PROGRAMS AS COLLECTIONS OF COMMUNICATING PROLOG UNITS

Paola Mello (x)
Antonio Natali (%)

ABSTRACT

At the current siate of the art, people are not encouraged to use logic
programming languages for bulding large and complex software systems due to the
difficulty of expressing concepits such as modularity, information hiding, data
and process abstraction etc. In particular, it is impossible to build a system
as a collection of different modules, independently designed and coded, with a
lifetime extended till execution time.

This work is based on the fact that Prolog, the most used logical language,
already has sufficient intrinsic power to express concepts of that kind.

Initially, a new mechanism is added to Prolog: the possibility to split a base

of clauses inio a set of different units. Subsequently, ithe distinction between
object-level and meta-level units is introduced in order to express
interactions between units. Finally, the possibility of specifying parallel
flows of control within the same computation, is presented.

The main thesis of the work is that complex software systems can easily be
built by fitting together a set of invariant Prolog units through a meta-level
specification. Predicates can be viewed as communication channels statically or
dynamically connected by meta programs. Such a methodology, which is suggested
in quite a natural way by the declarative style of Prolog, could be fundamental
also when units are written ’in-the-small’ using other styles of languages.

(¥} D.E.I.S., Faculty of Engineering, Universily of Bologna,
V. Risorgimento 2, 40136 Bologna, ITALY

This work has been supported by ENIDATA S.p.A and by Italian M.P.I.

275

ANTRODUCTION

The use of very high level languages as tools for software development is
nowadays a fundamental practice for enhancing software productivity and
maintenance. Programming languages are usually classified according to three
fundamental, different ’styles’; imperative, functional and logical.

Although lively competition exists among the supporters of each style,
motivated by the great impact that different concepts and mechanisms have on
software design, the different schools substantially agree upon & set of
concepts intrinsically related to the organization of large and complex
software systems.

Modularity, information hiding, data and. process abstraction are fundamental
issues in each programming style for building systems made of collections of
components able to interact in a disciplined and protecied way.

Historically, the first step in this direction was the design of
programming languages and environments able to recognize and handle modularity
at translation time only. At run time, most of the separation and protection
among components was lost. Subsequently, thanks also to the fact that hardware
costs had steadily gone down, the life of modules and protection was extended
at execution time too. Researches on data abstraction and distributed computing
led to the construction of systems constituted by a collection of "physically"
different objects.

The term ‘’object’ was independenily adopted by the operating system [Jonl,
programming language [Gol83] and even by microprocessor manufacturing companies
[Int] to denote components having a hidden state and a set of operations or
capabilities for transforming the state so as to perform some useful work.
Moreover, objects and relations beiween them were introduced into the
artificial intelligence community as basic means for representing knowledge
[Min],

Therefore, the object model has been recognized as being able to play a
key role in a wide spectrum of applications whatever the style of programming,
and suited linguistic constructs have been introduced in languages of each
style for expressing it. A partial exception to this rule is logic programming.

The oldest language of this category, i.e. Prolog [Clo] is only ten years old.

It has rapidly increased in popularity not only due to the choice made by the
Japanese project [Mot], but also to the increasing demand for knowledge-based
{Nau] applications. Prolog is still able to provide intrinsically two forms of
modularity:

a) distinction between knowledge base and control;

b) distinction between different facts and rules.

But, at the moment, it is impossible to express in Prolog the third level of
modularity and protection required by an object model.

Extensions to Prolog have been proposed in this sense. M~Prolog [Ben] is an
example, but the lifetime of modules is here not propagated till execution
time. Mandala [Fur] is the first answer of ICOT [Mot] to the challenge: it
conceives programs as collections of units characterized by well-identified
types of links between them. But Mandala is still a research project, founded

276

on a different computational model {Concurrent Prolog [Sha]} from Prolog.

As a consequence, in the logic programming community it is gtill impossible to
build a large software system according to an object model; moreover, the
intrinsic sequentiality of Prolog prevents the exploitation of multi-processor
architectures.

