
ALGEBRAIC SEMANTICS OF

EXCEPTION HANDLING

Gilles BERNOT ~, Michel BIDOIT*, Christ ine CHOPPY*

~STRACT
In this paper, a new semantics for exception handling in algebraic specifications is provided.
Our formalism allows all forms of exception and error haudlin~ (several error messages,
implicit error propagation rule, exception recovery policy), while preserving the existence of
initial models. It handles complex examples where various exceptional eases (leading to
different proeessings) can be specified. The main concept of our approach is the distinction
between exception and error. This formalism allows use of congruences in a similar manner
as in the classical abstract data type theory. Moreover, we show how a functorial semantics of
enrichment can be carried over to our framework, and we show how hierarchical con~:stency
and su#icient completeness can be redefined. These results provide a firm basis for writing
modular, s t ruc tured specifications with exception handling features.

* Laborat~ire de Recherche en Informat ique
B~t 490, Universit~ PARIS-SUD

F-91405 0RSAY CEDEX
FRANCE

174

1. I N T R O D U C T I O N

Since the pioneer work of [ADJ 76], specifying abstract data types with exception handling
has turned out to be an especially difficult problem. Various solutions have been proposed,
tha t range from the algor~thmio approach [Loe 81, EPE 81] to the p~r~a~ approacl~ [BW 82].
But most approaches may be more or less related to the error-algebr¢~ approach, i.e. the
algebra carr ier sets are split into okay and erroneous values [~J3J 76, Gog 77, Gog 78, Pla 8&
GDLE 84, Bid 84].

[Bid 84] shows that none of these approaches is completely satisfactory, and presents a new
approach allowing all forms of error handling (error declaration, error propagation and error
recovery). Unfortunately, even if the approach described in [Bid 84] seems to be promising,
it does not solve the whole problem, since the existence of initial models is not guaranteed.
Although recent developments in algebraic specification lar~uages [Wir 82, SW 83, Wir 83]
propose an elegant algebraic semantics without requiring t~e existence of initials models,
our claim is tha t initiatity is a major tool to express the semantics of most specification-
building primitives, at least if one wants to state the results in a categorical framework. Such
an approach has been used in [ADJ 79, ADJ 80], [Bid 82] and [EKMP 80] to describe the
semantics of enrichment, joarameteriza~ion and abstro.et implementation.

An interest ing formalism is described in [GDLE 84] that always provides initial objects : the
signature of a specification is divided into safe operations that cannot add erroneous values
(such as succ or + in natura l numbers) and unsafe operations (such as w e d or -) . Unfor-
tunately, all operations are unsafe in most cases (e.g. suee for bounded natural numbers)
and therefore the ok-part of the initial algebra is reduced to safe constants (e.g. 0).

In this paper, we propose a new semantics for exception handling in algebraic specifications.
Our formalism allows all forms of exception handling, including specification of several error
messages, implicit error propagation and error recovery, while preserving the existence of
initial objects at the semantical level. Moreover, the concepts of enrichment, parameteriza-
t /on and abstract implementation can easily be extended to our exception handling frame-
work, as our semantics is entirely functorial.
in the next section, we explain the key ideas of our approach. In sections 3 through 7, we
describe our formalism. The existence of an initial object is proved in Section 8 ; and Section
9 defines enr ichment with exception handling. We assume that the reader is familiar with ele-
mentary results of category theory and the standard (ADJ) approach to abstract data types.

2. THE KEY IDEAS OF OUR APPROACH

Several cri teria are very useful in defining a true exception handling policy :
• In order to avoid a large number of exception declarations, it is of first in teres t to
have implicit exception ~ d error propagation rules. We will show that implicit exception
propagation and implicit error propagation are semantically encoded in our exception-
algebras.
• In most realistic examples, it is necessary to be able to recover various exceptions.
Thus, realistic exception handling formalisms must provide error recovery features. In
our formalism, error recoveries are specified by means of generalized axioms. In particu-
lar, we can specify r6on strict operw.fAons.
• Moreover, we have the possibility to specify several error messages, by means of
excep~on labeUiz~g. For instance, distinct error messages are associated with wed(O)
and (x div 0) ; and there are different recoveries as well. This feature is not provided for
in any of the previous works, but is essential for a realistic exception recovery policy.

In addition to those ideas, our formalism, is based on two main concepts : the ~l:ay star, dural
forms and the dist inction between exceptional cases and erroneous values. These two

175

concepts can be handled due to the fact that for each exception-algebra, A, the semantics is
handled using the free algebra over A : TE(A). In the following subsections, we explain the rea-
sons why these two features are needed in exception handling ; and we sketch out the rea-
sons why the use of TZ(A) is crucial for our purposes.

2.1. Except ions and errors
As in most formalisms already put forward, we make use of O k - ~ o ~ s which describe the
okay cases, and we also use another set of axioms for the erroneous and recovery eases. But
recovery eases and okay axioms often lead to inconsistencies. For instance, let us specify the
bounded natura l numbers with the operations O, sw.c¢ and pred. Let M ~ n t be the upper
bound. We have the Ok-equation : pred(succ(n)) = n . Assume that we want to recover all
values greater than M a n e t with the recovery axiom : s~.cc(_Ma~nt) = M m r ~ . The t e rm
pred(succ(Maxint)) is then equal to Maxint, but it is also equal to pred(Max£r~); which
results to inconsistencies.

In fact, i t is necessary to distinguish between the te rm suce(Maxint) that is except4~nal
(thus, Ok-equations should not be applied), and its class which is an okay value (Maxir~).
This problem may be solved in the ground t e rm algebra (and in the finitely generated alge-
bras) by using the Ok-axioms before the recovery axioms are applied (as succ(Maxint) has
not been recovered, it is not yet okay). But finitely generated algebras are not powerfui
enough to cope with enrichment , parameterizat ion or abstract implementation.
In our approach, this difficulty is avoided as follows : for each exception-algebra, A, we work
in the free algebra of E-terms with variables in A, instead of working directly in A. We denote
by T~(A) this Z-algebra. Constructions that can usually be done at the ground t e rm level can
also be done at the TE(A) level, since we can consider the elements of A as additional con-
stants. Then the morphism eva/(which evaluales the terms of T~(A) into A) carries the con-
structions made at the Tr.(A) level over to A.

