
and sufficient compleleness can be redefined. These resulls provide a firm basis for wriling
modular, structured specifications with exception handling features.

* Laboratoire de Recherche en Informatique
Bat 480, Université PARIS-SUD
F-81405 ORSAY CEDEX
FRANCE

174

1. INTRODUCTION

Since the pioneer work of [ADJ 76], specifying abstract data types with exception handling
has turned out to be an especially difficult problem. Various solutions have been proposed,
that range from the plgorithmic approach [Loe 81, EPE 81] to the pertial approach [BW 82].
But most approaches may be more or less related to the error-algebra opproach, ie. the
algebra carrier seis are split into okay and erroneous values [ADJ 76, Gog 77, Gog 78, Pla 82,
GDLE 84, Bid 84].

[Bid 84] shows thal none of these approaches is completely satisfactory, and presents a new
approach allowing all forms of error handling {error declaration, error propagation and error
recovery). Unfortunately, even if the approach described in [Bid B4] seems to be promising,
it does not solve the whole problem, since the existence of initial models is not guaranteed.
Although recent developments in algebraic specification languages [Wir 82, SW 83, Wir 83]
propose an elegant algebraic semantics without requiring the existence of initials models,
our claim is that initiality is a major tool to express the semantics of most specification-
building primitives, at least if one wants to state the results in a calegorical framework. Such
an approach has been used in [ADJ 78, ADJ 80], [Bid 82] and [EKMP 80] to describe the
semantics of enrichment, parameterization and abstract implemeniotion.

An interesting formalism is described in [GDLE 84] that always provides initial objects : the
signature of a specification is divided into safe operations that carmot add erroneocus values
(such as suec or + in natural numbers) and umsafe operations (such as pred or —). Unfor-
tunately, all operations are unsafe in most cases (e.g. succ for bounded natural numbers)
and therefore the ok-part of the initial algebra is reduced to safe constants (e.g. 0).

In this paper, we propose a new semantics for exception handling in algebraic specifications.
Our formalism allows all forms of exception handling, including specification of several error
messages, implicit error propagation and error recovery, while preserving the existence of
initial objects at the semantical level. Moreover, the concepts of enrichment, parameleriza-
tion and absitract implementation can easily be extended to our exception handling frame-
work, as our semantics is entirely functorial.

In the next section, we explain the key ideas of our approach. In sections 3 through 7, we.
describe our formalism. The existence of an initial object is proved in Section 8 ; and Section
g defines enrichment with exception handling. We assume that the reader is familiar with ele-
mentary results of category theory and the standard (ADJ) approach to abstract data types.

2. THE KEY IDEAS OF OUR APPROACH

Several criteria are very useful in defining a true exception handling policy :
= In order to avoid a large number of exception declarations, it is of first interest to
have implicit exception and error propagation rules. We will show that implicit exception
propagation and implicit error propagation are semantically encoded in our ezception-
algebras.
= In most realistic examples, it is necessary to be able to recover various exceptions.
Thus, realistic exception handling formalisms must provide error recovery features. In
our formalism, error recoveries are specified by means of generalized azioms. In particu-
lar, we can specily non strict operafions.
= Moreover, we have the possibilily to specify several error messages, by means of
ezcepfion labelling. For instance, distinct error messages are associated with pred(0)
and (z div 0) ; and there are different recoveries as well This feature is not provided for
in any of the previous works, but is essential for a realistic exception recovery policy.

In addition to these ideas, our formalism is based on two main concepts : the ckay standord
forms and the distinction between ezceptional coses and erroneous wolues. These two

175

concepts can be handled due to the fact that for each exception-algebra, A, the semantics is
handled using the free algebra over A: Tgy). In the following subsections, we explain the rea-
sons why these two features are needed in exception handling ; and we sketch out the rea-
sons why the use of Ty, is crucial for our purposes.

2.1. Exceptions and errors

As in most formalisms already put forward, we make use of (k-grioms which describe the
okay cases, and we also use another set of axioms for the erroneous and recovery cases. But
recovery cases and okay axioms often lead to inconsistencies. For instance, let us specify the
bounded natural numbers with the operations 0, succ and pred. Let Mazini be the upper
bound. We have the Ok-equation : predfsucc(n)) =n . Assume that we want to recover all
values greater than Maziné with the recovery axiom: succ{Marint)= Moxint . The term
pred(succ{Mazint)) is then equal to Mowint, but it is also equal to pred(Mozint); which
results to inconsistencies.

In fact, it is necessary to distinguish between the ferm succ(Mozint) that is ezceptional
{thus, Ok-equations should not be applied), and its class which is an okay value {Mazint).

This problem may be solved in the ground term algebra {and in the finitely generated alge-
bras) by using the Ok-axioms before the recovery axioms are applied {as succ{Mazrint) has
not been recovered, it is not yet okay). But finitely generated algebras are not powerful
enough to cope with enrichment, parameterization or abstract implementation.

