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1. I N T R O D U C T I O N  

Since the pioneer work of [ADJ 76], specifying abstract  data types with exception handling 
has turned out to be an especially difficult problem. Various solutions have been proposed, 
tha t  range from the algor~thmio approach [Loe 81, EPE 81] to the p~r~a~ approacl~ [BW 82]. 
But most  approaches may be more or less related to the error-algebr¢~ approach, i.e. the 
algebra carr ier  sets are split into okay and erroneous values [~J3J 76, Gog 77, Gog 78, Pla 8& 
GDLE 84, Bid 84]. 

[Bid 84] shows that  none of these approaches is completely satisfactory, and presents  a new 
approach allowing all forms of error handling (error declaration, error propagation and error 
recovery). Unfortunately, even if the approach described in [Bid 84] seems to be promising, 
it  does not  solve the whole problem, since the existence of initial models is not  guaranteed.  
Although recent  developments in algebraic specification lar~uages [Wir 82, SW 83, Wir 83] 
propose an elegant algebraic semantics without requiring t~e existence of initials models, 
our claim is tha t  initiatity is a major tool to express the semantics of most  specification- 
building primitives, at least if one wants to state the results in a categorical framework. Such 
an approach has been used in [ADJ 79, ADJ 80], [Bid 82] and [EKMP 80] to describe the 
semantics of enrichment, joarameteriza~ion and abstro.et implementation. 

An interest ing formalism is described in [GDLE 84] that  always provides initial objects : the 
signature of a specification is divided into safe operations that  cannot add erroneous values 
(such as succ or + in natura l  numbers)  and unsafe operations (such as w e d  or -) .  Unfor- 
tunately, all operations are unsafe in most cases (e.g. suee for bounded natural  numbers)  
and therefore the ok-part of the initial algebra is reduced to safe constants (e.g. 0). 

In this paper, we propose a new semantics for exception handling in algebraic specifications. 
Our formalism allows all forms of exception handling, including specification of several error 
messages, implicit error propagation and error recovery, while preserving the existence of 
initial objects at the semantical  level. Moreover, the concepts of enrichment, parameteriza- 
t /on and abstract implementation can easily be extended to our exception handling frame- 
work, as our semantics is entirely functorial. 
in the next  section, we explain the key ideas of our approach. In sections 3 through 7, we 
describe our formalism. The existence of an initial object is proved in Section 8 ; and Section 
9 defines enr ichment  with exception handling. We assume that  the reader is familiar with ele- 
mentary  results of category theory and the standard (ADJ) approach to abstract  data types. 

2. THE KEY IDEAS OF OUR APPROACH 

Several cri teria are very useful in defining a true exception handling policy : 
• In order to avoid a large number  of exception declarations, it is of first in teres t  to 
have implicit exception ~ d  error propagation rules. We will show that  implicit exception 
propagation and implicit  error propagation are semantically encoded in our exception- 
algebras. 
• In most  realistic examples, it  is necessary to be able to recover various exceptions. 
Thus, realistic exception handling formalisms must  provide error recovery features. In 
our formalism, error recoveries are specified by means of generalized axioms. In particu- 
lar, we can specify r6on strict operw.fAons. 
• Moreover, we have the possibility to specify several error messages, by means of 
excep~on labeUiz~g. For instance, distinct error messages are associated with wed(O) 
and (x div 0) ; and there are different recoveries as well. This feature is not provided for 
in  any of the previous works, but  is essential for a realistic exception recovery policy. 

In addition to those ideas, our formalism, is based on two main concepts : the ~l:ay star, dural 
forms and the dist inction between exceptional cases and erroneous values. These two 
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concepts can be handled due to the fact that  for each exception-algebra, A, the semantics is 
handled using the free algebra over A : TE(A). In the following subsections, we explain the rea- 
sons why these two features are needed in  exception handling ; and we sketch out the rea- 
sons why the use of TZ(A) is crucial for our purposes. 

2.1. Except ions  and errors 
As in  most  formalisms already put  forward, we make use of O k - ~ o ~ s  which describe the 
okay cases, and we also use another set  of axioms for the erroneous and recovery eases. But 
recovery eases and okay axioms often lead to inconsistencies. For instance, let us specify the 
bounded natura l  numbers  with the operations O, sw.c¢ and pred. Let M ~ n t  be the upper  
bound. We have the Ok-equation : pred(succ(n))  = n .  Assume that  we want to recover all 
values greater  than M a n e t  with the recovery axiom : s~.cc(_Ma~nt) = M m r ~  . The t e rm  
pred(succ(Maxint)) is then  equal to Maxint, but  it is also equal to pred(Max£r~); which 
results to inconsistencies. 

In fact, i t  is necessary to distinguish between the te rm suce(Maxint) that  is except4~nal 
(thus, Ok-equations should not be applied), and its class which is an okay value (Maxir~). 
This problem may be solved in  the ground t e rm algebra (and in the finitely generated alge- 
bras) by using the Ok-axioms before the recovery axioms are applied (as succ(Maxint) has 
not  been recovered, it  is not yet  okay). But finitely generated algebras are not powerfui 
enough to cope with enrichment ,  parameterizat ion or abstract  implementation.  
In our approach, this difficulty is avoided as follows : for each exception-algebra, A, we work 
in the free algebra of E-terms with variables in A, instead of working directly in A. We denote 
by T~(A) this Z-algebra. Constructions that  can usually be done at the ground t e rm level can 
also be done at  the TE(A) level, since we can consider the elements of A as additional con- 
stants. Then the morphism eva/(which evaluales the terms of T~(A) into A) carries the con- 
structions made at  the Tr.(A) level over to A. 