This work has the fundamental aim of introducing a set of concepis and
mechanisms to be added to or superimposed on Prolog in order to allow the
splitting: of a program into a collection of interacting objects. Our approach
is based on the fact that the specification of static or dynamic
interconnections befween objects can be viewed as the specification of a meta
program and that meta programming [Aie] is quite a natural job in Prolog. The
procedural interpretation of Prolog predicates leads directly to a model of
programs as separate worlds - each embedding a piece of knowledge over a
particular domain -~ able to communicate through (remote) procedure calls.
Predicates can then be viewed as communication channels to be dynamically
connected by meta programs.

Instead of following the approach of amalgamating [Bow] the object-level and
the meta-level language we suppose a basic mechanism able to introduce a clear
distinction between these two levels, in order to enhance the re-usabilty of
objects.

The aim of the paper is to show how easily solutions to classical problems can

be obtained and how the concept of meta-programming could be one of the general
concepts to use in any style of programming for building programs ’in-the-
large’.

1. P-UNITS AS OPEN, LAYERED WORLDS

A logic program is intended here as a collection of objects which will be
referred in this work as Prolog-units (P-units) or simply units.

Each P-unit represents a chunk of knowledge about a particular domain and it
is conceptually an autonomous world able to solve problems in the form of goals
asked of it by users. The users of a unit may be human beings or other units,
The answer of a unit to a query consists either in the demonstration of the
goal and the consequent binding of variables, or in the notification of a
failure., In the second case, this does not necessarily mean that the goal is
logically false; it simply means that the unii is not able to perform a wvalid
deduction for it. We will denote such an answer as ’unknown’.

Thanks to the possibility of asking goals of other units, each P-unit can
be modeled as an Open World [Hew]. Communication between units is achievec
through the predicate:

send(Dest, Goal, R_of G)}
which succeeds if the unit 'Dest’ is able to demonstrate with result R_of G
the goal ’Goal’ (represented by a list). The name ’'send’ recalls that the
query could imply, at implementation level, an exchange of messages between the
calling unit and the 'Dest’ unit when it is allocated on a different processor.
In this =mense, send can be interpreted as a synchronous message passing
primitive in which the caller slways waits for the answer.

277

A system is conceived as depicted in figure 1. The unit 'system’ plays the
same role a8 the ’'system package’ in Ada (%) [DOD}]. It defines system
predicates and is conceptually part of every other unit,

The computation starts from the unit 'user’. The user interface provides for
the translation of a goal G inic the request for a specific unit through a call
like:

send(dest_unit, G, true).
If the send is demonstrated with success, the answer is given to the user in
the current Prolog form. If other solutions are possible, the dest_unit asks
the wuser for ‘more?’ solutions. If the answer is ’yes', the desi unit
backtracks; otherwise the computation ends.

User intr+f Ui LU

Figure 1
SBYSTEHM

Let us consider, as an example, a sysiem constituted by a unit ‘list’,
which embeds operations on list structures, and a unit ’names’, which includes
knowledge about alphabetical strings (figure 2). The first P-unit makes
reference to the operator ‘isless’ implemented by the second one in order tio
perform an ordered insertion of a new name into a list.

list > rames Figure =
isless

insert{ [A|B],C,[A|D] }:-
send(names, [isless, A,C 1, true),
insert(B,C,D).

insert({ [AIB],C,[C,A!B] }.

insert([1, C, [C]).

In this case, the query of ‘list’ to 'names’ i equivalent to the static
binding of a client unit to its server. It could be claimed that the same
result is implicitly expressed through a notation like the ’with’ clause of Ada
packages [DOD]. An example could be:
with(names).
use{ names }.

P-unit(list).
insert([AIB1,C,[AID]):- isless{ A,C), insert(B,C,D).
insert([A!B],C,[C,A!B]).
insert([1, C, [C]).

where:

{X) Ada is a trademark of the U.S. D.c.D.

278

P-unit(list } asserts that 'list’ is the name of the unit;

with{ names)} asserts that 'list’ sees 'names’ as a server;

use(names) asserts that each predicate not defined in 'list’ has to be
solved by the unit 'names’.