In our approach, this difficulty is avoided as follows : for each ezceplion-algebro, A, we work
in the free algebra of E-terms with variables in 4, instead of working directly in A We denote
by Ty(s) this X-algebra. Constructions that can usually be done at the ground term level can
also be done at the Tgy) level, since we can consider the elements of 4 as additional con-
stants. Then the morphism eval (which evalunfes the terms of Ty(ay into 4) carries the con-
structions made at the T'gy) level over to A

2.2. The okay standard forms
Since Ok-axioms only concern okay terms, it is necessary to characterize these terms. But it
is not possible to characterize all the okay terms (suce(0), 0+ 1, pred{succ{succ(0))) ...). We
can only characterize some reference terms. These reference terms may be chosen in
different manners. In most examples, normal forms guide the appropriate choice. Unfor-
tunately normal forms are not always unique (e.g. integers: pred™(0) or Op(succ™(0))).
Therefore this choice must be declared in the specification.
Since our axioms are not always equivalent to canonical term rewriting systems, we call our
reference terms séondard forms. It is not necessary for these standard forms to be canonical
ones, even if this is true in most examples. In cur framework, the standard forms are charac-
terized by means of recursive declarations. For instance, we declare the standard forms of
integers in the following manner :
0 ond succ (0) are standard forms
if succ (z) is o standard form then succ(succ(z)) is o standard form
if succ(z) is o stendard form then Op(succ(z)) is o standard form
another possibility would be
0, succ(0) and pred(0) are standard forms

if succ(z) is o stondord form then sucec(succ(z)) is a standard form

if pred(z) is a stendard form. then pred{pred(z}) is o stondard form
We have now standard forms, but there are still some exceptional standard forms such as
succHoxint+lg The okay standard forms are the non exceptional ones. Thus, we declare in a
similar way the exceptional standard forms {(called the sfondard ezceptions). The okay stan-
dard forms are obtained from the standard forms by removing the standard exceptions (Sec-
tion 4, Definition 8).
This construction can be done in the ground term algebra. We generalize it for the non
finitely generated algebras by working in the free algebra over A, T4y

176

The following sections describe our formalism. An ezcepiion specificalion will be defined by :
|SPEC=<S, ¥, L, StFrm , St-Exc , Ok-Ax, Lbl-Ax , Gen-Ax >

where <8.X,1> is an exceplion signafure, St-Frm is a siandoard form declaration, St-Excis a
stondaord exception decloration, Ok-Ax is a set of okey erioms, Lbl-Ax is a set of lobelling
azioms and Gen-Ax is a sel of generalized azioms. All these paris are successively defined in
sections 3 through 7.

Such a syntax may seem complicated, but this complexity reflects the complexity of the vari-
ous examples that we can modelize, and is not inherent to our formalism. For instance, if we
are not interested with error messages (as in all formalisms already put forward), we specify
L=¢ and Lbhl-Ax=¢ ; if we are not interested with *‘bounded” data structures (as in {GDLE 84]),
we specify St-Exe=¢ ; and if we are not interested with recovery features (as in all the partial
algebra approaches), we specify Gen-Ax=¢. Then, we obtain a syntax which looks like a classi-
cal one (ADJ) together with stendard forms (St-Frm) ; however, all our properties remain
true (existence of initial object and functorial aspect of our semantics). Thus, our approach
generalizes all the above mentioned ones.

In the same way, an exception specification where L, St-Frm, St-Exc, Ok-ax and Lbl-Ax are
empty is equivalent to a classical {ADJ) specification, because the semantics of Gen-Ax is
exactly the same as the usual semantics of classical (positive conditional) axioms.

3. EXCEPTION SIGNATURE

Definition 1 : An excepfion signafure is a classical signature together with a set of ezcep-
tion labels : E-Fzc = <SX,L> where S is a finite set of soris; ¥ is a finite set of operations
with arity in S ; and L is a finite setl of exception labels.

Intuitively, these exception labels correspond to the “error messages' of the data type. For
instance, the exception signature of bounded natural numbers will contain the set

L = {NEGATIVE, TOO-LARGE} .

Definition 2 : An ezcepfion algebra over the exception signature X-Ezc, is a classical
(heterogeneous) Z-algebra, 4, together with a family of subsets, {4}, indexed by Lu{Ok}:
A=(4,t41) .

The subset Ag, is the set of all okay volues of A. The subsets 4 are not necessarily disjointed,
and they can intersect several sorts.

Example 1: Let Z-Fzc be an exception signature of bounded natural numbers, NAT. The
algebra N, with pred(0)=0 and with Ng=[0 Mazint] Rypcarrve=10 and
Nrpo-rapce=Maxint, +=[, is an example of E-Ezc-algebra. The intuitive meaning of this alge-
bra is that every value greater than Mazint is erroneous with the TOO-LARGE exception label,
while the negative values are recovered into the constant 0.

Definition 3: Let A and B be two E-Exc-algebras. An exception morphism from AloBis a
classical Z-morphism, w, that preserves the labeled subsets. This means that for all labels
I € LufOkl, u(4) is included in B;.

Dur first result is quite easy : the category of Z-Ezc -algebras has final and initial objects : the
trivial algebra, S, together with §; equal to S for all labels, is a final algebra ; the ground term
algebra, Ty, together with Ty, equal to ¢ for all labels, is initial. We denote this initial algebra
by Ty g . There is no labeled ground term and no okay ground term in Ty gy, as nothing is
specified about labels in the signature.

4. CHARACTERIZATION OF OKAY STANDARD FORMS

Definition 4 : A stendard form declaration over E-Ezc, denoted by St-Frm, is a finite set of
elementary declarations as fallows :

177

[tieSt-Frm A - - A L €St-Frm A vi=w; A - AVpz=w,] => ¢ €St-Frm
where ;, v;, w; and ¢ are E-terms with variables [*].