B.2. The okay standard f o r m s  
Since Ok-axioms only concern okay terms, it is necessary to characterize these terms. But it  
is not possible to characterize o2/the okay terms (suce(O), 0+1, pred(succ(succ(O)))...). We 
can only characterize some reference terms. These reference terms may be chosen in 
different manners .  In most  examples, normal forms guide the appropriate choice. Unfor- 
tunately normal forms are not  always unique (e.g. integers : predn(O) or Op(succn(O)) ). 
Therefore this choice mus t  be declared in the specification, 
Since our axioms are not always equivalent to canonical t e rm rewriting systems, we call our 
reference terms standard forms.  It is not necessary for these s tandard forms to be canonical 
ones, even if this is t rue in most  examples. In our framework, the standard forms are charac- 
terized by means  of recursive declarations. For instance, we declare the standard forms of 
integers in the following manner  : 

0 c~d s'u, c c  (0) c~re standard forms 
~f s~cc (z) is a standard f o rm  then s~cc(s~cc(z)) is a standard forrn 
~f succ(z) is a s~ar~dard forr~ t t~n Op (succ(z)) is asta, n ~ T d  form 

another possibility would be 
O, szccc(O) mrLd pred(O) are sta~d forms 

i f  suce (z) is a stom~ard fo rm  then succ(suec(z)) is a standard f o rm  
i f  Fred(z ) is a s t ~  form then trred(pred(z)) is a stc~nda~d form 

We have now s tandard  forms, bu t  there are still some exceptional s tandard forms such as 
succM~+~O. The olcay s tandard forms are the non exceptional ones. Thus, we declare in a 
similar way the exceptional s tandard forms (called the standard exceptions). The okay stan- 
dard forms are obtained from the s tandard forms by removing the standard exceptions (Sec- 
tion 4, Definition 8). 
This construct ion can be done in the ground te rm algebra. We generalize i t  for the non 
finitely generated algebras by working in the free algebra over A, T~(A). 
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The following sections describe our formalism. An except/on specification will be defined by : 

where <S,Z,L> is an sxception s/gnaAure, St-Finn is a standard form declaration, St-Exe is a 
stt~rafard exception declaratioTz, Ok-Ax is a set of okay axioms, Lbl-Ax is a set  of labelli~9 
om~orns and C-en-~n~ is a set  of generalized axioms. All these parts  are successively defined in 
sections 3 through 7. 
Such a syntax may seem complicated, but  this complexity reflects the complexity of the vari- 
ous examples that  we can modelize, and is not inherent  to our formalism. For instance, if we 
are not interested with error messages (as in all formalisms already put forward), we specify 
L=¢ and Lbl-Ax=¢ ; if we are not  interested with "bounded" data s t ructures  (as in [GDLE 84]), 
we specify St-Exe=¢ ; and if we are not interested with recovery features (as in all the partial 
algebra approaches), we specify Ge~-/~--¢. Then, we obtain a syntax which looks like a classi- 
cal one (ADJ) together with standard fo~-rns (St-Frm) ; however, all our properties remain 
t rue (existence of initial object and functorial aspect of our semantics). Thus, our approach 
generalizes all the  above mentioned ones. 
In the same way, an exception specification where I~ St-Frm, St-Exc, Ok-ax and Lbl-Ax are 
empty is equivalent to a classical (ADJ) specification, because the semantics of Gen-Ax is 
exactly the same as the usual semantics of classical (positive conditional) axioms. 

3. EXCEPTION SIGNATURE 

Definition I : An exzeIat'~on slgnadure is a classical signature together with a set  of excep- 
t~on/abe/s : E-Exc = <S,X,L> where S is a finite set  of sorts ; Z is a finite set of operat/ons 
with arity in S ; and L is a finite set of exception labels. 

Intuitively, these exception labels correspond to the "error  messages" of the data type. For 
instance, the exception signature of bounded natural  numbers  WIll contain the set 
L = [NEGATIVE, TO@LARGE]. 

Definition 2 : An exception algebra over the exception signature Z-Exc, is a classical 
(heterogeneous) Z-algebra, A, together with a family of subsets, ~A~t, indexed by I~lO/c] : 

A=(A,~A41) • 
The subset  A~ is the set  of all o/~ay vo2ues of A. The subsets A~ are not necessarily disjointed, 
and they can in tersect  several sorts. 

Example 1 : Let Z-Exc be an exception signature of bounded natural  numbers,  NAT. The 
algebra N, with pred(O)=O and with N~=[O, Igaxir~] NI~TIv~= f0~ and 
Nroo.nmc~=]Maxint,+~[, is an example of Z-Exc-algebra. The intuitive meaning of this alge- 
bra is tha t  every value greater  than Max/nt is erroneous with the TO@LARGE exception label, 
while the negative values are recovered into the constant  0. 

Definition 3 : Let A and t3 be two Z-E=c-algebras. An exception rnOrlahism from A to B is a 
classical Z-morphism, tz, that  preserves the labeled subsets. This means that for all labels 
l c Dg[Ok ],/z(At) is included in B~. 

Our first result  is quite easy : the category of E-E=c -algebras has final and initial objects : the 
trivial algebra, S, together with St equal to S for all labels, is a final algebra ; the ground t e rm 
algebra, TE, together with Tz, z equal to ¢ for all labels, is initial. We denote this initial algebra 
by TE-Ezv. There is no labeled ground te rm and no okay ground t e rm in Tr~ ~ , as nothing is 
specified about labels in the signature. 

4. CHARACTERIZATION OF OKAY STANDARD FORMS 

Definition 4 : A st~ndardfo~'rn dacl~raAion over Z-Exc, denoted by St-Frm, is a finite set  of 
e lementary declarations as follows : 
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[ t l e S t - F r m ^ . . . A t n e S t - F r m  ^ v l = ~  1 ^ , - . ^ v m = w ~ ]  ~ t e S t - F r m  
where h ,  vj, wj and t are ~.-terms with variables [*]. 

Each variable occurring in t mus t  also occur in one (at least) of the t~. (n or m may be equal 
~o 0). 

