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ABSTRACT 

One of the best known techniques to compile sequential programs for 

multiprocessors is to detect the so called r e d u c t i o n  o p e r a t i o n s  . An example 

of such an operation is the sum of vector elements which can be evaluated 
under a pyramidal scheme using the associativity property of addition. A 

method to detect such operations in a PASCAL or FORTRAN-like program- 

ming language is presented. This detection and the corresponding 
modifications to the source programs are considered as non-standard denota- 

tionul interpretations of the abstract syntax tree of the object programs. A 

by-product of this paper is to show how a denotational specification of a non- 

trivial application can directly lead to a running prototype, using here the ML 

programming language as an "executable specification language". 
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1. I N T R O D U C T I O N  

We propose to detect reduction operations ( r e d o p  ), e.g. sum of vector elements or scalar 
product, in order to improve the "parallelism degree" of programs. For  instance, our aim is to 

translate a program such as : 

s p : = O ; n : =  1 0 0 0 ;  
for  i t o  100  d o  [ 

a[ i+n]  : =  2*a[i] ; 
sp  :~--- sp  + a[i]*b[i] ; 
] 

whose complexity for the computation of sp  is O(N), into a new program exhibiting explicitly 
the redop on sp  which could be evaluated in O(log N) on a multiprocessor architecture : 

sp : = O ; n : =  1000 ; 
for  i t o  100 do  

: =  2*a[i]  ; 
sp  : =  f o r _ r e d  i t o  n e v a l  (sp + a[i]*b[i]) ; 

where the keyword f o r _ r e d  signals to the compiler code generator the possibility of a reduc- 
tion optimization. Note that  this transformation has to be based on semantic considerations 
(in particular on the value of n) to assert that  there is no conflict between the different itera- 
tions of the loop body. A simple pattern-matching on standard instructions schemes is here 

totally inadequate. 

Of course, we could yet  improve the program parallelism. For  example, the for  loop 

could be replaced by a parallel-loop. But that  is outside the scope of this paper (see [Jou85a] ). 
Once again, note that  we need semantic informations to parallelize this simple loop : the com- 
mon techniques proposed in the lit terature such as [AllS3a] or [Kue79a] are generally unable 

to cope with such situations. 

In a first section, we shall introduce more precisely the language abstract syntax which 
allows reduction expressions. Then, after a general overview of our analysis method, we shall 
describe its essential part  : the symbolic evaluator. At  last, we shall give the description of the 

major non-standard interpretations which form the basis of our technique. The reader is sup- 
posed to have a minimal knowledge of denotational techniques as described in [Gor79a] 
,[Ten76a] or [Sto77a], and to be familiar with high-order applicative languages such as "Pure 
Lisp", Scheme [Abe85a] or ML. The later will be used here as a specification language 

[~ouSSb]. 

2. A B S T R A C T  S Y N T A X  

We shall present rapidly the abstract  syntax (in ML BNF-like form [Gor79b] ,[Cou85a] ) of a 
simplified version of the ALL programming language [Jou85a] , enhanced here to allow reduc- 

tion operations. The concrete syntax is given in comments. 
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rectype E x p  con._to_exp o f  int  I 
ide_to_exp of  Ide t 
t ab_ to_exp  of Ide ~ E x p  l 
unopr of  O l p r  # Exp l 
blnopr of  Exp # O2pr # Exp 1 
cond_exp  of  E x p  # E x p  # E x p  

~ k ~  
~iVo  

ol e l  

~?$ el  02 e2 

if  el then eP else e3 

rectype C o m  nop l 
assign of Ide # Exp ] 
t a b _ a s g  of Ide # E x p  # g x p  t 
if_then_else o f  E x p  # C o m  # Corn  [ 
for of  Ide  # E x p  # Corn  ] 
l ist_corn o f  Corn list I 
for_red of Ide # Ide # E x p  # E x p  

nop 

~v i:=e 9~ 

if  e then cl  else c2 

~7~ for i to e do c 

cl;. . .;cn 

i l :=for_red i2 to el  

eval e2 

where Ide  is the domain for identifiers, O 2 p r  for binary operators and O l p r  for unary ones. 
Since this syntax is quite usual, we shall only insist on the most original point, i.e, the last 
command (reduction). 