Each variable occurring in ¢ must also occur in one (at least) of the £,. (n or m may be equal
10 0).

Example 2 : A standard form declaration over NAT can be specified by means of two ele-

mentary declarations :
0 St-Frm
n € St-Frm = succ(n) € St-Frm

As outlined above, the semantics of St-¥rm is provided in Ty, in order {o cope with the
non-finitely generated algebras.

Definition 5: The set of standard forms of Ty(4), denoted by St-Frm, , is the smallest sub-
set of T'y(y) such that

« St-Frm, containg Ay (since Ay, is a subset of 4, its elements are constants of Ty(ay)-

= For each elementary declaration of St-Frm of the form :

[t €St-Frm A - AL, €St-Frm A v;5W, A - - AUy =Wy,] => ¢ € St-Frm

and for each substitution, o, with range in T'g() , the following holds :

it o(t;) € St-Frm, for all i=1..n, and eval[o(v;)]=eval[o(w;)] for all j=1..m, then

o(t) belongs to St-Frmy.

The second condition defines exactly the recursive characterization of the standard forms.
The first condition means that, since okay standard forms are in particular standard forms,
all Ok-values of A must be (constant) standard forms in Zy). For instance, if 4=N is the alge-
bra of integers, the term succ(Succfsucc{0))) is a standard form in Tgay ; but we would also
like the terms suce(2) or 3 io be standard forms : this is obtained from the first condition.
Notice that the existence of St-Frm, is clear.

Our next goal is to remove the exceptional standard forms (e.g. succ(Maxint)).

Definition 6 : A standerd excepfion declaration over £-Ezc, denoted by St¥xe, is a finite
set of elementary declarations as follows :

[ti€St-Bxe A -+ A &, €St-Exc] = { ¢ St-Exc
where £; and ¢ are Z-terms with variables. Each variable occurring in one of the {; must also
oceur in £.

Example 3 : In the bounded natural numbers, our standard exception declaration is
reduced to one elementary declaration :

succ¥Fnt+1(0) € St-Exc
It is not necessary to declare exceptional forms greater than (Moxiné+1). These exceptions
are automatically handled by implicit ezception propagation encoded in the semantics.

The semantics of standard exceptions is provided in Tg(4)- The set of standard exceptions is
defined via three main properties : the recursive characterization associated with St-Exe, the
implicit exception propagation rule, and the stability under portiol evaluations.

Definition 7: The set of standard exceptions of Tg(4). denaoted by St-Eze, , is the smallest
subset of Ty such that :
= for each elementary declaration of St-Exe of the form :
[{€StExc A -+ A I, €St-Exe] => f e St-Exc
and for each substitution, o, with range in Ty, if o(f;) belongs to St-Ezc, for all
i=1..n, then o(t) belongs to St-Fzc,

[*] for each §, vy and w; must belong to the same sort, of course.

178

= if u is aterm of Tgy) that belongs to St-Excy , then every term & of T'gyy that con-
tains u as & subterm belongs to St-Excy

« for each term ¢ in St-Fzc,, snd for each strict subterm wu of £, the term {’, obtained
by substituting the constant evelfu) for u in £, is still an element of St-Fzc, .

We are then able to define the okay standard forms of T'gy). and the validation of St¥rm and
St-Exc for A

Definition 8: The set of okay stendard forms of Ty, Ok-Frmy, is defined by :
(X:-F’rmA - St-FrrnA — St‘E{CCA .

Moreover, the exception algebra A validetes St-Frm and St-Exe it eval (Ok-Frmy) C Ag, .

This means that each okay standard form of T'g(4y must have an okay value in A, after the

evaluation is done, [*]

Example 4 : The okay standard forms of Ty are the terms of the form suce™(m) where
g<n+m<Mazint . The evaluation of such terms is equal to the value (n+m). Thus, the evalua-
tion of each okay standard form of Ty, belongs to Ny, =[0,Mazint]. Consequently, N (Exam-
ple 1) validates St-Frm and St-Exe.

5. OKAY AXIOMS

Qur okay azioms are positive condilional axioms ; we denote a finite set of okay axioms by
Ok-Ax. The associated semantics is deseribed by means of (classical) congruences. But since
the distinction between ezceplional cases and erroneocus velues cannot be made in A, we
define the congruence associated to Ok-Ax in Tgy); and then, we define the validation of
Ok-Ax via eval.

Proposition 1 : Given Z-Ezc, St¥Frm, St-Exe, and Ok-Ax, consider a Z-Fze-algebra A . There
is a least congruence over Ty, denoted by =4, satislying the following “IF..THEN" condi-
tion :
For each substitution, o, with range in Tg(4) , and for each axiom of Ok-Az,
[vi=wy A - Av=w,] = v=w [¥]

(let o(v) = op{ty, . . ., {x)), IF the three following conditions holds :

s evol[o(v;)] = eval[o(w;)] forall i=1.n

= there are okay standard forms oy, ...,0, (€ Ok-Frmg) suchthat &; =4 o; and

op{ay, ...,0,) € St-Fzc,

= there is an okay standard form « (€ Ok-Frmy) such that o{w) =g a.
THEN o{v) =g o(w).

Proof : given in appendix.

The three premisses included in the IF statement are explained as follows :
athe first condition is the validation of the premisses of our okay axiom
s the second condition reflects an #nnermost evaluation : to apply the okay axiom, every
subterm of o{v) must already have an okay standard form, and the resulting term
op(oy, Q) must not be exceptional
=the third condition limits the effect of the okay axiom to the okay terms only.