B.2. The okay standard f o r m s
Since Ok-axioms only concern okay terms, it is necessary to characterize these terms. But it
is not possible to characterize o2/the okay terms (suce(O), 0+1, pred(succ(succ(O)))...). We
can only characterize some reference terms. These reference terms may be chosen in
different manners . In most examples, normal forms guide the appropriate choice. Unfor-
tunately normal forms are not always unique (e.g. integers : predn(O) or Op(succn(O))).
Therefore this choice mus t be declared in the specification,
Since our axioms are not always equivalent to canonical t e rm rewriting systems, we call our
reference terms standard forms. It is not necessary for these s tandard forms to be canonical
ones, even if this is t rue in most examples. In our framework, the standard forms are charac-
terized by means of recursive declarations. For instance, we declare the standard forms of
integers in the following manner :

0 c~d s'u, c c (0) c~re standard forms
~f s~cc (z) is a standard f o rm then s~cc(s~cc(z)) is a standard forrn
~f succ(z) is a s~ar~dard forr~ t t~n Op (succ(z)) is asta, n ~ T d form

another possibility would be
O, szccc(O) mrLd pred(O) are sta~d forms

i f suce (z) is a stom~ard fo rm then succ(suec(z)) is a standard f o rm
i f Fred(z) is a s t ~ form then trred(pred(z)) is a stc~nda~d form

We have now s tandard forms, bu t there are still some exceptional s tandard forms such as
succM~+~O. The olcay s tandard forms are the non exceptional ones. Thus, we declare in a
similar way the exceptional s tandard forms (called the standard exceptions). The okay stan-
dard forms are obtained from the s tandard forms by removing the standard exceptions (Sec-
tion 4, Definition 8).
This construct ion can be done in the ground te rm algebra. We generalize i t for the non
finitely generated algebras by working in the free algebra over A, T~(A).

176

The following sections describe our formalism. An except/on specification will be defined by :

where <S,Z,L> is an sxception s/gnaAure, St-Finn is a standard form declaration, St-Exe is a
stt~rafard exception declaratioTz, Ok-Ax is a set of okay axioms, Lbl-Ax is a set of labelli~9
om~orns and C-en-~n~ is a set of generalized axioms. All these parts are successively defined in
sections 3 through 7.
Such a syntax may seem complicated, but this complexity reflects the complexity of the vari-
ous examples that we can modelize, and is not inherent to our formalism. For instance, if we
are not interested with error messages (as in all formalisms already put forward), we specify
L=¢ and Lbl-Ax=¢ ; if we are not interested with "bounded" data s t ructures (as in [GDLE 84]),
we specify St-Exe=¢ ; and if we are not interested with recovery features (as in all the partial
algebra approaches), we specify Ge~-/~--¢. Then, we obtain a syntax which looks like a classi-
cal one (ADJ) together with standard fo~-rns (St-Frm) ; however, all our properties remain
t rue (existence of initial object and functorial aspect of our semantics). Thus, our approach
generalizes all the above mentioned ones.
In the same way, an exception specification where I~ St-Frm, St-Exc, Ok-ax and Lbl-Ax are
empty is equivalent to a classical (ADJ) specification, because the semantics of Gen-Ax is
exactly the same as the usual semantics of classical (positive conditional) axioms.

3. EXCEPTION SIGNATURE

Definition I : An exzeIat'~on slgnadure is a classical signature together with a set of excep-
t~on/abe/s : E-Exc = <S,X,L> where S is a finite set of sorts ; Z is a finite set of operat/ons
with arity in S ; and L is a finite set of exception labels.

Intuitively, these exception labels correspond to the "error messages" of the data type. For
instance, the exception signature of bounded natural numbers WIll contain the set
L = [NEGATIVE, TO@LARGE].

Definition 2 : An exception algebra over the exception signature Z-Exc, is a classical
(heterogeneous) Z-algebra, A, together with a family of subsets, ~A~t, indexed by I~lO/c] :

A=(A,~A41) •
The subset A~ is the set of all o/~ay vo2ues of A. The subsets A~ are not necessarily disjointed,
and they can in tersect several sorts.

Example 1 : Let Z-Exc be an exception signature of bounded natural numbers, NAT. The
algebra N, with pred(O)=O and with N~=[O, Igaxir~] NI~TIv~= f0~ and
Nroo.nmc~=]Maxint,+~[, is an example of Z-Exc-algebra. The intuitive meaning of this alge-
bra is tha t every value greater than Max/nt is erroneous with the TO@LARGE exception label,
while the negative values are recovered into the constant 0.

Definition 3 : Let A and t3 be two Z-E=c-algebras. An exception rnOrlahism from A to B is a
classical Z-morphism, tz, that preserves the labeled subsets. This means that for all labels
l c Dg[Ok],/z(At) is included in B~.

Our first result is quite easy : the category of E-E=c -algebras has final and initial objects : the
trivial algebra, S, together with St equal to S for all labels, is a final algebra ; the ground t e rm
algebra, TE, together with Tz, z equal to ¢ for all labels, is initial. We denote this initial algebra
by TE-Ezv. There is no labeled ground te rm and no okay ground t e rm in Tr~ ~ , as nothing is
specified about labels in the signature.

4. CHARACTERIZATION OF OKAY STANDARD FORMS

Definition 4 : A st~ndardfo~'rn dacl~raAion over Z-Exc, denoted by St-Frm, is a finite set of
e lementary declarations as follows :

177

[t l e S t - F r m ^ . . . A t n e S t - F r m ^ v l = ~ 1 ^ , - . ^ v m = w ~] ~ t e S t - F r m
where h , vj, wj and t are ~.-terms with variables [*].

Each variable occurring in t mus t also occur in one (at least) of the t~. (n or m may be equal
~o 0).