~aml~e 2 : A standard form declaration over NAT can be specified by means of two ele- 
mentary declarations : 

0 e St-Frm 
r~ e St-Frm ~ suzz (n) e St-Frm 

As outlined above, the semantics of S%~ is provided in T~(A) , in order to cope with the 
non-finitely generated algebras. 

Definition S : The set of standard forms of T~(A), denoted by St-Frm A , is the smallest sub- 
set of T~.(A ) such that : 

• St-FT"rt% A contains A6~ (since A m is a subset of A, its elements are constants of TN(A) ). 
• For each elementary declaration of S%-Frm of the form : 

[tleSt-Frm^,., ^tneSt-Frm ^ vl=zv l^..-^vra=zvm] ~ t eSt-Frm 
and for each substitution, a, with range in T~.(A ) , the following holds : 
if a(tl) e St-Frrn A for all i=l . . r~,  and eval[a(vj)]=eval[a(zuj)] for all j=l . .m ,  then 
a(t) belongs to St-Frm a. 

The second condition defines exactly the recursive characterization of the standard forms. 
The first condition means that, since okay s tandard forms are in part icular  s tandard forms, 
all Ok-values of A mus t  be (constant) s tandard forms in TZ(A). For instance, if A=N is the alge- 
bra of integers, the t e rm  succ(succ(succ(O))) is a s tandard form in TZtlt ) ; but  we would also 
like the te rms suez(g) or 8 to be s tandard forms : this is obtained from the first condition. 
Notice tha t  the existence of S t -F rm A is clear. 

Our next  goal is to remove the exceptional s tandard forms (e.g. succ(Mazint)). 

Definition 6 : A standard exception declaration over ~-Exc, denoted by St-F~c, is a finite 
set of e lementary declarations as follows : 

[ t l e S t - E x c  ^ . - .  ^ t n eSt-Exc] ~ t eSt-Exc 
where t i and t are Z-terms with variables. Each variable occurring in one of the t i must  also 
occur in t. 

k~arnple 3 : In the bounded natural  numbers,  our s tandard exception declaration is 
reduced to one e lementary declaration : 

succOr"t+1(0) e St-Exc 
It is not  necessary to declare exceptional forms greater  than (Maxint+l). These exceptions 
are automatically handled by implicit exceptiontrropagation encoded in the semantics. 

The semantics  of s tandard exceptions is provided in TZ(A). The set  of standard exceptions is 
defined via three main  properties : the recursive characterizat ion associated with St-Exc, the 
implicit exception propagation rule, and the stability under  partial evaluations. 

Definition 7 : The set  of s tandard  exceptions of T~(A), denoted by St-ExcA, is the smallest 
subset  of TZ(~) such that  : 

- for each e lementary declaration of St-Exc of the form : 
[ t l e S t - E x c  ^ - - ,  ^ t ~ e S t - E x e ]  ~ t eSt-Exc 

and for each substitution, ~, with range in T~.(A), if a(ti) belongs to St-Exc A for all 
i= l. .n , then a(t ) belongs to St-Ezc A 

[,] for each j, vj and ~uj must belong to the same sort, of course. 
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• if u is a t e r m  of T~(A) t h a t  belongs to S t -Exz  A , t h e n  eve ry  t e r m  t of T~.(A ) t ha t  con- 
rains u u s a  s u b t e r m  belongs to St.-Exz A 
= for e a c h  t e r m  t in St -Eze  A, and for  e a c h  s t r i c t  s u b t e r m  u of t, the  t e r m  t ' ,  obta ined  
by subs t i tu t ing  the  c o n s t a n t  ever(u)  for u in t, is sti l l  an  e l e m e n t  of St -Exe  A . 

We are  t h e n  able to define t he  okay s t andard  fo rms  of T~(A), and t h e  val ida t ion  of S t -Frm and 
St-Exc for A. 

Def in i t ion  8 : The se t  oi okay s tandard f o r m s  of T~.(A ) , O k - F r ~  A, is defined by : 
Ok-Frm A = S t -FrmA - S t -Exc  A. 

Moreover,  the excep t ion  a lgebra  A validates  St -Frm and St-Exc iff eval (Ok-FrrnA) ~ A ~  , 
This m e a n s  t h a t  each  okay s t andard  f o r m  of T~(A) m u s t  have an okay value in A, a f te r  the  
eva lua t ion  is done. [*] 

E x a m p l e  4 : The okay s t anda rd  fo rms  of T~(~ a re  the  t e r m s  of t h e  fo rm s u c c n ( m )  where  
0~n+~-~Max/~ t  • The eva lua t ion  of such  t e r m s  is equal  to t he  value (n+rn). Thus, the  evalua-  
t ion of each  okay s t anda rd  f o r m  of TZ(~ belongs  to Nae=[O, Maxlnt]. Consequently,  N (Exam- 
ple 1) va l ida tes  S t -F rm and St-lgxc. 

5. OKAY AXIOMS 

Our okay ax ioms  are  posi t ive  condit ional  ax ioms  ; we denote  a finite set  of okay axioms by 
Ok/ix.  The assoc ia ted  seman t i c s  is desc r ibed  by means  of (classics]) congruences .  But since 
the  d i s t inc t ion  be tween  except ional  cases and erroneous  values  canno t  be m a d e  in A, we 
define t he  c o n g r u e n c e  assoc ia ted  to Ok-Ax in Tr.(A) ; and then,  we define t he  val idat ion of 
O k / i x  via eva/ .  