The advantage of such a notation is to introduce clear separation between
the phase of programming in~the-small from that of programming in-the-large.
For example, an ordered list of integers can be implemented by simply modifying
the 'with’ and *use’ clauses.

Speaking in terms of a declarative style of programming, the specification of
unit interconnection consists in the specification of 'meta’ knowledge.

The textual separation of meta knowledge from 'object’ knowledge is already a
good step towards enhancing the re-usabilty [Weg] of object modules, P-unitls,
however, cannot be simply assimilated to Ada packages: they continue to exist
at execution time with an independent lifetime. As a result, the separation
between meia and object knowledge can be mainiasined at run time too, by
committing the job of interconnecting P-units to meta-units.

Thus we admit that each P-unit can be associated with a meta-unit and that the
basic machine of each unit is able ito implement automatic communications
between these two layers.

The connection between a client and a server can be dynamically established by
the meta unit of the client. This can be achieved by connecting the ‘output’
channel represented by the predicate to be solved with an ‘input’ channel of
the server, using the send predicate.

1.1 Basic organization of the systiem.

A P-unit U consists of:

a) a set of Prolog clauses that represents an Object Knowledge Base (OKB)
about a particular domain;

b} a Base Machine (BM) or interpreter that is able to answer demonstration
requests.

Each external request for the demonstration of a goal implies the creation
of a new activation (instance) of the BM, identified by a name defined by the
system or by the user {see section 3}, This name is a list where the first
element is the global identifier of the P-unit and the second a local
identifier for the instance.

Let us indicate with G a goal to be demonstrated by U as a consequence of a
request from a different P-unit and with SG a subgoal, part of the
demonstration process of G.

Before stariing the demonstration process for G or SG, the basic machine BMU of
U asks its meta-unit MU for:

todemo(Caller, GoalRep, Result }
where ’'GoalRep’ is bound to an internal representation (a list) of the goal,
'Caller’ is bound to the identifier of the calling wunit, and ’Result’
represents the result of the demonstiration of 'Goalrep’. Ii can be bound to
gpecific values in accordance with the following cases:
al) todemo succeeds and ’Result’ is true. The goal has been demonstrated and
some of its output variables may have been bound. BMU goes on. If this is the

279

case, the results are communicated to the 'Caller’;

a2} todemo succeeds and ’Result’ is bound to a value different from ’true’ (see

gection 2.1). G is considered as failed and such an event is communicated {o

the Caller’. For 8G, BMU has to perform backtracking;

a3) todemo fails: the goal fails at object level too.

The main task of 2 meta-unit is that of deciding how to solve predicates at
the place of its object unit. In order to perform such a task, a meta-unit can:
1) solve the goal directly;

2) ask a different unit for the solution;

3) send a request for the same or a different goal to its own object unit.
This case is expressed {for historical and practical reasons) by
invocation of the following predicate:

demo(Goal, Result)
which can be considered similar to the built-in Prolog predicate "call®. A
main difference is that demo iz always satisfied unless a system crash
occurs. Result can be bound to 'true’, 'unknown’, or to some other value.

Careful implementation is obviously necessary to make such an organization

efficient. Several opiimizations are possible. The most evident is to avoid

dynamic calls to meta-units by performing a static analysis of clauses.

2, PROGRAMMING WITH META-UNITS

2.1. Negation as failure.
Clark’s negation-as-failure [Cla77] can be easily expressed:
todemo(Caller, [not{X}, R)i~
demo(X, Rl), invert{ RI,R).
invert(true, falge).
invert{ unknown, irue).
invert(false, true J.

If X is provable by the object unii, then the result ’false’ is explicitly
given to the caller. If X is not provable (i.e. the result of the demonstration
in the object unit is 'unknown’ or 'false’), then the result ‘true’ is
returned. Let us note that 'false’ is a new possible result of proof explicitly
introduced at the meta-level in accordance with the ’Closed World Assumption’
{Cla77}.