~aml~e 2 : A standard form declaration over NAT can be specified by means of two ele-
mentary declarations :

0 e St-Frm
r~ e St-Frm ~ suzz (n) e St-Frm

As outlined above, the semantics of S%~ is provided in T~(A) , in order to cope with the
non-finitely generated algebras.

Definition S : The set of standard forms of T~(A), denoted by St-Frm A , is the smallest sub-
set of T~.(A) such that :

• St-FT"rt% A contains A6~ (since A m is a subset of A, its elements are constants of TN(A)).
• For each elementary declaration of S%-Frm of the form :

[tleSt-Frm^,., ^tneSt-Frm ^ vl=zv l^..-^vra=zvm] ~ t eSt-Frm
and for each substitution, a, with range in T~.(A) , the following holds :
if a(tl) e St-Frrn A for all i=l . . r~, and eval[a(vj)]=eval[a(zuj)] for all j=l . .m , then
a(t) belongs to St-Frm a.

The second condition defines exactly the recursive characterization of the standard forms.
The first condition means that, since okay s tandard forms are in part icular s tandard forms,
all Ok-values of A mus t be (constant) s tandard forms in TZ(A). For instance, if A=N is the alge-
bra of integers, the t e rm succ(succ(succ(O))) is a s tandard form in TZtlt) ; but we would also
like the te rms suez(g) or 8 to be s tandard forms : this is obtained from the first condition.
Notice tha t the existence of S t -F rm A is clear.

Our next goal is to remove the exceptional s tandard forms (e.g. succ(Mazint)).

Definition 6 : A standard exception declaration over ~-Exc, denoted by St-F~c, is a finite
set of e lementary declarations as follows :

[t l e S t - E x c ^ . - . ^ t n eSt-Exc] ~ t eSt-Exc
where t i and t are Z-terms with variables. Each variable occurring in one of the t i must also
occur in t.

k~arnple 3 : In the bounded natural numbers, our s tandard exception declaration is
reduced to one e lementary declaration :

succOr"t+1(0) e St-Exc
It is not necessary to declare exceptional forms greater than (Maxint+l). These exceptions
are automatically handled by implicit exceptiontrropagation encoded in the semantics.

The semantics of s tandard exceptions is provided in TZ(A). The set of standard exceptions is
defined via three main properties : the recursive characterizat ion associated with St-Exc, the
implicit exception propagation rule, and the stability under partial evaluations.

Definition 7 : The set of s tandard exceptions of T~(A), denoted by St-ExcA, is the smallest
subset of TZ(~) such that :

- for each e lementary declaration of St-Exc of the form :
[t l e S t - E x c ^ - - , ^ t ~ e S t - E x e] ~ t eSt-Exc

and for each substitution, ~, with range in T~.(A), if a(ti) belongs to St-Exc A for all
i= l. .n , then a(t) belongs to St-Ezc A

[,] for each j, vj and ~uj must belong to the same sort, of course.

t78

• if u is a t e r m of T~(A) t h a t belongs to S t -Exz A , t h e n eve ry t e r m t of T~.(A) t ha t con-
rains u u s a s u b t e r m belongs to St.-Exz A
= for e a c h t e r m t in St -Eze A, and for e a c h s t r i c t s u b t e r m u of t, the t e r m t ' , obta ined
by subs t i tu t ing the c o n s t a n t ever(u) for u in t, is sti l l an e l e m e n t of St -Exe A .

We are t h e n able to define t he okay s t andard fo rms of T~(A), and t h e val ida t ion of S t -Frm and
St-Exc for A.

Def in i t ion 8 : The se t oi okay s tandard f o r m s of T~.(A) , O k - F r ~ A, is defined by :
Ok-Frm A = S t -FrmA - S t -Exc A.

Moreover, the excep t ion a lgebra A validates St -Frm and St-Exc iff eval (Ok-FrrnA) ~ A ~ ,
This m e a n s t h a t each okay s t andard f o r m of T~(A) m u s t have an okay value in A, a f te r the
eva lua t ion is done. [*]

E x a m p l e 4 : The okay s t anda rd fo rms of T~(~ a re the t e r m s of t h e fo rm s u c c n (m) where
0~n+~-~Max/~ t • The eva lua t ion of such t e r m s is equal to t he value (n+rn). Thus, the evalua-
t ion of each okay s t anda rd f o r m of TZ(~ belongs to Nae=[O, Maxlnt]. Consequently, N (Exam-
ple 1) va l ida tes S t -F rm and St-lgxc.

5. OKAY AXIOMS

Our okay ax ioms are posi t ive condit ional ax ioms ; we denote a finite set of okay axioms by
Ok/ix. The assoc ia ted seman t i c s is desc r ibed by means of (classics]) congruences . But since
the d i s t inc t ion be tween except ional cases and erroneous values canno t be m a d e in A, we
define t he c o n g r u e n c e assoc ia ted to Ok-Ax in Tr.(A) ; and then, we define t he val idat ion of
O k / i x via eva/ .

P ropos i t ion 1 : Given Z-Exc, S tOrm, S t ~ x c , and Ok-A~ cons ide r a]] -Ezc-a lgebra A. There
is a l eas t c o n g r u e n c e over T~(A), deno t ed by -~6~, sat isfying t h e following "W..THEN" condi-

t ion :
For e a c h subst i tu t ion , a, with range in T~,(A), and for each ax iom of Ok-Ax,

[v 1 = ~ 1 ^ " ' ^ ~ = ~] ~ v = ~ [**],
(let a(v) = op (t 1 tm)), IF the t h r e e following condi t ions holds :

• evcd[a(vi)] = eva l [a (w/)] for all i = l . . n
• t h e r e are okay s t andard forms a l am (~ Ok-FrmA) such t h a t gj ---ae uj and
op (al a.~) ¢ St-EXC A
• t h e r e is an okay s t anda rd f o r m a (e Ok-Frm~) such t h a t ~(w) - a e u.

P roof : g iven in appendix.