Its intuitive semantics is the following. In i l : = f o r _ r e d  i2 to  e l  eval  e2 , e2 is an 
expression which, given i2 (considered here as a locally bound variable), can be seen as a func- 
tion of i l  and free variables depending on i2. Hence, we can (meta)write e2 as e2(il,l(i2)). 
The idea is to apply the function e2 to successive i l  values when i2 evolves between I and 
e l ' s  initial value. The result is eventually bound to i l .  This semantics is quite similar to ML 
functionnal i t l i s t .  

The detection of such an iteration operation is worthwhile only if e2(il,1) is associative 
because it allows a pyramidal evaluation scheme. For example, e2(e2(e2(il,1),l ') ,l") needs 
(on a Von-Neuman sequential machine) three steps to be evaluated. If e2 is associative, we 
can rearrange this expression to permit a two-step evaluation : e2(e2(il,1),e2(l ' ,l")). Of 
course, this abstract syntax tree modification is effective only if at least two parallel processors 
are simultaneously available. This kind of parallel operator is quite common in the VLSI 
world. For instance, we can compare for_red  to the "census operator" of[Ull84a] or to the 
"beta function" of the Connection Machine[Hi185a] . 

More formally, we give below a direct denotational semantics for this reduction instruc- 
tion (in an ML-like notation). Moreover, it introduces some notations we shall use later. 
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t y p e a b b r e v  V a l u e  -~- in t  
t y p e a b b r e v  E n v  ~ Ide  - >  Loc l ist  
t y p e a b b r e v  S t o r e  ~ Loc  - >  V a l u e  

~ E:Exp-> E n v - >  Store-> Value 
C:Com-> E n v - >  Store-> Store 

let C ( f o r _ r e d ( i l , 1 2 , e l , e 2 ) : C o m )  ( r :Env)  ( s :S tore )  : 
let m a x  ~ E e l  r s and 

a d j l ,  ad_i2  ---~ h d  (r  i l ) ,  hd  (r  i2) in 
letrec ro l l  s 

let i2 ~ s ad_i2  in 
ff i2 < m a x W 1  then 

let new_J1 ~--- E e2 r ( e x p a n d  s ( i 2 + l , a d _ i 2 ) )  in 

ro l l  ( e x p a n d  s ( n e w _ i l , a d _ i l ) )  
else s in 

expand (roll (expand s (1,ad_i2)))  (s ad_i2 ,ad_i2)  

where e x p a n d  f (b ,a)  is a function which, when applied to x, gives b if x equals a and else 
the result of f 's application to x. E and C are the s tandard semantics for Expressions and 

Commands evaluation. They are quite straightforward despite a rather original choice for 
Env(ironments)  domain : each identifier (array or simple variable) corresponds to a 

Loc(ation) list in order to ease array's t reatment.  

This semantics makes sense whether the underlying function is associative or not. How- 
ever, it is only in the case of associative reduction that  parallel evaluation is possible. Conse- 
quently, this instruction may be writ ten by the user under his own responsability ( with, if 
possible, some check by the vectoriser/paralleliser) or by the tool we are presenting. 

3. M E T H O D  O V E R V I E W  

The basic idea is to define a functional P whose main duty is to analyze loops in order to 
detect redops (reduction operations) : its type is Corn  - >  A s s e r t  - >  Niv  - >  C o m  
A s s e r t  . C o m  is the syntactic domain of language commands. Each program command is 

labelled by its level which is a member of the N iv  domain. In practice, this level is an index 
(implemented by an integer list and hidden under an abstract  da ta  type) which numbers the 
nodes of the program abstract  syntax tree. The A s s e r t  domain is the lattice of functions 
which map every program level to a pre-condition called a claim (from the C l a  domain). We 
have already proposed in[Jou85a] some methods to associate a claim to every node of the 
abstract syntax tree and, then~ an assert function to every program. Let us simply recall here 
that  a claim is a logical formula (pratically in Presburger's arithmetics [Suz77a] ) which gives 
information on scalars possible values. For  instance, before the loop of our example program, 

the claim is ( s ~ 0 )  a n d  (n~-1000)  . 