2.2. System configuration.

A fundamental advantage of using meta programming lies in the re-usability
[Weg] of P-units, i.e. the possibility of defining different systems with the
same components connected in different ways.

In the case of figure 2, for example, the unit 'list’ could be associated with
the following meta-unit:

meta-unit(list).
todemo{ ¢, [isless,A,Bl, R }:-
!, send{ names, [isless,A,B], R }.
todemo(C, G, R):- demo{ G, R). /% default case %/

280

according to the picture of figure 3.

> names
isless Figure 3

maeta~level

object-level

list
The unit ’list' can specify the ’insert’ operation as follows:

unit(list).
insert{ [A}B],C,[A!D]):- isless{ A,C }, insert(B,C,D).
insert{ [A!B},C,[C,A!B]).
insert({1, C, [C] }.

In this specification no configuration policy is embedded in *list’ unit.
Consequently, a different system can be defined by simply changing the meta
level. This is still an example of static connection between units. It is not
however difficult to select connections dynamically. For example:

meta-unit(list }.

todemo(C, [insert]ARGS], R):- !, demo{ [insert|ARGS], R).

todemo(C, [OP|ARGS], R):-

are_integers(ARGS), !, send(integers, [OPJARGS], R).

todemo{ C, [OPIARGS], R }):- send(names, [OPJARGS], R).

are_integers{ A)i— ...
Predicates different from ’insert’ are solved by the unit 'names’ or ’integers’
according to the their type of arguments.

2.3. Query the user.
This problem can be considered as anoiher example of dynamic selection of

static connections. If we write:

meta-unit(list).

todemo(C, [isless,A,Bl, R):-
send(integers, [are_integers,A,Bl, true), |,
send(integers, [isless,A,B], R).

todemo(C, [isless,A,Bl, R):-
gend{ names, [are_names,A,B], true },!,
send(names, [isless,A,B], R).

todemo{ C, [isless,A,B], R}:-
send{ user, [question,isless,A,B], R }.

todemo({ C, G, R} i- demo{ G, R }. /% defaull case %X/

then the solution of the ’'isless’ predicate is asked of the wuser when the
arguments belong to types which the system does not know, i.e. when they are
not integers or names,

281

CAS——
> names

isless
M —————..
>

LsEr Figure 4

integers

list

2.4. Type and right checking and exceptions.
Calls like:
send(integers, [are_integers,A,Bl, true), or:
send{ names, [are_names,A,Bl, true),
in the previous example may be interpreted as dynamic type checks on daia
structures, to be performed by the unit which represents the "data type".
In a perfectly similar way it is possible to check the caller’s access rights.
For example:

todemo(Caller, [OPIARGS], R)i~

send({ user-rights, [check, Caller, OP], true), !, demo{ [OPIARGS], R).
todemo{ Caller, G, failure }:-

send{ exception-unit, [access_denied, Caller,G], true).

avoids the execution of an operation when the caller has no right to it.
Knowledge of access rights is here supposed to be embedded in the ’user-rights’
unit. If the Caller has no right to the operation OP, the call to user_rightis
fails and the error is recorded in an ’exception-unit’. The result of the
proof is sel to ’failure’. The metia~level can interpret such a value as an
excpetion to be handled.

2.5. Multi-layered systems.

A meta-unit MU is, in its turn, a P-unit. This means that it can be
associated with a meta-unit MMU and so on. Then a system can be conceptually
split into a hierarchy of operationally interlaced layers.

As an example, let us consider a debugging session of the system of figure 4.
The tracing of the behaviour of the unit ’list’ can be implemented by adding a
second layer within ’list’:

meta-meta-unit(list).
todemo(C, [todemo, Caller, G, R of_G], R):-
send(debug,[tracegoal, G], true),
demo([todemo, Caller, G, R_of_Gl, R),
send(debug, [traceresults, G, R of G }, true).

The unit 'debug’ provides for printing each goal of 'list’ before and after its
demonstration process.