The t h r ee p r e m i s s e s inc luded in the IF s t a t e m e n t are expla ined as follows :
• t he f irs t condi t ion is the val idat ion of the p remis se s of our okay ax iom
• the second condi t ion ref lec ts an i n n e r m o s t evaluat ion : to apply the okay axiom, every
s u b t e r m of a(v) m a s t a l ready have an okay s t anda rd form, and the resul t ing t e r m
old (~1 ~m) m u s t no t be except iona l
- t h e th i rd condi t ion l imits the e f fec t of the okay ax iom to t he okay t e r m s only.

Thus, ~ has two purposes : i t deduces the o~ay t e ~ of Tr.(A) f r o m the r e f e r e n c e t e r m s of
Ok-Frra A, and i t c r e a t e s the "okay equiva lence c lass" co r respond ing to e a c h okay s t andard
form. Okay axioms only handle the no rma l cases of t he da t a t~-pe.

[*] Notice that the reverse ineltmion ~ always satisfied.
[**] or ~V = ~, our axioms are not oriented,

179

~ r a p l e 5 : Okay axioms of bounded natura l numbers are specified as usual :

W e d (~ c c (n)) = n

n + O = n

n + m~cc(m) = suce(n) + m
n - O = n

n - ~ (m) = w e a (n) - m

Assume tha t we want to evaluate the t e rm suce (pred(sm~cU~m(0))) . We first mus t evalu-
ate the sub te rm w e d (s u e t ~ m (0)). Its okay s tandard form is succ ~z~u-l (0) (first axiom),
and thus we can apply the first okay axiom over succOyred(suce~r~(O))) , which gives
s ~ c e ~ (0) , and since succu~m(O) is also an okay s tandard form, we have

On the other hand, assume that we want to evaluate the terra pred~succ(Maxird)) , We mus t
first evaluate the sub te rm succ(Maxint). But our okay axioms cannot associate any okay
s tandard form to succ(Maxint) (this t e rm is exceptional). Thus, the first axiom cannot be
applied, and the class of pred(swzcc(Mo.~i~2)) via ~oe is reduced to ~red(succ(Maxin t)) t.
Nevertheless, generalized axioms (Section 7) may handle the evaluation of such terms.

Definition 9 : An exception algebra, A, validates Ok-Ax iff the morphism eva/ i s compatible
with =-oe. This means :

V t e Tr(,) , V t ' ~ rZ(,), It - ~ , t ' ~ eva(~) = eva/(~')]

6. GENERALIZED LABEIJ.ING

Definition 10 : We denote by Lbl-Ax, a finite set o~ labelling axioms over Z-Ere as follows :
[t l c t 1 ^ . . . ^ Q E / ~ ^ v l = w 1 ^ . . . ^ v r , = w ~] ~ t ~ l

where t~, vj, wj and t are Z-terms with variables, /~ are members of I~[Ok~, and l is a
member of L [*].

Example 6 : Labelling axioms of bounded natural numbers can be specified as follows :

s ~ c c ~ m + 1 0 ~ TO.LARGE
n ~ TOG-LARGE ~ succ(n) ~ TOO-LARGE
n ~ TOO-LARGE ==~ n + 0 c TOO-LARGE

(suce(n) + m) ~ TOO-LARGE ~ (n + s u e t (m)) E TOO-LARGE
pred(O) c NEGATIVE

n ~ NEC~TIVE ~ pred(n) c NEGATIVE
(n - suce(n)) ~ NEGATIVE

(, , - . ~) ~ ,VFGA~WE ~ (. , - ~ . c ~ (, ~)) ~ N E G A r W E

Equations in the premisses are useful ; for instance, given the operation _ < _ , the following
labelling axiom is specified :

n < m = True ~ (n - m) e NEGATIVE
instead of the two last axioms.

Notice tha t even if exeeptior, s propagate, labels must not (implicitly) propagate. For
instance, w e d (O) is exceptional and NEGATIVE, thus the t e rm s 'ucc~red(O)) is also excep-
tional (implicit propagation of s tandard exceptions), bu t is not a NEGATIVE w]ue.

The semantics of Lbl-Ax works directly on the va/ues of A, in a straightforward manner.

Definition I I : An exception algebra A=(A, f& t) validates Lbl-Ax i_ff for each axiom of Lbl-Ax
[t ~ t ~ ^ . . . ^ t ~ E ~ ^ v i = w 1 ^ . , . ^ v m = w ~] ~ t ~ t

and for each substi tution, a, with range in A, the following holds :

[*] The h's are not necessarily distinct,

180

if a(ti) belongs to A~ for all i, and a(vj)=a(wi) for all j, then z(t) belongs to A~.

Although the specifier is free to include whatever axioms (s)he wants in Lbl-hx, it should be
noted tha t labelling axioms have been designed in order to formalize p r e c o n d i t i o n s (intro-
duced by Guttag in [Gut 79]).

I~mark I : Lhl-Ax does not create exceptions. The subsets A~ are not necessarily disjointed
from A m . For instance, even if Lbl-Ax contains an axiom of the form "OeANY-LABEL" , 0 is still
an okay s tandard form (and thus an okay value). In other words, okay values labeled by Lbl-
Ax are automatically recovered. More precisely, e r r o n e o u s v a l u e s are defined as follows :

Definition 12 : We denote by A,rr the smallest subset of A=(A, [A~ ~) such tha t :
• A,~ contains [A~-Aae] for all labels I e L
• for each operation op e Y. and for all values v I • • • v n (according to the arity of ep), if

(at least) one of the v~ belongs to A,rr and if o p (v 1 v,~) is not a member of Aa~, then
op (v 1 v n) belongs to h ~ .

The intuitive meaning of this definition is the following : the first condition states tha t excep-
tion labels generate errors except if they are recovered ; the second condition means that
errors propagate except if they are recovered. The second condition is called the i m p l i c i t

error p r o p a g a t i o n ru le .

Notice that "err" is not a label. It is not compatible with exception morphisms (/z(h,rr) is not
always included in B,rr).