P ropos i t ion  1 : Given Z-Exc,  S tOrm,  S t ~ x c ,  and Ok-A~ cons ide r  a ] ] -Ezc-a lgebra  A.  There  
is a l eas t  c o n g r u e n c e  over  T~(A), deno t ed  by -~6~, sat isfying t h e  following "W..THEN" condi- 

t ion  : 
For  e a c h  subst i tu t ion ,  a, with range  in T~,(A), and for each  ax iom of Ok-Ax, 

[ v 1 = ~ 1 ^ " '  ^ ~ = ~ ]  ~ v = ~  [**], 
( let  a(v)  = op (t 1 . . . . .  tm)), IF  the  t h r e e  following condi t ions  holds : 

• evcd[a(vi) ] = eva l [a (w/ ) ]  for all i = l . . n  
• t h e r e  are  okay s t andard  forms a l  . . . . .  am ( ~ Ok-FrmA ) such  t h a t  gj ---ae uj and 
op (al . . . . .  a.~) ¢ St-EXC A 
• t h e r e  is an  okay s t anda rd  f o r m  a ( e Ok-Frm~ ) such  t h a t  ~(w) - a e  u. 

P roof  : g iven in appendix.  

The t h r ee  p r e m i s s e s  inc luded  in the  IF s t a t e m e n t  are  expla ined as follows : 
• t he  f irs t  condi t ion  is the val idat ion of the  p remis se s  of our  okay ax iom 
• the  second condi t ion  ref lec ts  an i n n e r m o s t  evaluat ion  : to apply the  okay axiom, every  
s u b t e r m  of a(v)  m a s t  a l ready have an okay s t anda rd  form,  and the  resul t ing  t e r m  
old (~1 . . . . .  ~m) m u s t  no t  be except iona l  
- t h e  th i rd  condi t ion  l imits  the  e f fec t  of the  okay ax iom to t he  okay t e r m s  only. 

Thus, ~ has two purposes  : i t  deduces  the  o~ay t e ~  of Tr.(A) f r o m  the  r e f e r e n c e  t e r m s  of 
Ok-Frra A, and i t  c r e a t e s  the  "okay  equiva lence  c lass"  co r respond ing  to  e a c h  okay s t andard  
form.  Okay axioms only handle  the  no rma l  cases  of t he  da t a  t~-pe. 

[*] Notice that the reverse ineltmion ~ always satisfied. 
[**] or ~V = ~, our axioms are not oriented, 
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~ r a p l e  5 : Okay axioms of bounded natura l  numbers  are specified as usual : 

W e d ( ~ c c ( n ) )  = n 

n + O  = n 

n +  m~cc(m) = suce(n)  + m 
n - O  = n 

n -  ~ ( m )  = w e a ( n )  - m 

Assume tha t  we want to evaluate the t e rm suce (pred(sm~cU~m(0))) . We first mus t  evalu- 
ate the sub te rm w e d ( s u e t  ~ m  (0)). Its okay s tandard form is succ ~z~u-l (0)  (first axiom), 
and thus we can apply the first okay axiom over succOyred( suce~r~(O) ) ) ,  which gives 
s ~ c e ~ ( 0 ) ,  and since succu~m(O)  is also an okay s tandard  form, we have 

On the other hand, assume that  we want to evaluate the terra  pred~succ(Maxird)) ,  We mus t  
first evaluate the sub te rm succ(Maxint).  But our okay axioms cannot  associate any okay 
s tandard form to succ(Maxint)  (this t e rm is exceptional). Thus, the first axiom cannot be 
applied, and the class of pred(swzcc(Mo.~i~2)) via ~oe is reduced to ~red(succ(Maxin t ) )  t. 
Nevertheless, generalized axioms (Section 7) may handle the evaluation of such terms. 

Definition 9 : An exception algebra, A, validates Ok-Ax iff the morphism eva/ i s  compatible 
with =-oe. This means  : 

V t e  Tr(,) ,  V t '  ~ rZ(,),  It - ~ ,  t '  ~ eva(~)  = eva/(~')] 

6. GENERALIZED LABEIJ.ING 

Definition 10 : We denote by Lbl-Ax, a finite set o~ labelling axioms over Z-Ere as follows : 
[ t l c t  1 ^  . . .  ^ Q E / ~  ^ v l = w  1 ^  . . .  ^ v r , = w ~ ]  ~ t ~ l  

where t~, vj,  wj and t are Z-terms with variables, /~ are members  of I~[Ok~, and l is a 
member  of L [*]. 

Example 6 : Labelling axioms of bounded natural  numbers  can be specified as follows : 

s ~ c c ~ m + 1 0  ~ TO.LARGE 
n ~ TOG-LARGE ~ succ(n)  ~ TOO-LARGE 
n ~ TOO-LARGE ==~ n + 0 c TOO-LARGE 

(suce(n)  + m )  ~ TOO-LARGE ~ (n + s u e t ( m ) )  E TOO-LARGE 
pred(O) c NEGATIVE 

n ~ NEC~TIVE ~ pred(n)  c NEGATIVE 
(n - suce(n) )  ~ NEGATIVE 

( , , - . ~ )  ~ ,VFGA~WE ~ ( . ,  - ~ . c ~ ( , ~ ) )  ~ N E G A r W E  

Equations in the premisses are useful ; for instance, given the operation _ < _ ,  the following 
labelling axiom is specified : 

n < m  = True ~ ( n - m )  e NEGATIVE 
instead of the two last  axioms. 

Notice tha t  even if exeeptior, s propagate, labels must  not  (implicitly) propagate. For 
instance, w e d ( O )  is exceptional and NEGATIVE, thus the t e rm  s 'ucc~red(O)) is also excep- 
tional (implicit propagation of s tandard exceptions), bu t  is not a NEGATIVE w]ue. 

The semantics  of Lbl-Ax works directly on the va/ues of A, in a straightforward manner.  

Definition I I  : An exception algebra A=(A, f& t) validates Lbl-Ax i_ff for each axiom of Lbl-Ax 
[ t ~ t ~ ^  . . .  ^ t ~ E ~  ^ v i = w  1 ^  . , .  ^ v m = w ~ ]  ~ t ~ t  

and for each substi tution,  a, with range in A, the following holds : 

[*] The h's are not necessarily distinct, 
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if a(ti) belongs to A~ for all i, and a(vj)=a(wi) for all j, then z(t) belongs to A~. 