2.6. Knowledge-based systems.
The following specification:

282

todemo(Caller, G, R_of G):-
my_name{ MYSELF)}, find_super{ MYSELF, SU },
send{ SU, G, R_of G).
provides for routing G to the unit SU, which is qualified as the ’super’ unit
of the current one (identified by the system predicate ’'my_name’). An
interpretation of super units mey be related to the concept of inheritance of
properties, which is characteristic of knowledge representation sysiems [Dav].
In this case, G is part of the external interface of the module represented by
the current unit, but its "body" is defined within SU.
Meta . units can be introduced ito express and control defaull knowledge. An
example of a system able to express that "Penguins are birds, but they do not
fly" may be:

meta-unit (penguins).
/¥ any attempt to demonstrate that penguins fly has to failk¥/
todemo(C, {fly], false} 1~ .
/¥ any other property has to be deduced from birds ¥/
todemo{ C ,G ,R_of G) :- send(birds, G, R_of G).

3. CONCURRENT SYSTEMS AND SHARED UNITS

If P-units do not have an internal state then the same system can be
accessed in parallel by a multiplicity of users without any side effect. In
Prolog the concept of state is often related to the set of clauses which
constitute a program and which can be modified through built-in predicates
like ’assert’, ’'retract’ etc., If such z modification is admitted for P-units
also, then concurrent accesses must be disciplined through suited mechanisms
for mutual exclusion and synchronization.

The solution given to this problem in the context of traditional, imperative
programming languages is well known. Linguistic constructs such as semaphores
or monitors [Hoa] allow us to solve mutual exclugion and synchronization
problems according to a ’global environment’ model of programming [Andl

This model could be adopted for P-units too. Special units could be introduced,
working as semaphores or monitors, in order to ensure a disciplined
modification of internal states.

But P-units are not passive resources. A P-unit is made of a collection of
different, internal processes (which have been called instances) each activated
by a specific external request. If each instance iz made able to perform an
explicit control on cemmunications with its clients, then it can be perceived
from outside as an object able to control modifications its internal state: the
most appropriate model for communication and synchronization is then the ’local
environment’ model [And].

The advantage of this approach is not only that it is suitable for distribution
of units into different nodes of & network, but also that it allows the
representation of state through logical variables.

283

3.1. Process communication and synchronization.

A vprocess (instance) controls the processing sequence of external requests
through synchronization clauses of the form:

entry(...), accept{...) i~ body({ ..).

A synchronization clause is based on a concept very similar to that of
'event’ in Distributed Logic [Mon] and in Delta Prolog [Perl. 'Entry’
represents an "interface predicate” : it is a predicate which can be called by
other units through the usual send primitive and can appear at the head of a
synchronization clause only. If a2 unit C calls:

send([U,P], [eniry|ARGS], Res)
then the demonstration of ’entry’ is asked of the particular instance [U,P]
{let us note that, if P is not bound, then the request is seni to any instance
of U}, As wusual, a new instance [U,E] is created by U tc perform such =a
demonstration. This instance, however, must cooperate with [U,P] according to
the following rules:
rl) the ’entry’ request must unify with the left part of the head. If no
unification is possible, [U,E] terminates with answer ‘unknown'’. If
unification 1is possible, [U,E] is ’frozen’ until [U,P] compleies a
successful unification of the ’accept’ part of the head;
r2} if [U,P] tries to unify with ‘accept’ when no external request exists at
all, then it is suspended. If there are external requests for [U,P] but
different from ’entry’, then [U,P] backtracks. If more than one request
for ’eniry’ exists, then the first is selected;

r3) when both parts of a synchronization clause have been jointly umnified with
success by [U,E] and [U,P}, then the ’body’ of the synchronization clause
is jointly executed by the two instances. If the joint unification or the

vody’ fails, [U,P] and [U,E] backtrack. Therefore, if no further
synchronization alternative is available for 'entry’, [U,E] terminates
with answer ‘unknown’. If the 'body' completes with success, [U,E]