7. GENERhHZED AXIOMS

Definition 13 : We denote by Gen-hx a finite set of g e n e r a l i z e d a x i o m s as follows :
[tleliA ... ^t~e~ ^ VI=wI,, "'" ^v,~=w,~] ~ v,,+1=w,~+1

where t i, v i and w i are E-terms with variables, and/~ are members of I ~ O k t [*].

E~mmple 7 : Terms such as (M a x i n t + 3) - 4 can be recovered into their final value ; and at
the s ~ m e t4me we can amalgamate all terms that contain a negative subterm over an addi-
tional constant C R A S H :

n e NEGATIVE

n e TOO-LARGE

n + s u c c (rn) e TOO-LARGE

s u c c (n) ~ TOO-LARGE

n e TOO-LARGE

n e TOO-LARGE

=~ n = C R A S H

s u c c (C R A S H) = C R A S H

w e d (C R A S H) = C R A S H

C R A S H - n = C R A S H

n - C R A S H = C R A S H

C R A S H + n = C R A S H

:=> n + O = n

n+~uce(.~) = suce(n+-~)

n - ~ c (m) = t r ~ d (n) - m

Each t e rm that contains a negaLive value in its subterms is equal to CRASH. Every other
t e r m is amalgamated with its normal form (succ~(0)), (even if this form is not an okay one).

The semantics of Gen-Ax works directly on the va/ues of A, in a straightforward manner .

Definition 14 : The algebra A validates Gen-Ax iff : for each axiom of Gen-A~
[t l e ~ l ^ " " ^ t ~ e & ^ v1=~ 1 ^ - . - ^ % . = w , ~] = ~ v = w ,

[*] The h's are ~ t necessarily distinct.

181

and for each subst i tut ion a with range in A, the following holds :
ff a(t~) belongs to A~ for all i, and ~(vi)=a(wi) for all j, then a(v) = a(~z) i nA

Example 8 : We have shown (Example 5) that the evaluation of the t e rm
pred(succ(Maxint)) fails via the okay axioms, this t e rm is exceptional. Nevertheless,
pred(succ(Maxint)) is recovered via our generalized amoms of Example 7, using the axiom :

It suffices to show that succ(Maxint) is labeled with TOO-LARGE ; which results from the first
labelling axiom of Example 6. Thus, the t e rm lrred(succ(Maxint)) is recovered into the class
of Max/'rd-.

Definition 15 : Let SPEC:<Y~-Exe,St-Frm, St-Exc,Ok-Ax~Lbl-Ax, Genu~x> be an exception
specification. A ~.-Exc-algebra, A, is a SPEC-algebra iff it validates all parts of SPEC. We
denote the full subcategory of AI~(F,-Exc) containing the SPEC-aigebras by AIg(SPEC).

8. INITIALITY RESULTS

In this section, we show that Alg(SPEC) has an initial object. Our main resul t is more general ;
it extends the major technical result of the classical abstract data type theory [ADJ 76],

Theorem 1 : Let SPEC be an exception-specification over E-Exc. Let A be a E-Exc -algebra,
and let R be a binary relation over A compatible with the sorts of ~.-Exc. There is a least
congruence over A, denoted by -=se~c,R, and there are least subsets of (A / = m ~ e) , denoted
by I (A / - s l ~ R) ~ I , such tha t (A/-=sI~c,m) is a SPEC-aigebra and -------m~R contains R.

Proof : given in appendix.

Corollary 1 : The category AIg(SPEC) has an initial object, denoted by TsP~C.

Proof : From the definition of exception morphisms, it is clear that the SPEC-algebra Tm~c,
obtained by Theorem 1 with A = T ~ and R=¢, gives the answer (since Ty..~ is already ini-
tial in Aig(I]-Exc)).

Example 9 : With the specification SPEC of bounded natural numbers given in sections 3
through 7, the initial algebra is defined as follows :
Tsl~c = tCRASH~uN, with operations 0 suze /fred + and - as usual. Every negative value is
amalgamated with CRASH, and every operation applied over CRASH gives CRASH. Moreover,
N~vme~r/v~ is equal to tCRASH1, NTOO.IARGE is equal to]Maxint,+~o[and Nae is equal
to [O,M~.~].

9. STRUCTURED EXCEPTION SPECIFICATIONS

9.1. Forgetful func tors
Definition 16 : Let ~.-ExoI=<SI,F~I,I~> and F~-Exc8=<S2,~2,Lz> be two exception signatures
such that ~-Exc 1 c ~.-Exc~. We define the forgetful ~ n c t o r U from Alg(F~-Exc2) to
Alg(~.-Exe 1) in a similar manner as in the classical abstract data type theory :

• for each E-Exce-algebra B=(B,IB:t) , U(B) is the ~.-Exel-algebra A=(A,f241) such that
A (resp. 24 for each t~I~u~O~]) is the subset of B (resp. Bt) corresponding to the sorts of
S~ (i.e. we remove the subsets associated with the sorts of $2-S~). The I:~-operations work
over A as they do over B.
• for each E-Exc~-morphism tt: B -~ B' , U(tt) is the ~--Exc~-morphism lt, res t r ic ted to
U(D) and corestr icted to U(B').

Unfortunately, given two specifications SPEC~ c SPEC~, if B is a SPEC~-aigebra, then U(B) is a
~.-Exc ~-aigebra bu t is not always a SPEC~-algebra. This is due to the following fact : if SI~EC~
adds some standard exceptions to the operations of b-'PEC~, then ~t is possible that it removes

182

some SPEC 1 okay s t anda rd forms. Thus, severa l o c c u r r e n c e s ol SPECl-okay axioms are inhi-
bi ted. There are t h e n severa l ~PEC~-algebras t h a t do no t val idate Ok-Ax 1.