Thus, =g has two purposes : it deduces the okay ferms of Ty from the reference terms of
Ok-Frmy, and it creates the “okay equivalence class” corresponding to each okay standard
form. Okay axioms only handle the normal cases of the data type.

[*] Notice that the reverse inclusion is always satisfled.
[**] or w =2, our axioms are not oriented.

17¢

Example 5: Okay axioms of bounded natural numbers are specified as usual :

pred(succ(n)) = n
n+ld = =n
n+ suce(m) = succ(n)+m
n-0 = n
n-suce(m) = predfn)-m

Assume that we want to evaluate the term succ (pred{suce ¥ (0))) | We first must evalu-
ate the subterm pred (succ %™ (G)). Its okay standard form is suce @ =1(0} (first axiom),
and thus we can apply the first okay axiom over succ(pred(succ®=(0))) which gives
succ M (0) and since suce ¥ () is also an okay standard form, we have
succ (pred (succ ¥ (0))) =4, succ ¥o7t (),

On the other hand, assume that we want to evaluate the term pred{succ(Mazini)) . We must
first evaluate the subterm succ{Mazint) But our okay axioms cannol associate any ockay
standard form to succ(Moxint) (this term is exceptional). Thus, the first axiom cannot be
applied, and the class of predfsucc(Moxint)) via =4 is reduced te lpred(succ{Mazint))].
Nevertheless, generalized axioms (Section 7) may handle the evaluation of such terms.

Definition 9: An exception algebra, A, validates Ok-Ax iff the morphism ewval is compatible
with =, This means :
Vite Ty, VE €Ty, [E=gt = eval(t)=eval(t')]

6. GENERALIZED LABELLING

Definition 10: We denote by Lbl-Ax, a finite set of labelling axioms over Z-Ezc as follows :
[Li€lin - At el, A vi=wi A - AV, =w,] = fel

where ¢;,v;, w; and { are I-terms with variables, §; are members of LufOk{, and ! is a

member of L [*].

Example 6 : Labelling axioms of bounded natural numbers can be specified as follows :

succ¥=int g ¢ TOO-LARGE

n € TOO-LARGE => succ(n)e TOO-LARGE

n € TOC-LARGE => mn+ 0¢ TOO-LARGE

(succ(n) + m) € TOO-LARGE => (n + succ{m))ec TOG-LARGE
pred(0) € NEGATIVE
n € NEGATIVE =% pred(n)ec NEGATIVE
(n — succ(n)) € NEGATIVE
(n—m) € NEGATIVE => (n —succ(m))€ NEGATIVE

Equations in the premisses are useful ; for inslance, given the operation __<_, the following
labelling axiom is specified :

n<m = True => (n—m)e NEGATIVE
instead of the two last axiorns.

Notice that even if exceptions propagale, lobels must not (implicitly) propagate. For
instance, pred(0) is exceptional and NEGATIVE, thus the term succ(pred(0)) is also excep-
tional {implicit propagation of standard exceptions), but is not a NEGATIVE value.

The semantics of Lbl-Ax works directly on the values of A, in a straightforward manner.

Definition 11: An exception algebra A=(4,{4,}) validates Lbl-Ax iff for each axiom of Lbl-Ax
[ti€lym - AliEl, A V=i A - AvgpTu,] => fel
and for each substitution, o, with range in 4, the following holds :

[*] The I’s are not necessarily distinct,

180

if o(f;} belongs to 4, for all 4 and o(v;)=o(w;) for all j, then o(t) belongs to 4.

Although the specifier is free io include whatever axioms (s)he wants in Lbl-Ax, it should be
noted thai labelling axioms have been designed in order to formalize precondifions (intro-
duced by Guttag in [Gut 79]).

Remark 1: Lbl-Ax does not create exceplions. The subsets 4; are not necessarily disjointed
from Ag, . For instance, even if Lbl-Ax contains an axiom of the form “0€ANY-LABEL", 0 is still
an okay standard form (and thus an okay value). In other words, ckay values labeled by Lbl-
Ax are automatically recovered. More precisely, erronecus values are defined as follows :

Definition 12: We denote by A, the smallest subset of A=(4,{4{) such that :
» Ay contains [4—Ag] for all labels L€ L
= for each operation op € E and for all values vy - - - v, (according to the arity of op), if
(at least) one of the v; belongs to Ay, and if op{vy, . . ., v,) is not a member of 45, then
op{vy, . ..,v,) belongs to Ag.
The intuitive meaning of this definition is the following : the first condition states thal excep-
tion labels generate errors except if they are recovered ; the second condition means that
errors propagate except if they are recovered. The second condition is cailed the implicil
error propagalion rule.

Notice that “‘err” is not a label. It is not compatible with exception morphisms (u(A,,,) is not
always included in B,).

7. GENERALIZED AXIOMS

Definition: 13: We denote by Gen-Ax a finite set of generalized azioms as follows :
[tiely A - A€l A vimwL A - AVpTUn] =D Ups T Wee
where #;, u; and w; are Z-terms with variables, and ; are members of Lu{Ok} [*.