Although the specifier is free to include whatever axioms (s)he wants in Lbl-hx, it  should be 
noted tha t  labelling axioms have been designed in order to formalize p r e c o n d i t i o n s  (intro- 
duced by Guttag in [Gut 79]). 

I~mark I : Lhl-Ax does not create exceptions. The subsets A~ are not necessarily disjointed 
from A m . For instance, even if Lbl-Ax contains an axiom of the form "OeANY-LABEL" ,  0 is still 
an okay s tandard form (and thus an okay value). In other words, okay values labeled by Lbl- 
Ax are automatically recovered. More precisely, e r r o n e o u s  v a l u e s  are defined as follows : 

Definition 12 : We denote by A,rr the smallest subset  of A=(A, [A~ ~) such tha t  : 
• A,~ contains [A~-Aae] for all labels I e L 
• for each operation op e Y. and for all values v I • • • v n (according to the arity of ep), if 

(at least) one of the v~ belongs to A,rr and if o p ( v  1 . . . . .  v,~) is not a member  of Aa~, then 
op (v 1 . . . . .  v n )  belongs to h ~ .  

The intuitive meaning of this definition is the following : the first condition states tha t  excep- 
tion labels generate errors except if they are recovered ; the second condition means  that  
errors propagate except if they are recovered. The second condition is called the i m p l i c i t  

error p r o p a g a t i o n  ru le .  

Notice that  "err"  is not  a label. It is not  compatible with exception morphisms (/z(h,rr) is not 
always included in B,rr). 

7. GENERhHZED AXIOMS 

Definition 13 : We denote by Gen-hx a finite set of g e n e r a l i z e d  a x i o m s  as follows : 
[tleliA ... ^t~e~ ^ VI=wI,, "'" ^v,~=w,~] ~ v,,+1=w,~+1 

where t i, v i and w i are E-terms with variables, and/~ are members  of I ~ O k t  [*]. 

E~mmple 7 : Terms such as ( M a x i n t + 3 ) - 4  can be recovered into their final value ; and at 
the s ~ m e  t4me we can amalgamate all terms that  contain a negative subterm over an addi- 
tional constant  C R A S H  : 

n e NEGATIVE 

n e TOO-LARGE 

n + s u c c  (rn) e TOO-LARGE 

s u c c  (n)  ~ TOO-LARGE 

n e TOO-LARGE 

n e TOO-LARGE 

=~ n = C R A S H  

s u c c ( C R A S H )  = C R A S H  

w e d ( C R A S H )  = C R A S H  

C R A S H  - n = C R A S H  

n -  C R A S H  = C R A S H  

C R A S H  + n = C R A S H  

:=> n + O = n 

n+~uce(.~) = suce(n+-~) 

n - ~ c  ( m )  = t r ~ d ( n ) - m  

Each t e rm that  contains a negaLive value in its subterms is equal to CRASH. Every other 
t e r m  is amalgamated with its normal form (succ~(0)), (even if this form is not  an okay one). 

The semantics of Gen-Ax works directly on the va/ues of A, in a straightforward manner .  

Definition 14 : The algebra A validates Gen-Ax iff : for each axiom of Gen-A~ 
[ t l e ~ l ^  " "  ^ t ~ e &  ^ v1=~  1 ^  - . -  ^ % . = w , ~ ]  = ~  v = w ,  

[*] The h's are ~ t  necessarily distinct. 
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and for each subst i tut ion a with range in A, the following holds : 
ff a(t~) belongs to A~ for all i, and ~(vi)=a(wi) for all j, then a(v) = a(~z) i nA  

Example 8 : We have shown (Example 5) that  the evaluation of the t e rm  
pred(succ(Maxint)) fails via the okay axioms, this t e rm is exceptional. Nevertheless, 
pred(succ(Maxint)) is recovered via our generalized amoms of Example 7, using the axiom : 

It suffices to show that  succ(Maxint) is labeled with TOO-LARGE ; which results from the first 
labelling axiom of Example 6. Thus, the t e rm  lrred(succ(Maxint)) is recovered into the class 
of Max/'rd-. 

Definition 15 : Let SPEC:<Y~-Exe,St-Frm, St-Exc,Ok-Ax~Lbl-Ax, Genu~x> be an exception 
specification. A ~.-Exc-algebra, A, is a SPEC-algebra iff it validates all parts of SPEC. We 
denote the full subcategory of AI~(F,-Exc ) containing the SPEC-aigebras by AIg(SPEC). 

8. INITIALITY RESULTS 

In this section, we show that  Alg(SPEC) has an initial object. Our main  resul t  is more general ; 
it extends the major technical  result  of the classical abstract  data type theory [ADJ 76], 

Theorem 1 : Let SPEC be an exception-specification over E-Exc. Let A be a E-Exc -algebra, 
and let R be a binary relation over A compatible with the sorts of ~.-Exc. There is a least 
congruence over A, denoted by -=se~c,R, and there are least subsets of ( A / = m ~ e ) ,  denoted 
by I ( A / - s l ~ R ) ~  I , such tha t  (A/-=sI~c,m) is a SPEC-aigebra and -------m~R contains R. 

Proof : given in appendix. 

Corollary 1 : The category AIg(SPEC) has an initial object, denoted by TsP~C. 

Proof : From the definition of exception morphisms, it is clear that  the SPEC-algebra Tm~c, 
obtained by Theorem 1 with A = T ~  and R=¢, gives the answer (since Ty..~ is already ini- 
tial in Aig(I]-Exc)). 