completes with answer ’'true’. No undoing and backtracking is admitted for
entry predicates.
According to the previous rules,the failure of a query by C to [U,P] means that
[U,P] is not able to solve the problem ’at this moment’. But it could have
success ’in the future’, in correspondence with the specific value of its
internal state. Let us consider the example of a buffer:

unit{ buffer).
(1) buffer(B):- notempty(B), remove(B,C), buffer(C).
(2) buffer(B):- notfull(B), insert(X,B,C), buffer(C).
(3) buffer(B):- buffer(B).
(4) get(X), remove(B,C):~ out{ X,B,C).
(6) put(X}, insert(B,C):~ in(X,B,C).
{6} init - buffer{{l}.
(7) 7~ init,

Predicates ’'get’ and ’put’ constitute the buffer interface. The process
[buffer,] 1is an end-less loop which starts in an autonomous way (7)., It has

284

two synchronization points with the external world: (4) and (5). Predicates
‘notempty’ and ’'notfull’ play the role of local guards to control the non~
determinism of communications. The clause (3) is selected when the first two
fail; at implementation level, the control of a shared processor could be
released at this point and memory resources can be saved according to tail
recursion optimization schemes. The state of the buffer is represented by the
variable B.

If a producer process calls 'put’ when the buffer is full, its request fails.
But the meta-unit of buffer {or the producer itself} can resend the request
until it is satisfied:

meta-unit{ buffer).

todemo(C, [put,X], true):~

repeat, demo([put,X], true).

meta-unit{ producer }.

todemo(X, [deliveriZ], Res):-

send([buffer,_], [putiZ], Res}.
unit{ producer }.
prod:~ read{CH), deliver{(CH), prod.

Obviously, such a policy could be frozen by changing the basic semantics of
synchronization clauses. Rule r3) could become:
r3) .. If no further synchronization alternative is available for entry, then
[U,E] is placed at the end of the request queue. ...
The advantage could be that of avoiding starvation. The model of processes
intraction is in this case very similar to Ada’s rendez-vous.

3.2. Asynchronous activation of processes.

Till this moment no mechanism exists for creating new processes without
being obliged to wait for their termination. To overcome such a drawback, the
system predicate:

start(U, P, IG)}
is introduced. It creates a new instance for the P-unit U, with name [U,P] and
initial goal IG. It is satisfied at the end of the activation phase, i.e. it
has not need to wait till the end of [U,P]. A simple fork operator can thus be
implemented as follows:

meta-unit{ u }.
todemo(C, [fork,NAME}, true):~ !,start(u, NAME, init).
todemo{ C, G, R }:- demo{ G, R).

unit{ u)
P1(wee)im weey fork(ul), ey D2(0)e
P2(eee)im aene
init - pl{ s Jo
?- init.

At the very beginning, the system is constituted by the instance {u,-]

285

only. At the end of ’fork’ this instance runs in parallel with another [u,ull].

A more complete form of 'start’ could provide an additional parameter to
specify a ’continuation’ unit which, as in languages based on the Actor model
[Fil]l, could collect results of a process when it terminates. An example of
this will be shown in section 3.4.

3.3, System configuration.

Starting from the same units as the previous producer-consumer system, we
can now configure different systems, by simply changing the initialization
phase and the meta layer. The initialization of buffer could become:

(6) init{ X)i~ buffer(X).
and the meta layer of producer:
meta-unit{ producer).
todemo([producer,prodl], [deliver,Z], R):- send([buffer,bufi],[put,Z},R).
todemo([producer,prod2], [deliver,Z}, R):- send{[buffer,buf2l,[put,Z},R).
If we write the following unit:
unit{ systeml).
init_system:-
start{ producer, prodl, prod },
start(producer, prod2, prod),
start(buffer, bufl, init({ {1)),
start{ buffer, bufz, init([%’1)),
start(consumer, consl, cons).
?- init_system.
then we create a system made of two producers, (prodl and prod2), each
connected to a different buffer (bufl and buf2 respectively), and a single
consumer. Bufl starts as an empty buffer, whereas buf2 has initial contents.