9 . 2 . Presen ta t ions
Defin i t ion 17 : A p r e s e n t a l i o n over the excep t ion specif ica t ion SPEC1 is a tuple

PRF~ = < S , ~ , L , S t - F r m , S t -Exc , Ok-Ax, Lbl-Ax, Gen-Ax >
such t h a t SPEC z = SPEC a + PRES is an excep t ion specif icat ion, <S0,~0> n <S,~> is empty ,
and for all SPEC~-algebras, A, the Z-Exc 1-algebra U(A) is a SPEC~-algebra.
The speci f ica t ion SPEC 1 is cal led the prede f ined specification.

This defini t ion is not a v e r y cons t ruc t ive one. Never the less , we shall give a suff ic ient con-
di t ion unde r which PRES is a p resen ta t ion .

P ropos i t ion 2 : If, for each e l e m e n t a r y dec la ra t ion of St-Exc of the f o r m
[t l e s t - E x c ^ .., ^ t n e S t - E x c] ~ t ~ S t - E x c ,

the leading o p e r a t o r symbol of t belongs to r., t h e n PRES is a p r e sen t a t i on over SPEC 1 .
This m e a n s t h a t t h e s t anda rd except ions added by PRES are only p recondi t ions on the new
operat ions . There m u s t no t be any new s t anda rd excep t ions with a p redef ined opera t ion a t
the top.
P roof : S tandard excep t ions a r e c losed unde r par t ia l evaluat ions, bu t this eva lua t ion only
conce rns s tr ic t sub te rms . The leading o p e r a t o r is n e v e r avoided. Thus, each new s t andard
excep t ion conta ins a new opera t ion a t the t o p ; and the p r e s e n t a t i o n cannot r e m o v e
p rede fmed s t anda rd forms. Consequently, i t c anno t r e m o v e any o c c u r r e n c e of a p redef ined
okay axiom. =

Examlale I0 : We define the following p r e s e n t a t i o n PRES over SPIgC I = NAT+I?OOL, in o rde r
to specify bounded ar rays of na tu ra l n u m b e r s :

S = I ARRAY~

~. = ~ create , _ [_] : = _ , _ [_] ~ (with usua l ar i t ies)

L = ~ OUT-OF-RANGE, NOT-INITIALIZED

b~tqerm : c rea te E S t -Frm

t E S t -F rm ^ n e S t -F rm |
^ i c S t -F rm ^ Maxrange <i = Falsel* ~ t[i]:=n E St -Frm

St-Exe = ¢ [because S t -F rm a l ready conta ins "Maxrange<£ = False" in the p remisses]

Ok-~Lx : eq?(~d)=False ~ (t[~]:=n)D]:=,~ = # ~] : = . # N : = ~

LbI-Ax :
t[i] c NOT-INITIALIZED ^ eq? (£j) = False

succYam~mg~-]O</ = Tr~e
£ ~ NEGAT

s u c c u m ~ - l o < £ = Tru~
i ~ NEGAT

Gen-Ax : ¢

create[i] E NOT-INITIALIZED
=::> (t[j]:=n)[£] E NOT-INITIALIZED
==~ t[£] ~ OUT-OF-RANGE
=:> t[4,] ~ OUT-OF-RANGE
:=> t[i,]:=r~ E OUT-OF-RANGE
:=~ t[4.]:=~ c OUT-OF-RANGE

[... for s implici ty, b u t we can specify recover ies , ad l ibidum]

Proposi t ion 2 ensu re s t h a t PRIGS is a p r e s e n t a t i o n over NAT and HOOL. Notice tha t this
specif ica t ion is an example where s t anda rd forms are no t no rma l forms.

!83

9.3. Synthesis functors
Definition 18 : The synthesisf~nctor associated with the presentat ion PRES is the functor,
F, f rom Alg(SPEC1) to Alg(SPEC~), defined by means of Theorem 1 as follows :

• for each SPECl-algebra, A, the morphism eva/: TE,(A)-~A defines a binary relation in

TZ~(A) by :
=Ry ~ ~va/(z):eva/(y) for all x ~znd y ~n T~.I(A) [*].

From Theorem I, we know that there is a least congruence over TZ,(A), ---sezc~,R, gen-

erated by R, such that F(A)=(T~(A)/=-sI~ze~,R) [together with smallest subsets, F(A)~,

containing A~] is a SPEC~-algebra. The SPECz-algebra F(A) is called the sy~thes/s of A.
• for each SPECl-morphism, Iz: A -, A', F(/z) is the ~ C a - m o r p h i s m from F(A) to F(A')
deduced in a unique way from the Ez-morphism ~: TZ~(A) -~ Try(.) .

Example 11 : Let A : tCRASH]uN u i Tr~e,Ftz/sel be a (NAT+BOOL)-algebra, as in Example
9. Let PRES be the presenta t ion of bounded arrays from Example 10. The synthesized algebra
F(A) associated with PRI~ is described as follows :
Every array tha t contains only okay natura l numbers in the range O..Maxrar~ge is an okay
one. Every array that contains an operation using an index in ICRASH]u]Mazrange,+oo[is
erroneous (OUT-OF-RANGE). Every array that contains an erroneous natura l number
(e fCRASHlu]Maxint,+oo[) is erroneous (by implicit error propagation rule).
Moreover, the predefined sorts contain new erroneous values : those obtained by taking a
value from outside of the range O..Maxrange ; those obtained by taking a value from a non
initialized index; and those obtained by taking a value from an erroneous array (implicit
error propagation rule). These new values are not predefined ones, except if the generalized
axioms of PRES amalgamates them with CRASH, or recovers them.
Notice that the labeled subset F(A)our.OF.RAN~ E contains both numbers and arrays. _This is an
example of an exception-algebra where a labeled subset intersects several sorts.

Theorem 2 : The synthesis funetor F is a left adjoint for the forgetful functor U. This
means that for each SPECl-algebra, A, and for each SPEC.~-algebra, B, H o ~ (F (A) , B) is iso-

morphic to Hom~zcl(A, U(B)).