The functional P takes three parameters : a command c (Corn), a tree of claims h 
(Assert) and the level n (Niv) of e. It returns as a result a pair built from a "more parallel" 
command (indeed, with explicit reductions) and an assertion function updated accordingly 



227 

(due to abstract  syntax tree transformations). The algorithm's fundamental is based on 

Bernstein's conditions computation [Ber66a] for the whole set of program commands. Let us 

recall tha t  Bernstein's conditions claim that  two commands are parallely executable if their 
shared variables are only accessed in read mode. During this computation, the assertion func- 
tion enables a more precise specification of the areas (domain E x p  ~ C l a  ) being manipu- 

lated by the program both in read and write modes. For  instance, the area used in write mode 
by the first command of the loop body of our example program is (a [ i -4-n] ,n~1000 a n d  
1 < = i < = I 0 0 ) .  

The basic point of our method is a symbolic evaluator [Dan82a] which determines the 
function or denotation equivalent to a loop body. If this function owns such fine properties as 
Bernstein's conditions satisfaction and associativity, we shall prune (i.e. change to n o p  ) every 

instruction of the loop which uses the variables concerned by such reductions. At  last, we 
simply shall declare the reduction operations on loop exit (see our example program). 

4. S Y M B O L I C  E V A L U A T I O N  

To test for the presence of reduction, we need to consider the transformation denoted by the 
whole loop body. For  instance, we do not want to miss the summation in 

fo r  i t o  1000 d o  [ 
S : ~  a [ i ]  ; 

s : ~  s+b[ i ]  ; 
] 

Further  more, due to conditional instructions, there may be multiple paths in the loop body ; 
we wish to explore all these paths in order to detect cases like 

for  i to  1000  do  

if  a [ i ]>O t h e n  x : =  x+a[ i ]  ; 

The principle of our solution is to associate to each scalar variable a symbolic value 
(Svalue) which is a list of pairs whose components are a symbolic environment (or context) 
and an expression. Loosely speaking, a symbolic environment (Senv) is a conjunction of logi- 
cal symbolic values and represents a path in a tree of conditional instructions. When the ini- 
tial store is such that  all expressions in the symbolic context evaluate to t rue ,  then, at the 
end of the loop body, the corresponding scalar variable will be bound to the value of the 
expression of its symboIic value. The binding I d e  *>  S v a l u e  is called symbolic state 
(Sstate). In our ML-like notation, these notions could be defined with concrete types ( to allow 
recnrsive domain definitions) 

r e c t y p e  S v a l u e  ~ sva l  o f  (Senv  # E x p )  l i s t  
a n d  S e n v  ~ s e n v  o f  S v a l u e  l is t  

t y p e a b b r e v  S s t a t e  ~ ( Ide ,Sva lue )  func  

where func  is an here unspecified polymorphic abstract  da ta  type which, by instantiation, 
defines arbi t rary functions (here from the Ide  domain to S v a l u e  one). We use such an 
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implementation for symbolic states since we need to be able to retrieve quite particuliar infor- 
mations on these functions (e.g. its domain) : this is impossible with simple ML lambda 
abstractions. 

As advocated by [Don78a] , this symbolic evaluator can be seen as a non-standard 
interpretation of ALL abstract syntax. To achieve this, we introduce two functions Es  and Cs 
which are the symbolic equivalents of E and C. 