Example 9 : With the specification SPEC of bounded natural  numbers  given in sections 3 
through 7, the initial algebra is defined as follows : 
Tsl~c = tCRASH~uN, with operations 0 suze /fred + and - as usual. Every negative value is 
amalgamated with CRASH, and every operation applied over CRASH gives CRASH. Moreover, 
N~vme~r/v~ is equal to tCRASH1, NTOO.IARGE is equal to ]Maxint,+~o[ and Nae is equal 
to [ O,M~.~]. 

9. STRUCTURED EXCEPTION SPECIFICATIONS 

9.1. Forgetful func tors  
Definition 16 : Let ~.-ExoI=<SI,F~I,I~> and F~-Exc8=<S2,~2,Lz> be two exception signatures 
such that  ~-Exc 1 c ~.-Exc~. We define the forgetful ~ n c t o r  U from Alg(F~-Exc2) to 
Alg(~.-Exe 1) in a similar manner  as in the classical abstract  data type theory : 

• for each E-Exce-algebra B=(B,IB:t ) , U(B) is the ~.-Exel-algebra A=(A,f241 ) such that  
A (resp. 24 for each t~I~u~O~ ]) is the subset  of B (resp. Bt) corresponding to the sorts of 
S~ (i.e. we remove the subsets associated with the sorts of $2-S~). The I:~-operations work 
over A as they do over B. 
• for each E-Exc~-morphism tt: B -~ B' , U(tt) is the ~--Exc~-morphism lt, res t r ic ted to 
U(D) and corestr icted to U(B'). 

Unfortunately, given two specifications SPEC~ c SPEC~, if B is a SPEC~-aigebra, then U(B) is a 
~.-Exc ~-aigebra bu t  is not always a SPEC~-algebra. This is due to the following fact : if SI~EC~ 
adds some standard exceptions to the operations of b-'PEC~, then ~t is possible that  it removes 
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some SPEC 1 okay s t anda rd  forms.  Thus, severa l  o c c u r r e n c e s  ol SPECl-okay axioms are  inhi- 
bi ted.  There are  t h e n  severa l  ~PEC~-algebras t h a t  do no t  val idate  Ok-Ax 1. 

9 . 2 .  Presen ta t ions  
Defin i t ion  17 : A p r e s e n t a l i o n  over  the  excep t ion  specif ica t ion SPEC1 is a tuple  

PRF~ = < S ,  ~ ,  L ,  S t - F r m ,  S t -Exc ,  Ok-Ax, Lbl-Ax, Gen-Ax > 
such  t h a t  SPEC z = SPEC a + PRES is an  excep t ion  specif icat ion,  <S0,~0> n <S,~> is empty ,  
and for all SPEC~-algebras, A, the  Z-Exc 1-algebra U(A) is a SPEC~-algebra. 
The speci f ica t ion  SPEC 1 is cal led the  prede f ined  specification.  

This defini t ion is not  a v e r y  cons t ruc t ive  one. Never the less ,  we shall  give a suff ic ient  con- 
di t ion unde r  which PRES is a p resen ta t ion .  

P ropos i t ion  2 : If, for  each  e l e m e n t a r y  dec la ra t ion  of St-Exc of the  f o r m  
[t l e s t - E x c  ^ .., ^ t n e S t - E x c ]  ~ t ~ S t - E x c ,  

the  leading o p e r a t o r  symbol  of t belongs to r., t h e n  PRES is a p r e sen t a t i on  over  SPEC 1 . 
This m e a n s  t h a t  t h e  s t anda rd  except ions  added  by PRES are  only p recondi t ions  on the  new 
operat ions .  There  m u s t  no t  be any new s t anda rd  excep t ions  with a p redef ined  opera t ion  a t  
the  top. 
P roof  : S tandard  excep t ions  a r e  c losed unde r  par t ia l  evaluat ions,  bu t  this eva lua t ion  only 
conce rns  s tr ic t  sub te rms .  The leading o p e r a t o r  is n e v e r  avoided. Thus, each  new s t andard  
excep t ion  conta ins  a new opera t ion  a t  the  t o p ;  and the  p r e s e n t a t i o n  cannot  r e m o v e  
p rede fmed  s t anda rd  forms.  Consequently,  i t  c anno t  r e m o v e  any o c c u r r e n c e  of a p redef ined  
okay axiom. = 

Examlale I0  : We define the  following p r e s e n t a t i o n  PRES over  SPIgC I = NAT+I?OOL, in o rde r  
to  specify bounded  ar rays  of na tu ra l  n u m b e r s  : 

S = I ARRAY~ 

~. = ~ create , _ [ _ ] : = _ ,  _ [ _ ]  ~ (with usua l  ar i t ies)  

L = ~ OUT-OF-RANGE, NOT-INITIALIZED 

b~tqerm : c rea te  E S t -Frm 

t E S t -F rm ^ n e S t -F rm | 
^ i c S t -F rm ^ Maxrange <i  = Falsel* ~ t[i]:=n E St -Frm 

St-Exe = ¢ [because  S t -F rm a l ready  conta ins  "Maxrange<£ = False" in the  p remisses ]  

Ok-~Lx : eq?(~d)=False ~ (t[~]:=n)D]:=,~ = # ~ ] : = . # N : = ~  

LbI-Ax : 
t[i] c NOT-INITIALIZED ^ eq? (£j)  = False  

succYam~mg~-]O</ = Tr~e 
£ ~ NEGAT 

s u c c u m ~ - l o < £  = Tru~ 
i ~ NEGAT 

Gen-Ax : ¢ 

create[i] E NOT-INITIALIZED 
=::> (t[j]:=n)[£] E NOT-INITIALIZED 
==~ t[£] ~ OUT-OF-RANGE 
=:> t[4,] ~ OUT-OF-RANGE 
:=> t[i,]:=r~ E OUT-OF-RANGE 
:=~ t[4.]:=~ c OUT-OF-RANGE 

[... for  s implici ty,  b u t  we can  specify recover ies ,  ad l ibidum] 

Proposi t ion  2 ensu re s  t h a t  PRIGS is a p r e s e n t a t i o n  over  NAT and HOOL. Notice tha t  this 
specif ica t ion is an example  where  s t anda rd  forms are  no t  no rma l  forms.  
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9.3. Synthesis functors 
Definition 18 : The synthesisf~nctor associated with the presentat ion PRES is the functor, 
F, f rom Alg(SPEC1) to Alg(SPEC~), defined by means  of Theorem 1 as follows : 

• for each SPECl-algebra, A, the morphism eva/: TE,(A)-~A defines a binary relation in 

TZ~(A) by  : 
=Ry ~ ~va/(z):eva/(y) for all x ~znd y ~n T~.I(A) [*]. 

