
D A T A R E F I N E M E N T REFINED

RESUME

J. He, C.A.R. Hoare and J.W. Sanders

We consider the original work of Hoare and Jones on data refinement in the light of
Dijkstra and Smyth's treatment of nondeterminism and of Mitner and Park's definition
of the simulation of Communicating Systems. Two proof methods are suggested which
we hope are simpler and more general than those in current use. They are proved to be
individually sufficient for the correctness of refinement and together necessary for it.
The proof methods can be employed to derive the weakest specification of an
implementation from its abstract specification.

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road
Oxford OXl 3QD.

I88

O. In t roduct ion

A data type is generally defined, in a manner similar to an algebra, as a set of values

together with a family of operations on these values. The operations are indexed by

procedure names, usually with parameters for conveying values and results between
the data type and the using program. It is only by employing these procedures that the

using program can update and interrogate the value of a variable of the given type.

One data type (call it eonerete) is said to refine a data type with the same index set
(call it abstract) if in all circumstances and for all purposes the concrete type can be
validly used in place of the abstract one. The practical benefit of this arises when the

abstract data type, such as a partial mapping, can be specified, understood and used in

an applications program but cannot be directly or efficiently represented on a
computer; whereas the concrete type is some efficient representation of the abstract one

involving perhaps a complicated collection of bitmaps, pagetables and fileblocks, which

can be economically stored and updated.

An early suggestion for a method of data refinement was given in [Hoare, Ig72]. The

method was based upon

(1) an invar iant predicate which must be proved true after ~.nitialisation and after

every operation on the structure, assuming that it was true beforehand.

(2) an abst ract ion function which maps the current value of the concrete data

type onto the abstract value which it stands for. Each operation must be proved to
update the concrete data type in a manner corresponding to the desired operation on
the abstract structure. This obligation is sometimes expressed as a commuting diagram,

in which ^ is the abstraction function

CO~C.c~

I

A A o

/o~cret:~

189

This method was adopted and developed in the VDM technique of data refinement
[Jones, 1980]. In VDM, certain additional properties of a data type are considered

desirable

(1) The abstract data type should be ful ly abst ract in the sense of Milner. This
means that any two distinct values of the abstract data type can be distinguished by
some sequence of operations on the data. In the VDM literature this is called "freedom
from implementation bias ".

(2) The concrete data type should be adequate to represent every value of the
abstract data type, that is, the abstraction function should be a surjectlon.

In this paper we attempt simultaneously to generalise and simplify the notion of data
refinement in the following ways

(1) Both the abstract and the concrete operations may be nondeterministic.

(2) There is no need for the concepts of full abstraction or adequacy.

(3) The relationship between the concrete and abstract data types does not have
to be functional.

(4) The invariant and the abstraction relation can be combined into a single
relation called (following Milner and Park) a simulation.

(5) A simulation may be either upwards (abstract-to-concrete) or downwards
(concrete4o-abstract). The two kinds of simulation are sufficient for refinement and
together they are necessary. This is a new result for nondeterministic programs.

(6) The downwards simulation rule is given as a formula which enables the
weakest specification of each operation on the concrete type to be calculated directly
by symbolic simplification from the simulation and the operation on the abstract type.

(7) Our treatment is in terms of the general theory of relations. The results
therefore extend beyond data type refinement and include, for instance, proof of
correctness of compiler code generation.

190

The method of data refinement plays a very significant role in the specification and
proof of correctness of nontrivial system programs; we hope that the simplifications
described above will make the method easier to teach, to learn, and to apply in
practice. For examples which illustrate the simplicity and generality of the method we

refer to [H3MS 4, 1985] (for verification) and [Hoare and He, 1985] (for derivation).

1. Relations and Programs.

Suppose that S denotes the set of states of a system. We describe an operation on the

system by using a binary relation on S: the state of the system before the operation is

denoted s and the state after denoted s ' . Important relational notation includes

U ~ S x S

I s ~ { (s , s ') : SxS I s ' = s}

R ~ ~ { (s ' , s) : S×S I (s , s ') e R}
R- ~ { (s ,s ') : SxS I (s,s') ~ R}
RuT, RnT, R~;T and R;T denote the union, intersection, containment and

forward relational composition of R and T respectively
UW and flW denote the union and intersection respectively of the family W

of relations.

Our definitions and proofs will be considerably simplified by confining attention to

total relations, in which case R a T means simply that R is at least as deterministic as

T. The justification for this simplification can be found, for example, in [Hoare and He,

1985].

In general a relation b on S is a condition iff

b = b;U

and we interpret b to be true on its domain and false off it. For clarity we use lower
case to write conditions and upper case for other relations.

We find it convenient to have notation for the weakest amongst the second of a pair of
relations whose composition meets some specification. The dual concept, that of
weakest prespecification, can be found in [Hoare and He, 1985].

191

Defini t ion. If P, Q are relations, the weakes t postspecif icat ion of P with respect to
Q, namely Q/P, is the weakest solution X to the inclusion

P;X ~ Q.

Obviously P;X ~ Q iff X ~ Q/P. An explicit characterisation of the weakest
postspecification can be given as a predicate, or a relation, relating an Initial state s to
a subsequent state s '

(s , s ') e Q/P iff v t : s ~ (t , s) ~ P ~ (t , s ') e Q

o r

Q/P = (p';Q-)-.

Programs will be written in an anologue of Dijkstra's language of guarded commands

[Dijkstra, 1976]. This is restrictive enough to be implemented efficiently (intersection of

relations is excluded) yet powerful enough to include nondeterminism and recursion. If
X is a set of operations, D (X) is defined to be the set of all programs whose primitive
operations are confined to X. More formally, it is the smallest set satisfying

(I) X ~ D(X)

(2) I f P a n d Q a r e i n D (X) then so are P;Q and Pu{:I

(3) If, furthermore, b is a condition in X then the conditional P < b > {1 is in O (X)
(it is more commonly written if b then P else Q)

(4) If T is a directed family of relations in D (X) then fiT e D (X).