According to the discussion of section 2, dynamic connection of
interprocess communication channels is possible. A particular unit could, for
example, be introduced to maintain knowledge about connections and create new
ones. A system which assists the user in expressing his own software systems is
usually referred to as a programming environment. In this context, the main job
of a programming environment could then be that of 'writing’ the meta-layer of
P-units and processes according to the user’s configuration commands.

3.4. A shell process.
The shell is a iypical tool of advanced programming environments. A shell
process could be implemented through P-units in several ways. One of this is:

unit(commands). unit(shell).
dir{ ..). g0 :- accept, go.
print(...). g0 1~ go.
mkdir(...). command({bgiX]), accept :-
ves start{ commands, _, X, result_unit).

command([fgiX]1), accept i~

send(commands, X, R , display(X, R).
display{ G, R_of_G }i- ...
P~ go.

286

When =a user gives a command (say print in background), the user interface
provides to send the command to the shell process:

send{ [shell,], [command,[bg,print,X] }, R}).
To serve a background request the shell activates a new ’'commands’' process
using the extended form of ’start’ primitive. The answer to the command is
stored, when this new activation terminates, in the ’result_unit’ for later
consultation by the user. A foreground requesi is immediately served by sending
the request to the 'commands’. The shell process waits in this case for
execution of the command to end. Let us note that the possible failure of a
background or foreground command does not cause {as happens in other approaches
such as Concurrent Prolog {Shal) the failure of the shell process since the
success of ’start’ and ’send’ is not related to successful termination of the
particular user command. Besides, the ouiputi generated by the foreground
command is immediately visible to the user. This kind of sclution is more
oriented towards an incremental and modular design of applications than those
proposed in Concurrent Prolog [Sha] or PARLOG [ClaB4]l.

4. CONCLUSIONS

In this work we have explored the possibility of expressing programs as
collections of Prolog objects, so as to allow the splitting of a single base of
clauses into a set of dynamically recognizable modules (P-units)., The main
motivation of the work was to introduce in the context of the more widespread
logic programming language, a set of concepts whose validity has already been
ascertained in other styles of programming.

The most interesting result of this attempt lies perhaps in the new, greal
expressive richness that has been achieved and which consists mainly in the
number of different possible interpretations for P~units.

A P-unit has been introduced as a single object able to solve problems in a
particular domain., The clauses of a P-unit were then considered as the static
description of the behaviours of objects (instances) dynamically created to
solve external requests. In this sense, a P-unit can be viewed as a ’class’
whose basic specification can be modified or integrated by that of the
associated meta~unit{s). Each instance can be interpreted as a process which
interacts with other instances through a rendez-vous paradigm. The
interconnection between processes can be statically or dynamically specified at
meta-level with the advantage of avoiding any change in the object level. From
the meta-level point of view, predicates can be considered as input-output
channels to be connected together to achieve the desired communication.
References to units can be conceived as capabilities to be checked and handled
in a transparent way with the respect to the object level

Explicit synchronization between processes has been achieved through
gynchronization clauses, chosen for their well~established semantics [Mon] and
their uniformity with the rendez-vous paradigm. The kind of parallelism we have
expressed is different from that of other proposals such as Concurrent Prolog
[Sha]l] or Parlog [Cla84], which introduce "don't care"” non-determinism and
guarded clauses to exploit the potential parallelism which is intrinsic in

287

clauses. Interprocess communication occurs in these languages through streams,
a fact which, in our opinion, makes these proposals suited for programming
units {(P-units too) in-the-small, but rather unsuitable for expressing
interactions in-the-large.

In summary, P-units can be viewed as objects, classes, pasgive resources or
a8 processes. The network of their static relationships can be conceived as the
representation of knowledge on the applicative domain, whereas their dynamic
relationships could be viewed as the dynamic (re)organization of such knowledge
according to evenis. Systems like Mandala [Fur] can then be conceptually
implementable in terms of P-units.