From Theorem I, we know that  there is a least congruence over TZ,(A), ---sezc~,R, gen- 

erated by R, such that  F(A)=(T~(A)/=-sI~ze~,R) [together with smallest subsets, F(A)~, 

containing A~] is a SPEC~-algebra. The SPECz-algebra F(A) is called the sy~thes/s of A. 
• for each SPECl-morphism, Iz: A -, A', F(/z) is the ~ C a - m o r p h i s m  from F(A) to F(A') 
deduced in a unique way from the Ez-morphism ~: TZ~(A ) -~ Try(. ) . 

Example 11 : Let A : tCRASH]uN u i Tr~e,Ftz/sel be a (NAT+BOOL)-algebra, as in Example 
9. Let PRES be the presenta t ion of bounded arrays from Example 10. The synthesized algebra 
F(A) associated with PRI~ is described as follows : 
Every array tha t  contains only okay natura l  numbers  in the range O..Maxrar~ge is an okay 
one. Every array that  contains an operation using an index in ICRASH]u]Mazrange,+oo[ is 
erroneous (OUT-OF-RANGE). Every array that  contains an erroneous natura l  number  
(e fCRASHlu]Maxint,+oo[) is erroneous (by implicit error propagation rule). 
Moreover, the predefined sorts contain new erroneous values : those obtained by taking a 
value from outside of the range O..Maxrange ; those obtained by taking a value from a non 
initialized index;  and those obtained by taking a value from an erroneous array (implicit 
error propagation rule). These new values are not predefined ones, except if the generalized 
axioms of PRES amalgamates them with CRASH, or recovers them. 
Notice that  the labeled subset  F(A)our.OF.RAN~ E contains both numbers  and arrays. _This is an 
example of an exception-algebra where a labeled subset  intersects  several sorts. 

Theorem 2 : The synthesis funetor F is a left adjoint for the forgetful functor U. This 
means that  for each SPECl-algebra, A, and for each SPEC.~-algebra, B, H o ~ ( F ( A ) , B )  is iso- 

morphic to Hom~zcl(A, U(B)). 

Proof : Let I A be the SPECl-morphism from A to U(F(A)) deduced from the identity over A 
in a unique way. The pair (A,IA) is a universal arrow from A to U, resulting from the definition 
of F(A) (Theorem 1). Thus, the Yoneda lemma ([McL 71], III.Z) proves our theorem. Notice 
tha t  the family IA, for A in Alg(SPEC1), is then  the unit  of adjunction, o 

9.4. Hierarchical consistency 
In the classical abst ract  data type theory, hierarchical consistency means that  PRES does 
not amalgamate predefined values. This means that  the unit  of adjunction is injective. With 
exception handling, we mus t  also verify that  PRES do not add predefined labels to some 
predefined values : 

Definition 19 : Let I be the uni t  of adjunction I: Tm,ge~ -~ U(F(TsPgc~)=U(Tsp~e~). The 
presenta t ion PRES is hierarchicolXy consister~ iff t is injective and for all predefined labels 
l e In, we have:  I(Tsw~l,t) = U ( T s p ~ ) t n I ( T ~ ) .  
In the categorical framework, this means tha t  I is partially retractable [**]. 

Example 12 : The ARRAY presentation specified in Example 10 is hierarchically consistent. 
But if we add the axiom : 0 e TOO-LARGE, PRES is not hierarchically consistent any more, 

[*] rec~J1 that Tzt(A ) c Tr~) 

[**] In the classical abstract data type theory, injective morphisms, nmnomorphisms and partially retract- 
able morphisms are the same. In our exception handling formalism, monomorphisms are injective morphisms, 
but are not always partially retractable. 
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since the predefined value 0 becomes labeled with the predefined label TOO-LARGE. 

9.5. Sufficient completeness 
In the  classical  abs t rac t  da ta  type  theory,  sufficient completeness  means tha t  PRES does not  
add new values to  the predefined sorts.  This means  tha t  the unit  of adjunction is s~r~ec~v~. 
In except ion handling, such a dennition is too restr ict ive.  Sufficient completeness  should 
allow presenta t ions  to add erroneous values into the  predefmed sorts.  For  instance, each 
value of the  form t[i], with £>M~,~r~r~ge, is a new predefined value ; but  the presenta t ion  is 
sufficiently complete,  since t[£] is erroneous (labeled with OUT-OF-RANGE). 

]]~.~nition 21] : The presentation PRES is suff~ntly comptete Lq the unit of adjunction I 
satisfies : 

u(r~-T~,,~) c 1(r~) 
This means that the presentation Islets must not add new non erroneous values to the 

predefined sorts.  

E~a,nple 13 : The ARRAYpresentation specified in Example 10 is sufficiently complete.  But 
if we remove the axiom : create[/]  e NOT-INITIALIZED, then  PRES is no longer sufficiently 
complete,  since create[i] is not erroneous any more and is not amalgamated  with a 
predefined value (create[i] is then incompletely specified). 