192

2. Data types.

A data type X is defined in a fairly conventional manner to be a quadruple

X ~ (XVAL, Xl, X, XF)

where XVAL is the space of values (or states) of the type

X I is an Initlalisation operation

XF is a finalisation operation

X is a family of (possibly nondeterministic) operations on XVAL.

Each operation in X is a total relation between elements of XVAL: when the relation is a

condition we assume that its complement, again a condition, is also in X. X I is a

relation from some global data space to XVAL, and XF is a relation from XVAL back to

the same global space.

When X is a data type we shall write D(X) instead of D(X).

A c o m p l e t e program over a data type X is one which begins with Initialisation and

ends with finalisation. The space of all complete programs over X is thus defined to be

E(X) ~ {XI;P;XF I P (D(X)}.

This paper is concerned with various forms of correspondence between one data type

and another. We consider abstract and concrete data type respectively

A ~ (AVAL, AI, A, AF)

C ~ (CVAL, CI, C, CF)

and we shall assume that these two types are conformal in the sense that

(1) their global data spaces coincide

(2) the indexing sets of A and C coincide

(3) for each condition a i in A, c i is also a condition and its negation has the

same index as the negation of a i . For simplicity we shall write these negations as a i-

and c i-"

3. Ref inement .

!93

In this section, A and C are assumed to be conformal data types.

Firstly we define refinement. If Pn belongs to D(A) and Qn to E(A) then Pc and 1:1 c
denote the members of D(C) and E(C), respectively, having identical program
structure and only differing because Pn contains the abstract operation A i in all places
where Pc contains the concrete one C,, and vice versa.

Definition. Data type C refines data type A iff for each complete program Pc in

E(C),

Pc ~ Pn.

This gives no indication of how to develop the concrete type: it is something which can
be verified, with difficulty, when A and C are both known. We start by giving two
simple proof obligations (c.f. [Park, 1981] and [Milner,1984]) which can be readily
checked and which prove to be sufficient for refinement.

Definit ion. A downwards simulat ion is a relation R from AVAL to CVAL satisfying

Similarly
satisfying

CI ~ AI ;R

R;CF ~ AF

R ; C i ~ A i ; R for each index i .

an upwards s imulat ion is a finitary relation S from CVAL to AVAL

CI ;S ~ AI
CF ~ S;AF

Ci;S ~ S;Ai for each indexi .

In terms of weakest specification the final inclusions in these definitions become

C i ~ (Ai;R)/R

C i ~ S\(S;A i)

which provide methods for calculating the specification of C i from the abstract
operation A i and the simulations using relational algebra.

194

Our next concern is with the correctness and completeness of these definitions of
simulation as methods for proving refinement. Firstly the correctness result.

Theorem. If there is a downwards simulation from A to C or an upwards simulation

from C to A then C refines A.

P r o o f outline. If R is a downwards simulation from A to C then, for each index i,

CI ;C i ;CF ~ AI ;A i ;AF.

So by structural induction, for each P in E(C) ,

Pc ~ Pa-

The proof for upwards simulation is similar.

Next the completeness result.

Theorem. If C refines A then there is an upwards simulation S on A and a

downwards simulation R from S (A) to C.

P r o o f outline. If A is a data type then a power domain construction establishes the
existence of a deterministic type A* and an upwards simulation S from A to A*

satisfying, for each P in E (A) ,

PA = P~* •

If C refines A, C thus refines A* and, because A* is deterministic, there can be shown

to be a downwards simulation R from A* to C. This completes the proof.

Corol lary. When A is canonical (see [H3MS ~, 1985]), downwards simulation alone is

necessary for refinement. This enables the weakest specification of C to be determined

in the manner already observed.

195

4. Related Work.

We have introduced two simulation conditions which guarantee that a concrete data

type refines an abstract one. These simulation conditions are more general than the

rule used in VDM: the downwards rule always applies if the VDM rule does, but there

are situations to which the downwards rule applies though the VDM rule does not. In

cases where both rules apply, the VDM relation is total and surjective though the

downwards simulation need not be; when the downwards simulation is a total bijection,

the two vales coincide.

Tobias Nipkow at the University of Manchester has also extended the VDM rule for

refinement to obtain a rule which is different from ours but which also no longer

assumes that R is injective or surjective ([Nipkow, 1985]). Nipkow's motivation lies more

in the application to concurrency; thus his rule preserves, as does an untotalised
simulation, the domains of the abstract and concrete operations.

I96

5. References .

E.W. Dijkstra A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
N.J., 1976.

H3MS 4 Data Refinement Refined, Draft 1, PRG preprint, May, 1985.

He, Jifeng, C.A.R. Hoare and J.W. Sanders Data Refinement Refined, to appear.

C.A.R. Hoare Proof of correctness of data representations, Acta Informatica, 1,
271 - 281, 1972.

C.A.R. Hoare and He, Jifeng The weakest prespecification, Technical Monograph,
PRG-44, June, 1985.

C.B. Jones Software Development: A Rigorous Approach, Prentice-Hall
International, Englewood Cliffs, N.J. 1980.

A.J.R.G.Milner Lectures on a calculus for communicating systems, Lecture notes from
the International Summer School on Control Flow and Data Flow,
Munich, 1984.

T. Nipkow Nondeterministic data types: models and implementations, University
of Manchester preprint, March, 1985.

D. Park Concurrency and automata on infinite sequences, in LNCS, 104,
167- 183, 1981.

M.B. Smyth Effectively given domains, TCS, 5, 257 - 274, 1977.