Finally, the proposed paradigm can be used both for application and system
design. This means that knowledge can be easily shared and that extensible
systems can be easily built. In particular, P-units seem well suited to build a
programming environment for Prolog, using Prolog itself. The advantages of
using the same language for designing and building its own programming
enviroment has been learned from systems like Interlisp {[Tei]l or Smalltalk
[Gol84]. We believe that these advantages could be fundamental in the logical
programming community too. This is one of the goals we intend to pursue in the
future. At the moment a prototype implementation of the proposal has been
written in Prolog on a personal computer and an implementation based on
modifications of an existing Prolog interpreter is in progress on a Sun
machine.

REFERENCES:

- L.Aiello, G.Levi:" The uses of meia~knowledge in Al Systems”, ECAI-84, Piss,
Sept. 1984.

- G.R.Andrewes, F.B.Schneider: "Concepts and Notations for Concurrent
Programming"”, ACM Computing Surveys v.15,n.1, March 1983.

- J.Bendl, P.Koves, P.Szeredi :" The MPROLOG System”, Proceedings of the Logic
Programming Workshop, july 1982.

- K.Bowen, R.Kowalski: "Amalgamating language and metalanguage in logic
programming”, in Logic Programming , Academic Press, 1982.

- KL.Clark :"Negation as failure”, in "Logic and Databases", Gallaire and
Minker eds., Nov.77.

- K.Clark, 8.Gregory :" PARLOG: Parallel Programming in Logic", Research Report
DOC 84/4 , Imperial College, 1984.

- W.F. Clocksin, C.8. Mellish : " Programming in Prolog ", Springer-Verlag,
New-York, 1981.
- R.Davis, D.Lenat :" Knowledge-Based Systems in Artificial Intelligence ",

New York: McGraw-Hill, 1980,

- DOD: '"Reference Manual for the Ada programming language", ANSI/MIL-std 1815-
a, Jan.1983.

- R.E. Filman, D.P. Friedman: "Actors", in ’Coordinated Computing’, Prentice~
Hall, 1984.

- K.Furukawa et alii: "Mandala: A Logic Based Knowledge Programming System", in
International Conference On Fifth Generation Computer Systems 1984,

288

A. Goldberg: " SMALLTALK-80: ihe Interactive Programming Environment",
Addison-Wesley, 1984,

A.Goldberg, D. Robson: "Smalltalk-80, The Language and its Implementation",
Addison Wesley, 1983.

C.Hewitt, P.De Jong :"Open Systems’, Tech. Rep. MIT-AIM 691 Dec. 1981,

C.A.R Hoare: "Monitors: An Operating Systems Structuring Concept”, Comm. of
ACM, 17 (10): 549-557, 1974.

Intel:"Introduction to the iAPX-432 Architecture”, Intel on. 171821.

AJK.Jones: "The Object Model: a Conceptual Tool for Structuring Software',
in ’Operating Systems’, ed. by Bayes et al.,, Springer Verlag, n.60, 1978,
M.Minsky: "A Framework for Representing Knowledge”, in "The Psychology of
Computer Vision" (ed. P.Winston), Mc Graw-Hill, 1975.

L.Monteiro :" A Proposal for Distributed Programming in Logic", Tec. Rep.
University of Lisbona, Jan. 1983,

T. Moto-cka et al.: "Challenge for Knowledge Information Processing Systems
(Preliminary Report on Fifth Generation Computer Systems)”, Proc. of the
International Conference on Fifth Generation Computer Systems, Tokyo, Japan,
October 1981.

D.Nau: "Expert Computer Systems", Computer, v.18, n.2 Feb, 1983.

L.M.Pereira, R.Nasr:"Delta~Prolog: A Distributed Logic Programming Language”,
International Conference On Fifth Generation Computer Systems, November 1984.
E.Y. Shapiro: "A subset of Concurrent PROLOG and its Interpreter” Technical
Report ICOT n.3 , Oct. ’83.

W. Teitelman, L.Masinter :" The INTERLISP Programming Environment”, IEEE
Computer, v.14, n.4, 1981,

P. Wegner :"Capital Intensive Sofiware Technology” , IEEE Software , v.l,
n.3, 1984,