Example 7: Terms such as (Mazini+3)~4 can be recovered into their final value ; and af
the same fime we can amalgamate all terms that contain a negative subterm over an addi-
tional constant CRASH :

n € NEGATIVE => n = CKASH
succ(CRASH) = CRASH
pred(CRASH) = CRASH

CRASH-n = CRASH
n—CRASH = (CRASH
CRASH+n = CRASH
n+m = m+n
n € TOO-LARGE => nt0 = n
n+succ (m) € TOO-LARGE => ntsucc(m) = succ(ntm)
succ(n) € TOO-LARGE => predfsucc(n)) = n
n € TOO-LARGE =» n-0 = mn
n € TOC-LARGE = n-succ(m) = pred(n)-m

Each term that contains a negative value in its subterms is equal to CRASH. Every other
term is amalgamated with its normal form (succ®(0)), (even if this form is not an ckay one).

The semantics of Gen-Ax works directly on the values of A, in a straightiorward manner.

Definition 14: The algebra A validates Gen-Ax iff : for each axiom of Gen-Ax,
[ti€li A - A€l A YFWL A - AURTUW,] > v =w,

[*] The 4's are not necessarily distinct.

181

and for each substitution o with range in 4, the following holds :
it o(;) belongs to 4, for all 4, and o{v;)=o(w;) for all j, then o(v) = o{w) in 4.

Example 8 : We have shown {(Example 5) that the evaluation of the term

pred(succ(Mazint)) fails via the okay axioms, this term is exceplional. Nevertheless,

pred(succ(Mazint)) is recovered via our generalized axioms of Example 7, using the axiom :
succ(n)€ TO-LARGE => pred{(succ(n))=n.

It suffices to show that suec(Mazint) is labeled with TOO-LARGE ; which results from the first

labelling axiom of Example 6. Thus, the term pred{succ(Mozint)) is recovered into the class

of Maxint.

Definition 15 : Let SPEC=<Z-Ezc,S5t-¥rm,St-Exe,Ok-Ax, Lbl-Ax,Gen-Ax> be an exception
specification. A X-Ezc-algebra, A, is a SPEC-algebra iff it validates all paris of SPEC. We
denote the full subcategory of Alg(E-Ezc) containing the SPEC-algebras by Alg(SPEC).

8. INITIALITY RESULTS

In this section, we show that Alg(SPEC) has an initial object. Our main result is more general ;
it extends the major technical result of the classical abstract data type theory [ADJ 76].

Theorem 1 : Let SPEC be an exception-specification over E-Fzc. Let A be a E-Ezc -algebra,
and let R be a binary relation over A compatible with the sorts of X-Fzc. There is a least
congruence over A, denoted by =gpgc g, and there are least subsets of (A/ =gpp z), denoted
by {(A/ =sprc.r)y} , Such that (A/ =gpgc z) is a SPEC-algebra and =gppe p contains R.

Proof : given in appendix.
Corollary 1: The category Alg(SPEC) has an initial object, denoted by Tgpge.

Proof : From the definition of exception morphisms, it is clear that the SPEC-algebra Tgpge,
obtained by Theorem 1 with A=Ty g, and R=¢, gives the answer (since Ty g is already ini-
tial in Alg(X-Ezc)). o

Example 9 : With the specification SPEC of bounded natural numbers given in sections 3
through 7, the initial algebra is defined as follows :

Tsppc = {CRASHIUN, with operations 0 succ pred + and - as usual. Every negative value is
amalgamated with CRASH, and every operation applied over CRASH gives CRASH. Moreover,
Nygcarnvg is equal to {CRASH, Nrpo.iaper is equal to |Mazint, +[and Ng is equal
to [0, Mazint].

9. STRUCTURED EXCEPTION SPECIFICATIONS

9.1. Forgetful functors
Definition 16 : Let Z-Frc;=<5;,L;, 11> and E-Ezc,=<S;, B, 1> be two exception signatures
such that ¥-Ezc,c Z-Ezcp We define the forgefful funclor U from Alg(E-Facy) to
Alg(2-Ezc) in a similar manner as in the classical abstract data type theory :
= for each E-Fzcg-algebra B=(B.{B;}), U(B) is the E-Fxc,-algebra A=(4,{41) such that
A (resp. 4 for each L€L;U{0k}) is the subset of B (resp. B;) corresponding to the sorts of
5; (i.e. we remove the subsets associated with the sorts of S;—S;). The Z,-operations work
over A as they do over B.
* for each I-Ezcy-morphism w: B - B, U(y) is the E-Ezc ;-morphism g, restricted to
U(B) and corestricted to U(B").

Unfortunately, given two specifications SPEC,; C SPEC,, if B is a SPEC;-algebra, then U(B) is a
Z-Fzc 1-algebra but is not always a SPEC;-algebra. This is due to the following fact : if SPEC,
adds some standard exceptions to the operations of SPEC,, then it is possible that it removes

182

some SPEC, okay standard forms. Thus, several occurrences of SPEC,-okay axioms are inhi-
bited. There are then several SPECs-algebras that do not validate Ok-Ax;.

9.2. Presentations

Definition 17: A presenitaiion over the exception specification SPEC, is a tuple
PRES=<S,Z, L, StFrm , St-Exc, Ok-Ax, Lbl-Ax, Gen-Ax >

such that SPEC; = SPEC, + PRES is an exception specification, <S;Xg> n <S§,X> is empty,

and for all SPEC,-algebras, A, the Z-Fzc j-algebra U{A) is a SPEC;-algebra.

The specification SPEC, is called the predefined specification.