E s : E x p - >  S e n v - >  S s t a t e - >  Sva lue  
C s : C o m - >  S e n v - >  S s t a t e - >  Sstate  

4.1. Express ions  

The semantic equations of symbolic evaluations are given by : 

let Es  (con to_exp  k) ( r :Senv)  (s-Sstate) ---- sval  Jr, con t o  exp k] 

A constant's Svalue in the Senv r is a LIST (in Lisp sense) of a pair built from the symbolic 
environment and the constant. 

let Es  (ide_to exp i) r s 
let sval  re_list ~ app ly  s i in 
sval  ( m a p  ( \ senv  rl,el.senv (r ~ rl),el) r e J i s t )  

where @ is the list concatenation operator (APPEND). First, we get i's Svalue by application 
(apply) of the Sstate s. For each pair (senv rl,el) of domain Senv # E x p ,  we simply add 
(in fact, that  yields a "logical and") the current symbolic environment r. This iteration is 
implemented by applying (via map)  a lambda-expression (\) to the Svalue. 

let Es  (b inopr(e l ,o2 ,e2) )  r s ~-~ 
let sval  r l e l_ l i s t ,  sva l  r2e2_llst ~ Es  e l  r s, Es  e2 r s in 
s w l  (itlist ( \(senv  i,el) r J. 

re_l @ (map ( \ s env  rj ,ej .senv (ri @ rj @ r),O2 o2 (ei,ej)) 
r2e2_Jist)) 

[] 
r l e l_ l i s t )  

The binary operator's case is almost evident. We have to create all possible combinations (by 
itlist) of r with the symbolic environments of e l  and e2's SvMues. Then, for each couple 
(senv ri,ei) and (senv rj ,ej)  , we apply the o2 operator to the two Exps ei and ej. The 0 2  
functional is the here unspecified denotational semantic evaluator for binmT operators. Since 
the treatment of unary operators is quite similar, we feel free not to give it here. 

let Es  ( tab_to_exp(i ,e))  r s = 
let  sval  re_list ~ Es  e r s in 
m a p  ( \ s env  r j ,e j .senv (r @ rj) , tab__to_exp(i#j)) r e J i s t  

As the treatement of arrays is special (see below), all we have to do is to apply the construc- 
tor tab_to___exp to all possible expressions of e Svalue in the extended Senv. 
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le t  E s  ( c o n d _ e x p ( e l , e 2 , e 3 ) )  ( s en v  r)  s ~--- 

l e t  r l ,  r l '  = E s  e l  r s, E s  ( u n o p r ( n o n , e l ) )  r s in  

le t  s v a l  r 2 e 2 ~ i s t  ~ -  E s  e2 ( s e n v  ( r l . r ) )  s a n d  

s v a l  r 3 e 3 ~ i s t  = E s  e3 ( s e n v  ( r l ' . r ) )  s i n  
s v a l  ( r2e2_] i s t  @ r 3 e 3 ~ i s t )  

where ' . '  is the ML equivalent  of the CONS operator on lists. We evaluate e2 in a symbolic 
envi ronment  where e l  is t rue and e3 in an envi ronment  where e l  is fMse. The symbolic value 

of the conditional expression is the concatenat ion of the two results. 

4.2.  C o m m a n d s  

We are now able to cope with commands : they are seen as symbolic state 's  transformers.  

le t  Cs  ( n o p )  r s = s 
le t  Cs  ( t a b _ a s g  _) r s = s 

By principle, we don ' t  make symbolic evaluat ion for arrays : the reason is tha t  we don ' t  need 

it. However, would it be absolutely necessary, a possible solution could be to use conditionnal 

expressions to sweep array 's  elements as proposed in [Don78a] . Let us point out  tha t  this res- 

t r ict ion can lead to incorrect Svalues for some variables, say i. But ,  in tha t  case, we are sure 

tha t  i uses an  array element which is modified by  the command set current ly analyzed. In 

consequence, Bernste in 's  conditions aren ' t  verified : the parallelization will be inhibi ted and 
so, i Svalue is useleas. 

l e t  Cs  (ass ign( i , e ) )  r s ~ -  e x p a n d  s (Es  e r s,i) 