Proof : Let I A be the SPECl-morphism from A to U(F(A)) deduced from the identity over A
in a unique way. The pair (A,IA) is a universal arrow from A to U, resulting from the definition
of F(A) (Theorem 1). Thus, the Yoneda lemma ([McL 71], III.Z) proves our theorem. Notice
tha t the family IA, for A in Alg(SPEC1), is then the unit of adjunction, o

9.4. Hierarchical consistency
In the classical abst ract data type theory, hierarchical consistency means that PRES does
not amalgamate predefined values. This means that the unit of adjunction is injective. With
exception handling, we mus t also verify that PRES do not add predefined labels to some
predefined values :

Definition 19 : Let I be the uni t of adjunction I: Tm,ge~ -~ U(F(TsPgc~)=U(Tsp~e~). The
presenta t ion PRES is hierarchicolXy consister~ iff t is injective and for all predefined labels
l e In, we have: I(Tsw~l,t) = U (T s p ~) t n I (T ~) .
In the categorical framework, this means tha t I is partially retractable [**].

Example 12 : The ARRAY presentation specified in Example 10 is hierarchically consistent.
But if we add the axiom : 0 e TOO-LARGE, PRES is not hierarchically consistent any more,

[*] rec~J1 that Tzt(A) c Tr~)

[**] In the classical abstract data type theory, injective morphisms, nmnomorphisms and partially retract-
able morphisms are the same. In our exception handling formalism, monomorphisms are injective morphisms,
but are not always partially retractable.

184

since the predefined value 0 becomes labeled with the predefined label TOO-LARGE.

9.5. Sufficient completeness
In the classical abs t rac t da ta type theory, sufficient completeness means tha t PRES does not
add new values to the predefined sorts. This means tha t the unit of adjunction is s~r~ec~v~.
In except ion handling, such a dennition is too restr ict ive. Sufficient completeness should
allow presenta t ions to add erroneous values into the predefmed sorts. For instance, each
value of the form t[i], with £>M~,~r~r~ge, is a new predefined value ; but the presenta t ion is
sufficiently complete, since t[£] is erroneous (labeled with OUT-OF-RANGE).

]]~.~nition 21] : The presentation PRES is suff~ntly comptete Lq the unit of adjunction I
satisfies :

u(r~-T~,,~) c 1(r~)
This means that the presentation Islets must not add new non erroneous values to the

predefined sorts.

E~a,nple 13 : The ARRAYpresentation specified in Example 10 is sufficiently complete. But
if we remove the axiom : create[/] e NOT-INITIALIZED, then PRES is no longer sufficiently
complete, since create[i] is not erroneous any more and is not amalgamated with a
predefined value (create[i] is then incompletely specified).

10. CONCLUSION

In this paper , we have shown how exception handling can be in tegra ted into algebraic
specifications without losing the use of congruences, the existence of leas t congruences and
the exis tence of initial models. We mus t point out t ha t to guarantee the existence of least
congruences, we do not need to introduce any res t r ic t ion on exception specifications. For
instance, even if in most examples, axioms can be t ransformed into canonical t e r m rewriting
systems, this condition is never required. We do not introduce any res t r ic t ions on the class of
models t aken into account, i.e. we do not r e s t r i c t ourselves to finitely genera ted algebras or
to the ground t e r m algebra. This allows our resul ts to hold in a very general framework. It
should be noted t ha t the key idea is to dist inguish ezceptions and errors, and this is made
possible by working at the level of Tz(~). Indeed the formal ism descr ibed in this paper relies
on this simple bu t powerful idea.

What is especial ly impor tan t is tha t once the ini t ial i ty resul ts are guaranteed for exception
specifications, the classical specification-building primit ives are easily extended to our
framework. We have carefully detai led how enr ichment carr ies over to our exception
specifications, and how hierarchical consistency and sufficient completeness can be suitably
redefined. In the same way, parameter iza t ion may be extended to exception specifications,
since i t mainly rel ies on initiality, synthesis functors and pnshouts (see [ADJ 80]). As a last
remark , we want to emphasize the fact tha t the concepts of abs t rac t implementa t ion
developed in [EKMP B0], and [BBC 86], may also be ex tended to exception specifications (cf.
[Ber 84] and [Ber 86] respectively). This fact is especial ly impor tan t since real is t ic examples
of abs t r ac t implementa t ions can hardly be designed without exception handling (e.g. the
implementa t ion of bounded queues by means o~ bounded arrays) .

ACKNOWLEDGEMENTS
This work is par t ia l ly suppor ted by CNRS GREC0 de Programmation, and by the ESPRIT Pro-
jec ts METEOR and FOR-ME-T00.

11. APPENDIX

This appendix contains the technical proofs omi t ted in the body of the art icle.

185

Proof of Proposi t ion 1 : We follow the usual method for minimality proofs :
- The set, C, of all congruences satisfying the IF..THEN condition is not empty : it contains at
least the trivial congruence.
e Now, we show tha t the congruence, -=~, equal to the conjunction of all the congruences in
C, is still in C. Thus, we want to prove that - ~ satisfies the IF..THEN condition.
Assume tha t ~-~ , a and the okay axiom ([v l = ~ l ^ • • • vn=z%] ~ v=w) satisfy the three
conditions of the IF s ta tement . We want to prove tha t a(v)=-u(w) for all " ~ " in C. Thus,
since each ~- in C satisfies the IF..THEN condition, it suffices to prove that each = in C
satisfies these three conditions. The first condition is clear, since it is independent of = (oval
is intrinsic to A). The second condition results from the fact that ~ac is the conjunction of all
~= in C : this implies that t~-=a~ for all ~ and all - . The same reasoning applies to the third
condition, which ends our proof.

Proof of T h e o r e m 1 :

We will prove a more general result. Theorem 1 means that there is a least b~PEC-algebra,
B=(A/~m~g~R), finiLely genera ted over A and compatible with R. We wilt prove that this resul t
can be extended to the non finitely generated algebras :

Theorem 15 : Let ~ C be an exception-specification over the exception-signature ~.-Exc.
Let A be a ~]-Exc-algebra, and let R be a binary relation over A compatible with the sorts of
]g-Exc. There is a least SPEC-algebra, B, and an exception morphism ~: A -~ B such tha t : if
xRy then ~(x)=l~(y).