This definition is not a very constructive one. Nevertheless, we shall give a sufficient con-
dition under which PRES is a presentation.

Proposition 2 : If, for each elementary declaration of St-Exc of the form

[t, € St-Exe A -+ A &, €St-Exc] => £ e StExe,
the leading operator symbol of £ belongs to X, then PRES is a presentation over SPEC, .
This means that the standard exceptions added by PRES are only preconditions on the new
operations. There must not be any new standard exceptions with a predefined operation at
the top.
Proof : Standard exceptions are closed under partial evaluations, but this evaluation only
concerns sirict subterms. The leading operator is never avoided. Thus, each new standard
exception contains a new operation at the top; and the presentation cannot remove
predefined standard forms. Consequently, it cannot remove any occurrence of a predefined
okay axiom. o

Example 10 : We define the following presentation PRES over SPEC, = NAT+B0OL, in order
to specify bounded arrays of natural numbers :

S={ ARRAY}

T=fcreate, [J:=_, _[]! (with usual arities)

L= { OUT-OF-RANGE , NOT-INITIALIZED §

St-Frm : creafe € St-Frm

t € St-Frm A n € St-Frm fil =
A 1 €St-Frm A Mozronge <i= Fulse [il:=n € St-Frm

StExc=¢ [because St-Frm already contains ‘' Mazrange<i = Folse” in the premisses)

(tljl=m)li].=n

Ok-Ax: eg?(ij) = Folse => (t[i]l=n)[j]=m
t{f]=m

izj = ([=n)f]=m

Lbl-Ax : ereafe[i] € NOT-INITIALIZED
#[i) € NOT-INITIALIZED A eg?(ij) = False => (t[j]:=n)[i] € NOT-INITIALIZED
succMoTrange 104 = True = {#[i] € OUT-OF-RANGE
i€ NEGAT => {[i] € OUT-OF-RANGE
succ Moo =10¢i = True => ifi].=n € OUT-OF-RANGE
i€ NEGAT =5 {[i]:=n € OUT-OF-RANGE

Gen-Ax: ¢ [... for simplicity, but we can specify recoveries, ad libidum}

Proposition 2 ensures that PRES is a presentation over NAT and BOOL. Notice that this
specification is an example where standard forms are not normal forms.

183

9.3. Synthesis functors
Definition 18 : The synthesis funclor associated with the presentation PRES is the functor,
F, ifrom Alg(SPEC,) to Alg(SPEC,), defined by means of Theorem 1 as follows :
= for each SPEC;-algebra, A, the morphism eval: Ty)4 defines a binary relation in
Ty 4y by :
TRy <> eval(z)=eval(y) for dlz andyin Ty 4 [*].
From Theorem 1, we know that there is a least congruence over Ty, 4y, =sprg, . €61
erated by R, such that F{A)=(Tg,4) =spec,r) [together with smallest subsets, F(4);,
containing 4] is a SPEC;-algebra. The SPEC-algebra #{A) is called the synthesis of A.
= for each SPEC,-morphism, u: A » &', F(u) is the SPEC;-morphism from F{A) to F{A")
deduced in a unique way from the Lymorphism 7 Ty, » T -

Example 11: Let A = {CRASHIUN U {True, Fulse] be a (NAT+BOOL)-algebra, as in Example
9. Let PRES be the presentation of bounded arrays from Example 10. The synthesized algebra
F{A) associated with PRES is described as follows :

Every array that contains only okey natural numbers in the range 0..Mazronge is an okay
one. Every array that contains an operation using an index in {CRASH}U]Mazrange,+of is
erroneous {OUT-OF-RANGE). Every array that contains an erronmeocus natural number
(e {CRASH}U])Mazint,+«[) is erroneous {by implicit error propagation rule).

Moreover, the predefined sorts contain new erroneous values : those obtained by taking a
value from outside of the range 0.Moxronge ; those obtained by taking a value from a non
initialized index; and those obtained by teking a value from an erroneocus array (implicit
error propagation rule). These new values are not predefined ones, except if the generalized
axioms of PRES amalgamates them with CHASH, or recovers them.

Notice that the labeled subset F(A)pyr.or.pavce contains both numbers and arrays. This is an
example of an exception-algebra where a labeled subset intersects several sorts.

Theorem 2 : The synthesis functor F is a left adjoint for the forgetful functor U. This
means that for each SPEC;-algebra, A, and for each SPECz-algebra, B, Homgpge,(F(A),B) is iso-
morphic to Homgpge, (A, U(B)).

Proof : Let I, be the SPEC;-morphism from A to U(F(A)) deduced from the identity over A
in a unique way. The pair {(A,I,) is a universal arrow from A to U, resulting from the definition
of F{A) (Theorem 1). Thus, the Yoneda lemma ([McL 71], IIL.2) proves our theorem. Notice
that the family 7,, for A in Alg(SPEC,), is then the unit of adjunction. o

9.4. Hierarchical consistency

In the classical abstract data type theory, hierarchical consistency means that PRES does
not amalgamate predefined values. This means that the unit of adjunction is injective. With
exception handling, we must also verify that PRES do not add predefined labels to some
predefined values :

Definition 18 : Let / be the unit of adjunction I: Tgpge, > U(F (T spre,)= U(Tgpre,). The
preseniation PRES is hierarchically consisfent iff I is injective and for all predefined labels
l €1y, wehave: I{Tspre,y) = U(Tspre,)iNI(Tapee,)-

In the categorical framework, this means that I is porticlly refractoble [*+].