A n  assignment leads to current  symbolic state change with binding between i and e 's  Svalue. 
E x p a n d  is a constructor  of the f u n c  abstract  da ta  type. 

le t  C s  ( i f_ then_e l se (e , c l , c2 ) )  ( s env  r)  s = 

le t  ds  = d o m a i n  s a n d  

R ~--- s e n v  r in  

le t  r l ,  r 2  = s e n v  (Es  e R s .r) ,  s e n v  (Es  ( u n o p r ( n o n , e ) )  1~ s . r )  in  

le t  u p d a t e  r = i t l i s t  ( \ i  s ' . e x p a n d  s '  (Es  ( ide t o _ e x p  i) r' s,i)) s d s  in  
le t  sl~ s2 = u p d a t e  r l ,  u p d a t e  r2  in  
le t  s ' l ,  s ' 2  = Cs  e l  r l  s l ,  Cs  c2 r2  s2 in  

le t  e v o l  i = n o t  ( a p p l y  s ' l  i = a p p l y  s l  i) o r  n o t ( a p p l y  s '2  i = a p p l y  s2 i ) in  
i t l i s t  ( \ i  f. 

e x p a n d  f ( let  s v a l  v l ,  sva I  v2  ~-- a p p l y  s ' l  i, a p p l y  s ' 2  i in  

s v a l  ~'~1 e v2) , i ) )  
S 

( f i l t e r  e v o l  ds)  

The main  problem with the symbolic evaluat ion of a conditional ins t ruct ion c is introduced 
by the variables which are conditionally modified in c (i.e. identifiers assigned only in one 
branch).  For  instance,  if i is only modified in c l ,  we have to take care not  to forget that  i 
Svalue is unchanged in c2, i.e. when no t ( e )  appears in the symbolic environment .  That ' s  
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why we evaluate each instruction c l  and c2 in a symbolic state adapted to each branch : s l  
(resp.s2) binds each identifier of s 's  domain with its Svalue in an environement which takes 
into account the fact tha t  e (resp.noC(e)) is true when c l  (resp.c2) is executed. To avoid 
cluttering Svalues by unmodified identifiers, we use these branch evaluation results only when 
(f i l ter)  an assignement is effectively present, either in e l ,  or in c2 (evol). 

let Cs  ( l is t_corn l) r s ----- rev_ i t l i s t  ( \ c . C s  c r)  s 1 

where r ev_ i t l i s t  compose the commands, considered as symbolic state transformers. 

We have not evoked the action induced on symbolic states by loops : that  is deliberate. 

To introduce it, we would have to face the undecidable problem of fix point approximations 
[Cou78a] . Moreover, for our purpose, we can overcome this difficulty. The only symbolic 

evaluations needed to detect reductions will be done inside loop bodies. We only have to limit 
ourselves to the innermost loop : we don' t  chase reductions into nested loops. As a conse- 
quence, there is no need to s tudy fo r_ r ed  influence on symbolic states. 

4.3. C o r r e c t i o n  

The correction proof of the preceding algorithm is simple, though tedious. We shall only give 

here the main lemmas. 

First ,  by induction on program text, we can easily show that  : 

For each Sstate s created by Cs and for each identifier i in s's domain, there is a unique 

Senv of i Svalue (considered here as a list in Senv ~= Exp) which is true. 

Or, more clearly, for a given initial memory star% there exists a unique path  (via conditional 
branchs) taken by a single computation. We are then able to prove the main theorem which 

translates informally to : 

For an identifier i and a command c, let i' be the symbolic value of i after symbolic 

evaluation of c. Then, i '  value in an initial memory state sO is equal to the value of i in a 

state memory obtained after standard execution of c from sO. The main condition is that 

i '  doesn't use an array element modified in e. 

Note that  this last restriction will be a direct consequence of Bernstein's conditions 

verification. 