10. CONCLUSION 

In this paper ,  we have shown how exception handling can be in tegra ted  into algebraic 
specifications without losing the use of congruences,  the existence of leas t  congruences and 
the exis tence of initial  models. We mus t  point  out  t ha t  to guarantee  the existence of least  
congruences,  we do not  need to introduce any res t r ic t ion  on exception specifications. For 
instance, even if in most  examples,  axioms can be t ransformed into canonical t e r m  rewriting 
systems,  this condition is never required. We do not  introduce any res t r ic t ions  on the class of 
models  t aken  into account,  i.e. we do not r e s t r i c t  ourselves to finitely genera ted  algebras or 
to the  ground t e r m  algebra. This allows our resul ts  to hold in a very general  framework. It 
should be noted t ha t  the key idea is to dist inguish ezceptions and errors, and this is made 
possible by working at  the level of Tz(~). Indeed the formal ism descr ibed  in this paper  relies 
on this simple bu t  powerful idea. 

What is especial ly impor tan t  is tha t  once the  ini t ial i ty resul ts  are guaranteed  for exception 
specifications, the  classical specification-building primit ives are easily extended to our 
framework. We have carefully detai led how enr ichment  carr ies  over to our exception 
specifications, and how hierarchical  consistency and sufficient completeness  can be suitably 
redefined.  In the  same way, parameter iza t ion  may  be extended to exception specifications, 
since i t  mainly rel ies  on initiality, synthesis  functors and pnshouts  (see [ADJ 80]). As a last  
remark ,  we want to emphasize the fact  tha t  the  concepts  of abs t rac t  implementa t ion 
developed in [EKMP B0], and [BBC 86], may  also be ex tended  to exception specifications (cf. 
[Ber 84] and [Ber 86] respectively).  This fact  is especial ly  impor tan t  since real is t ic  examples 
of abs t r ac t  implementa t ions  can hardly be designed without exception handling (e.g. the 
implementa t ion  of bounded queues by means o~ bounded arrays) .  
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11. APPENDIX 

This appendix contains the technical  proofs omi t ted  in the body of the art icle.  
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Proof of Proposi t ion 1 : We follow the usual method for minimality proofs : 
- The set, C, of all congruences satisfying the IF..THEN condition is not empty : it contains at  
least  the trivial congruence.  
e Now, we show tha t  the congruence, -=~, equal to the conjunction of all the congruences in 
C, is still in C. Thus, we want to prove that  - ~  satisfies the IF..THEN condition. 
Assume tha t  ~-~ , a and the okay axiom ( [ v l = ~ l ^  • • • vn=z%] ~ v=w) satisfy the three  
conditions of the IF s ta tement .  We want to prove tha t  a(v)=-u(w) for all " ~ "  in C. Thus, 
since each ~- in C satisfies the IF..THEN condition, it suffices to prove that  each = in C 
satisfies these three  conditions. The first condition is clear, since it is independent  of = (oval 
is intrinsic to A). The second condition results from the fact  that  ~ac is the conjunction of all 
~= in C : this implies that  t~-=a~ for all ~ and all - .  The same reasoning applies to the third 
condition, which ends our proof. 

Proof  of T h e o r e m  1 : 

We will prove a more  general result. Theorem 1 means that  there  is a least  b~PEC-algebra, 
B=(A/~m~g~R), finiLely genera ted  over A and compatible with R. We wilt prove that  this resul t  
can be extended to the non finitely generated algebras : 

Theorem 15 : Let ~ C  be an exception-specification over the exception-signature ~.-Exc. 
Let A be a ~]-Exc-algebra, and let  R be a binary relation over A compatible with the sorts of 
]g-Exc. There is a least  SPEC-algebra, B, and an exception morphism ~: A -~ B such tha t  : if 
xRy then ~(x)=l~(y). 

Proof : Let F be the family of all 3PEC-morphisms, u: A -~ Z,  where Z is a SPEC-algebra and 
is compatible with R. F is not empty : it contains at least  the trivial morphism ~: A ~ S. 

Let B be the quotient  of A such that  the surjective ~,-Exc-morphism, ~: A ~ B,  is defined by : 
~(x)=l~(y ) iff u(x)=u(y) for all u in F;  and ~(x) E B l iff v(x) e Z~ for all u in F. 

is clearly an exception morphism since all u in F are exception morphisms. Thus, i t  suffices 
to prove that  B is a SPEC-algebra ; i.e. tha t  B validates St-Frm, St-Exc, Ok-~,  Lbl-~x and 
~ e n - ~ .  Two lemmas are needed. Notice that, f rom the definition of B, there  is an exception 
morpt-fism, v': B-~ Z,  for each algebra Z in F. In the following, for each algebra Z in F, 
P: T~(s) ~ T~(z) denotes the ~-morphism deduced in a unique way from g. 

I~emma 1 : P(Ok-Frms) is included in O~-Frrn z. 

Lamina 2 :  The congruence P-~(-z,a~) contains the congruence ~s,  ae (in Tz(s)×T~.(B)). 

For lack of space, we do not prove these laminas (proved in [Bar 86]). The first lemma 
results  f rom rninimality propert ies  of St-Frm s and St-Exe z. The second one results  f rom 
minimality propert ies  of - s ,ae .  

m The validation of St-Frm and St-F~xc means that  eval(O~-Frms)cB ~ .  This results  from 
Lemma 1, f rom the fact  that  eval(Olc-l;~mz)cZo~ for all Z in F, and from the definition of 
Bo~ : xcBae iff u'(x)~Za~ for all Z inF. 
- The validation of Ok-~x means that if t~S,o~t' then eval(t)=eval(~') in B. This results f rom 
Lemma 2, f rom the fact  that  each Z in F validates O k - ~  and from the definition of B. 

For the same reasons, the  validation of L b l - ~  and ~en-Ax results  directly from the 
definition of B, since the semantics of Lbl-~x and C~n-~x is direct ly defined in B (not via 

This ends our proof. 
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