Proof : Let F be the family of all 3PEC-morphisms, u: A -~ Z, where Z is a SPEC-algebra and
is compatible with R. F is not empty : it contains at least the trivial morphism ~: A ~ S.

Let B be the quotient of A such that the surjective ~,-Exc-morphism, ~: A ~ B, is defined by :
~(x)=l~(y) iff u(x)=u(y) for all u in F; and ~(x) E B l iff v(x) e Z~ for all u in F.

is clearly an exception morphism since all u in F are exception morphisms. Thus, i t suffices
to prove that B is a SPEC-algebra ; i.e. tha t B validates St-Frm, St-Exc, Ok-~, Lbl-~x and
~ e n - ~ . Two lemmas are needed. Notice that, f rom the definition of B, there is an exception
morpt-fism, v': B-~ Z, for each algebra Z in F. In the following, for each algebra Z in F,
P: T~(s) ~ T~(z) denotes the ~-morphism deduced in a unique way from g.

I~emma 1 : P(Ok-Frms) is included in O~-Frrn z.

Lamina 2 : The congruence P-~(-z,a~) contains the congruence ~s, ae (in Tz(s)×T~.(B)).

For lack of space, we do not prove these laminas (proved in [Bar 86]). The first lemma
results f rom rninimality propert ies of St-Frm s and St-Exe z. The second one results f rom
minimality propert ies of - s ,ae .

m The validation of St-Frm and St-F~xc means that eval(O~-Frms)cB ~ . This results from
Lemma 1, f rom the fact that eval(Olc-l;~mz)cZo~ for all Z in F, and from the definition of
Bo~ : xcBae iff u'(x)~Za~ for all Z inF.
- The validation of Ok-~x means that if t~S,o~t' then eval(t)=eval(~') in B. This results f rom
Lemma 2, f rom the fact that each Z in F validates O k - ~ and from the definition of B.

For the same reasons, the validation of L b l - ~ and ~en-Ax results directly from the
definition of B, since the semantics of Lbl-~x and C~n-~x is direct ly defined in B (not via

This ends our proof.

186

12. REFERENCES
[AI)J 76] Goguen J., Thatcher J., Wagner E. : "An initial algebra approach to the spcciflcation,

corrcctncss, and implementation of abstract data types", Current Trends in Pro-
gramanlng Methodology, Vo!.4, Yeh Ed. Prentice Hall, 1978 (also IBM Report RC 6487,
Oct. 1976).

[ADJ 79] Thatcher J., Wagner W., Wright J. : "Data type spccificatiom paran'teterization and the
power of specification techniques". Proc. of SIGACT 10th Annual Symposium on
Theory of Computing, 1979,

[ADJ 80] Ehrig H., Kreowskl H., Thatcher J,, Wagner J., Wright J. : "Parameterizcd data types in
algebraic specification tangages", Proc. 7th ICALP, July 1980.

[BBC 88] Bernot G., Bidoit M., Choppy C. : "Abstract implementations and correctness proofs",
Proc. 3rd STACS, January 1988, Springer-Verlag LNCS.

[Ber84] Bernot G. : "Impldmentations de types abstraits algdbriques en prdsence
d'excepttons", DEA Report, LILI, Orsay, Sept. 1984,

[Ber 86] Bernot G. : "Une sdmantique algdhrique pour une spdcification diff~renci~e des ex-
ceptions et des erreurs : application ~ l'impldmentation et aux primitives de struc-
turation des spdcifications tormelles", Th~se de troisi~me cycle, Universitd de Paris-
Stld, 1986.
Bidoit M. : "Algebraic data types: structured specifications and fair presentations",
Proc. of AFCET Symposium on Mathematics for Computer Science, Paris, March 1982.
Bidoit M. : "Algebraic specification of exception handling by means of declarations
and equations", Proc. l l t h ICALP, Springer-Verlag LNCS 172, July 1984.
Broy M., Wirsing M. : "Partial abstract data types", Acra Informatica, Vol.18-1, Nov
1982.
Ehrig H., Kreowski H., Mahr B., Padawitz P. : "Algebraic implementation of abstract
data types", Theoretical Computer Science, Oct. 1980.
Engels G., Pletat V., Ehrich H. : "Handling errors and exceptions in the algebraic
specification of data types", Osnabruecker Schriften zur Mathematik, July 1981.
Gogolla M., Drosten Y~, Lipeck U., Ehrich H.D. : "Algebraic and operational semantics
of specifications allowing exceptions and errors", Theoretical Computer Science 34,
North Holland, 1984.
Goguen J.A. : "Abstract errors for abstract data types", Formal Description of Pro-
gramming Concepts E.J. NEUHOLD Ed., North Holland, New York
Goguen J.A. : "Exceptions and error sor~s, coercion and overloading operators", SR/
Research Report, 1978.
Guttag J.V. : "Notes on type abstraction (Version ~)", IEEE Transactions on Software
Engineering, 1979.
Loeckx L : "Algorithmic specifications of abstract data types", ICALP 1981.
Mac Lane S. : "Categories for the working mathematician", Graduate texts in
mathematics, 5, Springer-Verlag, 1971.
Plaisted D. : "An initial algebra semantics for error presentations", Unpublished
Draft, 1982.
Sannella D., Wirsing M. : "A kernel language for algebraic specification and implemen-
ration", Proc. Intl. Con/. on Foundations of computation Theory, Springer-Verlag,
LNCS 158, 1983,
Wirsing M. : "Structured algebraic specifications", Proc. of AFCET Symposium on
Mathcmatics for Computer Science, Paris, March 1982.
Wirsing M. : "Structurcd algebraic spccifications: a kerncl language", Habllitation
thesis, Tcchnischc Univcrsitat Munchen, 1983.

lind as]

[Bid 84]

[BW 82]

[zlo~P 80]

[EPE 81]

[GD~ 84]

[Gog 77]

[Cos 78]

[Gut 79]

[Loc 81]
[McL 71]

[pZa 8~]

[~ 83]

[Wir 82]