5. R E D U C T I O N  P A R A L L E L I Z A T I O N  

5,1.  T h e  M e t h o d  

The P interpretat ion is formally defined below : 
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le t  P ( f o r ( i , e l , c l ) )  h n ~ -  
le t  n l  = a p p _ n l v  n 1 in  

l e t  i e _ l i s t  = r e c u r  c l  h n l  in 
l e t  C r , h r  = c o r n p r u n e  c l  ( m a p  fs t  i e j i s t )  h n l  a n d  

C _ r e d  = m a p  ( \ j , e . f o r _ r e d ( j , i , e l , e ) )  i e j i s t  in 

l e t  C '  ~ -  i f  C r  ~ h o p  t h e n  

ass ign  ( i , b l n o p r ( e l , p l u s , c o n _ t o _ e x p  1)) 

else 
f o r ( i , e l , C r )  in  

l e t  new_c mE list__com ( C ' . C _ r e d )  in 
l e t  new h ~ H new_c n ( a p p l y  h r  n) i n  

new__c~ a d a p t  h r  n l  new_h 

Some points need here to be emphasized. First,  if the loop level is n, c l ' s  one is by definition 
n l  (here, app__niv is an operator of the abstract  data  type Niv). Second, we shall see just 
later tha t  the r e c u r  function (whose type is Corn  - >  A s s e r t  - >  N i v  - >  ( Ide  # Exp)  t~st) 
tries to detect the reductions embedded in e l  and returns the corresponding list of identifiers 
and expressions. Wi th  this output,  co rn_p rune  ( Corn  - >  Ide  l lst  - >  A s s e r t  - >  Niv  - >  
Corn  # A s s e r t  ) (see likewise below) has to change to h o p  each instruction which is con- 
cerned by some reduction. Moreover, co rn_p rune  modifies accordingly the claims tree in the 
affected par t  of the program. So, we shall not be obliged to recompute the whole Assert func- 
tion after the reduction detection pass. This point is important  if we remember that  our tech- 

nique has, eventually, to be included in a full parallelizer. 

Then, if the whole loop body shrank to nop  during this operation, we have only to 
return the C _ r e d  list of reduction operations with the correct update of the loop counter 
(here i). If there remains at least one useful command after reduction elimination, we simply 
have to add the pruned loop to the preceding reduction list. Let us point out that ,  in order to 

simplify our presentation, we supposed that  every loop is at least executed once : this could be 
easily fixed. 

Note that  the here unspecified function a d a p t  has to take into account the potential 
claims induced by redops and, moreover, to correctly manage the assertion function domain. 
To achieve this incremental update, we use a functional H ( Corn  - >  Niv  - >  C l a  - >  

A s s e r t  ) already presented in[Jou85a] which labels every node of an abstract  tree with-its  
valid pre-condition. 

The other defining equations of P (on other commands) are straightforward : we just 
have to propagate P until a loop on which the preceding t reatement  is applied. Don' t  forget 
that  we also have to check that  this loop doesn't embed yet  another inner loop : this is a 
"context condition" on program syntactic structure. 

5 .2 .  R e d u c t i o n  d e t e c t i o n  

This is the purpose of the r e c u r  function introduced in the preceding section. 
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let recur c h n 

let m, l ~ M c h n, L c h n and 

in_cla ~--- apply h n in 

let mjds ~ mapfllter (\ide_to_exp i,_.i) rn in 

let V ~ un ion  (mapf i l ter  ( \ ide_to exp i , . i )  1) r n i d s  in 
let news -~- Cs c (senv U) (rnk_Sstate V) in 

mapfllter (\j.  
let sval jval  m_ apply new_~ j and 

Lp ~-~ L (fst (corn_prune c [j] h n)) h n in 
if reducib le  j n e w s  & 

forall ( \senv r,e. 
let A_Senv  ~--- itlist ( \ e .un ion  (A e in_ela)) [] 

(map  snd (fiat (map  ( \ sva l  r .r)  r))) in 
not (inter A_Senv  m) & 
not (inter (A e in_cla) 

(filter (\e,_.case e of  
(ide_to_exp i).not (i~---j) [ 
_.true) 

rn)) 
not (inter [ide_to_exp j , t r u e  cla] Lp))  

jval  then 
j ,Sval_to_exp jva l  

else fail) 
m_jds 

The two functionals L and M enable us to determine what are the accessed (L) and modified 
(M) area lists for a given command : they both use the functional A which gives the accessed 
area list for a given expression. They are left unspecified here : their specifications as 
sketched in [Jou85a] are moreover fairly simple. 