Example 12: The ARRAY presentation specified in Example 10 is hierarchically consistent.
But if we add the axiom: 0€ TOO-LARGE , PRES is not hierarchically consistent any more,

[*] recall that T T4 © TBB(A)

[**] In the classical abstract data type theory, injective morphisms, monomorphisms and partially retract-
able morphisms are the same. In our exception handling formalism, monomorphisms are injective morphisms,
but are not always partially retractable.

184

since the predefined value U becomes labeled with the predefined label TOO-LARGE.
9.5. Sufficient completeness

In the classical abstract data type theory, sufficient completeness means that PRES does not
add new values to the predefined sorts. This means that the unit of adjunction is swrjective.
In exception handling, such a definition is too restrictive. Sufficient completeness should
allow presentations to add erroneous values into the predefined sorts. For instance, each
value of the form 4], with i>Moxrange, is & new predefined value ; but the presentation is
sufficiently complete, since #[4] is erroneous (labeled with OUT-OF-RANGE).

Definition 20 : The presentation PRES is sufficiently cornplele iff the unil of adjunction
satisfies :

U(Tspro, — Tsprcerr) € I(Tsorc,)
This means that the presentation PRES must not add new non erroneous values to the
predefined sorts.

Example 13: The ARRAY presentation specified in Example 10 is sufficiently complete. But
if we remove the axiom: creote[i] € NOT-INITIALIZED , then PRES is no longer sufficiently
complete, since creofe[i] is not erroneous any more and is not amalgamated with a
predefined value (create[i] is then incompletely specified).

10. CONCLUSION

In this paper, we have shown how exception handling can be integrated into algebraic
specifications without losing the use of congruences, the existence of least congruences and
the existence of initial models. We must point out that to guarantee the existence of least
congruences, we do not need to introduce any restriction on exception specifications. For
instance, even if in most examples, axioms can be transformed into canonical term rewriting
systems, this condition is never required. We do not introduce any restrictions on the class of
models taken into account, i.e. we do not restrict ourselves to finitely generated algebras or
to the ground term algebra. This allows our results to hold in a very general framework. It
should be noted that the key idea is to distinguish exceptions and errors, and this is made
possible by working at the level of Tyy). Indeed the formalism described in this paper relies
on this simple but powerful idea.

What is especially important is that once the initiality resulls are guarantieed for exception
specifications, the classical specification-building primitives are easily extended to our
framework. We have carefully detailed how enrichment carries over to our exceplion
specifications, and how hierarchical consistency and sufficient completeness can be suitably
redefined. In the same way, parameterization may be extended io exceplion specifications,
since it mainly relies on initiality, synthesis functors and pushouts (see [ADJ 80]). As a last
remark, we want to emphasize the fact that the concepts of abstract implementation
developed in [EKMP 80}, and [BBC 86], may also be extended to exception specifications (ct.
[Ber 84] and [Ber 86] respectively). This fact is especially important since realistic examples
of abstract implementations can hardly be designed without exception handling (e.g. the
implementation of bounded queues by means of bounded arrays).

ACKNOWLEDGEMENTS
This work is partially supported by CNRS GRECO de Programination, and by the ESPRIT Pro-

jects METEOR and FOR-ME-TOO.

11. APPENDIX
This appendix contains the technical proofs omitted in the body of the article.

185

Proof of Proposition 1: We follow the usual method for minimalily proofs :

=« The set, C, of all congruences satisfying the IF. THEN condition is not emptly : it contains at
least the trivial congruence.

« Now, we show that the congruence, =4, equal to the conjunclion of all the congruences in
C, is still in C. Thus, we want to prove that = satisfles the IF..THEN condition.

Assume that =g , 0 and the okay axiom ([vy=wya - v, =w,] => v=w) satisly the three
conditions of the IF statlement. We want to prove that o(uw)=o(w) for all "=" in C. Thus,
since each = in C salisfies the IF..THEN condition, it suffices to prove that each = in C
salisfies these three conditions. The first condition is clear, since it is independent of = (eval
is intrinsic to A). The second condition results from the fact that =g is the conjunction of all
= in C: this implies that {;=a; for all i and all =. The same reasoning applies to the third
condition, which ends our proof. &

Proof of Theorem 1 :

We will prove a more general result. Theorem | means that there is a least SPEC-algebra,
B=(A/ =gprc g). finitely generated over A and compatible with E. We will prove that this result
can be extended to the non finitely generated algebras :

Theorem 1b : Let SPEC be an exception-specification over the exceplion-signature Z-Ezc .
Let A be a E-Fzxc-algebra, and let R be a binary relation over A compatible with the sorts of
2-Ezc. There is a least SPEC-algebra, B, and an exception morphism u: 4 » B such that: if
xRy then u(z)=ply).

Proof : Let F be the family of all SPEC-morphisms, v: A » Z , where 7 is a SPEC-algebra and
v is compatible with %. F is not empty : it contains at least the trivial morphism . A » 8.

Let B be the quotient of A such that the surjective X-Ezc-morphism, u: A -+ B, is defined by :
) =uly) it v(z)=v{y) for all vin F; and u(z) € B, iff v(z) € Z; for all vin F.