We determine the set of accessed (1) and modified (m) areas of the loop body c and the 
in-comlng claim in_cla. Using m, we denote by m_ids the identifiers which appear in com- 
mands left hand sides : they are the identifiers potentially involved in a redop. V is then the 
set of all identifiers appearing in c. It is used to define ( via m k  Ssta te)  a symbolic initial 
state which binds every identifier j to the Svalue (sval ([senv [],ide__to_exp j)) . From this 
initial Sstate, a symbolic evaluation of c is performed, yielding a new Sstate new_s. 

Our redop detection is made by analysis of the Svalue of every identifier of m_ids in the 
terminal Sstate. Each couple (identifier j, expression of j ' s  Svalue) represents a reduction if 
the following properties are true : 
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j is modified in the loop body (that ~s why we iterate on m_ids by mapf i l ter ) ,  

j Svalue at the end of the loop body (new__s) has to be reducib le  , i.e. the corresponding 
function (cf~ection 1) has to be associative, 

there is no collision (inter) between m and the different areas (given by A__Senv) involved 
in the symbolic environments of j Svalue, 

there is no collision between m and j Svalue's expressions, except j itself, 

j is not read elsewhere in the loop body, 

The Sval_to_exp operation transforms a Svalue into a syntactic expression (which is gen- 
erally a conditional one, using symbolic environments as tests). 

We may consider differents possibilities to test (in reducible)  whether an identifier has, 
in a given symbolic state, a symbolic value which is compatible with a reduction (associa- 
tivity). The more general one would be based on functional analysis or general pattern- 
matching [McI85a] . But, for our goal, a much simpler solution was adopted, which is however 
sufficiently powerful to take care of the great majority of usual code. Beside constant values, 
we only try to detect additive (resp. multiplicative) operations : in that case, all we have to do 
is to check that, for each Senv, the corresponding Exp minus (resp.divided by) the identifier is 
independant of it. This strategy is implemented in the reduc ib le  function but is not given 
here because of its triviality. 

5.3.  P r u n i n g  o f  t h e  a b s t r a c t  s y n t a x  t r e e  

The only function yet to be specified is corn_prune  ; its purpose is to clear the abstract syn- 
tax tree of all the instructions converted to reductions. For elementary commands, it is obvi- 
ous : 

let corn_prune  (ass ign( i ,e ) )  1 h n -~  
i f  m e m  i 1 t h e n  (nop,h)  e lse  (ass ign( i ,e ) ,h)  

let  corn_prune  (nop)  1 h n ~-- n o p , h  
let  corn_prune  ( tab  a s g ( i , e l , e 2 ) )  1 h n ~ -  t a b _ a s g ( i , e l , e 2 ) , h  

We simply eliminate the instructions whose left member is present in the list 1 of reduced 
identifiers. 
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let c o r n _ p r u n e  ( l is t_corn lc) ~ h n -~  
letrec prune L h n l  

if null L then (D,h) 
else le t  C ' , h '  ~--- co rn_p rune  (hd  L) l h n l  and 

n2 ~ inc_niv n l  in 
if C' ~ hop then 

prune ( t l  L) ( t r a n s l a t e  h '  ( i s_af te r  n2) (dec_niv  n l ) )  n l  
else let L " , h "  ----- p r u n e  ( t l  L) h '  n2 in 

( C ' . L " , h " )  in 
let n l  ~ a p p _ n i v  n 1 in 
le t  L ' , h '  ~--- p r u n e  L h n l  in 
if null L' then 