M is clearly an exception morphism since all v in F are exception morphisms. Thus, it suffices
to prove that B is a SPEC-algebra ; i.e. thal B validates St¥rm, St-Exe, Ok-Ax, Lbl-Ax and
Gen-Ax. Two lemmas are needed. Notice that, from the definition of B, there is an exception
morphism, v: B~ Z, for each algebra 7 in F. In the following, for each algebra Z in F,
U Ty(my ~» Tz denotes the Z-morphism deduced in a unique way from v'.

Lemma 1: T(0Ok-Frmpg) is included in Ok-Frmy.
Lemma 2: The congruence v™}(=y) contains the congruence =z 4. (in Ty Te(z))-

For lack of space, we do not prove these lemmas (proved in [Ber 86]). The first lemma
results from minimality properties of St-Frmp and St-Fzcy. The second one results from
minimality properties of =p .

= The validation of St¥rm and St-Exe means that eval (Ok-Frmpg)CBg,. This results from
Lermnma 1, from the fact that eval(Ok-Frmg)CZy for all Z in F, and from the definition of
By, : w€By, iff v'(z)eZy, for all Z in F.

» The validation of Ok-Ax means that if f=5 g # then eval(t)=eval(t’) in B. This results from
Lemma 2, from the fact that each 7 in F validates Ok-Ax, and from the definition of B.

= For the same reasons, the validation of Lbl-Ax and Gem-Ax resulls directly from the
definition of B, since the semantics of Lbl-Ax and Gen-Ax is directly defined in B (not via
Te(5))-

This ends cur proof. o

186

12. REFERENCES

[ADJ 76}

[ADJ 79]

[ADI 80]
[BBC 86]
[Ber 84]

[Ber 86]

[Bid 82]
[Bid 84]
[BW 82]
[EXMP 80]
[EPE 81]

[GDLE 84]

[Gog 77]
{Gog 78]
[Gut 79]

[Loe 81]
[McL 71}

[Pla 82]

[SW 83]

[Wir 82]

[Wir 83]

Goguen J., Thatcher J., Wagner E. : "An initial algebra approach to the specification,
correctness, and implementation of abstract data types’, Current Trends in Pro-
gramming Methodology, Vol.4, Yeh Ed. Prentice Hall, 1978 (also IBM Report RC 8487,
Oct. 1976).

Thatcher J., Wagner W., Wright J. : “Data type specification: parameterization and the
power of specification techniques”, Proc. of SIGACT 10th Annual Symposium on
Theory of Computing, 1879,

Ehrig H., Kreowski H., Thatcher J., Wagner J., Wright J. : "Parameterized data types in
algebraic specification langages”, Proc. 7th ICALP, July 1980.

Bernot G., Bidoit M., Choppy C. : "Abstract implementations and correctness proofs™,
Proc. 3rd STACS, January 1988, Springer-Verlag LNCS.

Bernot G. : “Implémentations de types abstraits algébriques en présence
d'exceptions”’, DEA Report, LRI, Orsay, Sept. 1984,

Bernot G. : "Une sémaantique algébrique pour une spécification différencide des ex-
ceptions et des errcurs: application 4 l'implémentation et aux primitives de struc-
turation des spécifications formelles”, Thése de troisiéme cycle, Université de Paris-
Sud, 19886.

Bidoit M. : "Algebraic data types: structured specifications and fair presentations’,
Proc. of AFCET Symposium on Mathematics for Computer Science, Paris, March 1982.
Bidoit M. : "Algebraic specification of exception handling by means of declarations
and equations'', Proc, 11th ICALP, Springer-Verlag LNCS 172, July 1984.

Broy M., Wirsing M. : "Partial abstract data types"”, Acta Informatica, Vol.18-1, Nov
1982,

Ehrig H., Kreowski H., Mahr B., Padawite P. : "Algebraic implementation of abstract
data types”, Theoretical Computer Science, Oct. 1980.

Engels G., Pletat V., Ehrich H. : "Handling errors and exceptions in the algebraic
specification of data types”, Osnabruecker Schriften zur Mathematik, July 1981,
Gogolla M., Drosten K., Lipeck U., Ebrich H.D. : "Algebraic and operational semantics
of specifications allowing exceptions and errors”, Theoretical Computer Science 34,
North Holland, 1984

Goguen J.A. : “Abstract errors for abstract data types”, Formal Description of Pro-
gramming Concepts E.J. NEUHOLD Ed., North Holland, New York

Goguen 1.A. : "Exceptions and error sorts, coercion and overloading operators”, SRI
Research Report, 1878,

Guttag JV. : "Notes on type abstraction (Version 2)", IEEE Transactions on Software
Engineering, 1978

Loeckx 1. : “Algorithmic specifications of abstract data types”, ICALP 1981,

Mac Lanme S. : “Categories for the working mathematician”, Graduate texts in
mathematics, 5, Springer-Verlag, 1971

Plaisted D. : “An initial algebra semantics for error presentations’, Unpublished
Draft, 1982.

Sannella D., Wirsing M. : A kernel language for algebraic specification and implemen-
tation’, Proc. Intl, Conf. on Foundations of computation Theory, Springer-Verlag,
INCS 158, 1983,

Wirsing M. : "'Structured algebraic specifications’”’, Proc. of AFCET Symposium on
Mathematics for Computer Science, Paris, March 1982,

Wirsing M. : "Structured algebraic specifications: a kernel language”, Habilitation
thesis, Technische Universitat Munchen, 1983.