(nop, retract h' n l )  
else if length L' ~ 1 then 

(hd L',translate h '  ( i s a f t e r  (app__niv n l  1)) (pu l l_up  n l ) )  
else (list_corn L',h') 

where r e t r a c t  f x returns a function (from the func  abstract  da ta  type) where x is unbound. 
The list ease is sligthly more complex and uses an internal auxiliary function p r u n e  : it has to 

deal with a list L whose first element is at level n l .  The argument is by induction on the list 
length. If L is empty, we simply returns (O,h). If not, we prune the first command (level n l )  
of L. If the resulting code C '  is n o p  , we iterate the process on the tai l  of L : the assertion 

function is simply "left-shifted" by t r a n s l a t e  . If C '  is not completely removed, we take the 
same assertion function to study the tail of L. Afterward, all we have to do is to insert C '  at 
the head of the returned code. 

Using p r u n e ,  the semantics of a command list t reatement is easy to understand. Let us 
just point out the need for the test on L '  length. If it is 1, the constructor l is t_corn is useless 
: so we return the head of L '  and the function h '  where all the nodes whose level is "under" 

(hd L' ) ' s  one have been shifted up. 

The functions t r a n s l a t e ,  i s_af ter ,  pull__up and dec._nlv may be caracterized, on the 
representation domain of Niv, by the following axioms where n , n ' , m , m '  are levels and a,b are 

integers (used in the representation of levels) : 

t n ~ true ~--> h n ---- transIate h t g (g n)  

t n ---- fa lse  - ~ .  h n = translate  h t g n 

a >---- b = >  is_af ter  (n .b)  (n .a .n ' )  = true 

put t_up = n . n '  

In1 = Iml+1  = >  dee_niv  n ( m . x . m ' )  = m.(x-i),m' 

where ' . '  denotes the concatenation in the representation domain of Niv and ]n I the length of 

n's representation. 
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let  c o r n _ p r u n e  (if  t hen_e l se (e , c l , c2 ) )  1 h n ~ -  
le t  n l ,  n2 ~ a p p _ n i v  n 1, a p p  n iv  n 2 in 

le t  c ' l , h ' l  ---- c o m ~ ) r u n e  c l  I h n l  in 
le t  c ' 2 , h ' 2  ~ com__prune c2 1 h ' l  n2 in 
if  ( c ' l  = hop)  ~ (e '2  ~--- hop)  t h e n  

( n o p , r e t r a c t  ( r e t r a c t  h '2  n2) n l )  
else (if_t hen_else(e ,c '  1,c '2 ) ,h '2)  

For the conditional statement,  the principle is quite similar to the previous one. 

The correction of the corn p r u n e  function is a direct consequence of the following "invariant 
form" theorem : 

For  every f unc t i on  h of  Asser t ,  com m and  c and level n, 

I f  c',h'---= corn_prune c h n, then : 

domain  h - m~_domain  c n ----- domain h '  - m k  domain  c '  n 

where d o m a i n  h gives the inital domain of h and m k _ d o m a i n  c n returns the set of levels 
of the abstract  syntax tree of c if its root's level is n. The proof is by induction on c and uses 
only the preceding axioms. 

6. C O N C L U S I O N  

We presented a method to detect reduction operations which can be efficiently implemented 
on multiprocessors or specific hardware. The core of the method is a symbolic evaluator com- 

pletely specified here. Beside simple reduction detection, the approach taken uses semantic 
informations which may be automatically extracted from the program source. 

The result is that  the specification of the whole process is given in a "denotational"-like 
framework and shows the power of this "syntax-directed" paradigm for design of program 
manipulation programs [Nie85a] . Moreover, using adequate tools, this approach directly (and 
for free) gives a running prototype as soon as complete specification is defined. 

A prototype,  implemented in ML, is being developed at the MASI laboratory in order to 
validate this reduction detection technique. 
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