AN APPLICATION OF ABSTRACT INTERPRETATION OF LOGIC PROGRAMS:
OCCUR CHECK REDUCTION'

Harald S¢ndergaard
Dansk Datamatik Center
Lundtoftevej 1C, DK-2800 Lyngby, Denmark

Abstract: The occur check in Robinson unification is superfluous in most
unifications that take place in practice. The present paper is concerned with
the problem of determining circumstances under which the occur check may be
safely dispensed with, The method given draws on one outlined by David
Plaisted. The framework, however, differs in that we systematically apply the
abstract interpretation principle to logic programs, The aim is to give a
clear presentation and to facilitate justificetion of the soundness of the
method.

1. Introduction

In the present paper we study the application of abstract irnterpretation to
the well-known occur check prob/em of logic programming., Our main interest
lies in utilizing the abstract interpretation approach for the purpose of
improving Prolog compilers,

One may think of a Prolog program computation as a sequence of unifica-
tions mgu(s, b, a), where s is some (current) substitution, while a and b are
atomic formulas., Typically, we let & denote the left-hand side of a clause,
while & occurs in some right-hand side, and mgu(s, b, a) yvields the most gen-
eral unifier of s(b) and a. The principal effect of Prolog compilation follow
ing the principles of (Warren 1977) is the translation of each positive
literal, a, into code doing mgu(s, b, a) for all possible s and b.

Abstract interpretation may provide more intormation about the diversity
of s(b)-variants that can actually occur at a given program point, and an
optimizing compiler may capitalize on that to generate more specialized target
code., Particular applications of this idea include generation of mode
declarations (Mellish 1981) and detection of atom determinacy (Mellish 1985).
One may even imagine applications to determine the best storage management
policy or backtracking behaviour of a given program.

2. Abstract Interpretation of Logic Programs

The principle of abstract interpretation is rather well established in the
case of imperative languages (Cousot 1977). In this section we outline the
idea of abstract interpretation as applied to logic programs.

A logic program shall be understood to denote a computation in the
universe of substitutions. It consists of a finite number of definite
clauses, together with a goal. We introduce the notion of program points as
indicated by boxes in Figure 1, These alternate with negative literals, such
that the right-hand side of a clause has m atoms (m 2 0) and m+1 program points
for some m. For any fixed program, we let P denote the set of program points,
and p;5€P denotes the program point immediately after bij' the j'th atom
(32 0) in the right-hand side of the i'th clause.

* This work was done at Datalogisk Institut, Copenhagen University

328

Pig Dit Pi m-1 Pim

a * l }bil { f i bim D

Figure 1: A clause with program points

By substitutions we mean idempotent, almost-identity mappings s:8 = X — HX)
from the set of variables X to the set of terms H(X). The set of such mappings
18 pre-ordered by the usual 'more general than” relation, g, defined by sq 5 s;
iff 3seS.ssy =83, An equivalence relation, ~, on S is defined by s ~ s, iff
S1£ 8y A S8 81. By this, equivalent substitutions are egual modulo con-
sistent renaming of variables. We shall use g also in the sense of s/~. The
equivalence classes are partially ordered by £, and when an artificial top ele-
ment, fail, is added, they form a complete lattice (Eder 1985), This would not
be so if we had allowed non-idempotent mappings., Robinson’s unification
algorithm (Robinson 1965) always yields substitutions i1n our sense.

We may now give the program a slightly different interpretation, namely as
denoting the computation of all the possible substitutions that may occur at
a given program point, Thus the new universe consists of mappings from pro-
gram points to sets of substitutions, and we call these mappings Jfogs. For-
mally, a log is a mapping LI P — 25, and we denote the set of logs by L. The
collection of substitutions is a natural analogue to sets of sfafes in the
case of imperative languages, and we shall call the given interpretation for
the collecting semantice, following (Nielson 1982), Its usefulness for static
analysis of imperative programs has been well established,

The computations thus laid down may not terminate, This is our reason for
introducing yet another logic program interpretation which includes a
universe of imprecise log descriptions. The idea is that we pay the price of
possible imprecision in computations in order to guarantee their termination,
and we say that we gpmroxsmate the computation of logs., In spite of the impre-
cision, such an approximating computation may - as we shall see - still yield
useful information, The exact design of the objects used as approximations
depends on the purpose of the analysis, that is, what program properties we
want to expose. S¢ one can have many different approximating interpretations,
In Section 5 we describe 4-/ogs - the approximations used for our purpose.

In order to utilize resulting approximations, we must be able to interpret
them rigorously. So, a well-defined correspondence between logs and A-logs
has to be stated. This is done formally by giving a pair of adjoined mappings,
the so-called abstraction and concretization functions (Cousot 1877). The
operators defined by the various interpretations must respect this correspon-
dence, at least so far as to render the analysis sound, i.e. to guarantee that
only safe approximations are created. In this sense the correspondence
induces the abstract interpretation, whence the latter is sometimes called an
Induced semarntics (Nielson 1382), We returm to these topics in Section 7.

3. The Occur Check Problem

An essential part of Robinson’s unification algorithm is the binding of vari-
ables x to terms t in order to generate substitution components x+— t,
Before doing so, however, it must be checked that x is not itself a constituent
of t, since in that case unification should fai1l. The fact that such continual

329

term checking 1s time consuming constitutes the occwur check problem, The
usual solution is to omit the check, thereby allowing for curcular bindings.
These, however, may cause unwanted behaviour of programs, such as non-
termination due to attempts to dereference a circularly bound variable, or
acceptance of theorems not true in the first order predicate calculus., For
example, one may use Prolog without occur check to "prove™ that

(*) vy 3x. Q{x, y) implies 3x vy.Qx,vy)

Henceforth, we shall call unification without occur check shaliow unification,
as opposed to Anbinson unification, It has been argued that in practice -
owing to Prolog programmers’ style - shallow unifications never create circu-
lar bindings. This is in conflict with the author’s experience and in any case
not & satisfactory argument, What we want is a method to distinguish (at com-
pile time) cases where shallow unification can safely be used, in order that
the most appropriate code may be generated,

4, Problem Analysis

We shall analyse the problem of determining potential crestion of circular
bindings by shallow unification in some detail, We must look for computable,
sufficient conditions for the absence of circularity, or dually, necessary
conditions for circularity. We assume that we are given negative literal -b
and positive literal a.

An obvious prerequisite for circularity is the repeated occurrence of some
variable in a. For example, in (¥), a becomes Q{f(u), u), while b is Qx, £()).
The example is depicted in Figure 2. The legend is: There is a node for each
variable constituent in b or a - upper nodes stem from b, lower ones from a. A
dashed line connects a variable with the variable constituents of some term
with which it must unify. A zigzag link indicates a multiple occurrence of a
variable,

b: Qkx, &) ¢ Z—9

a: Qf),u) =z 4

Fiqure 2: The short circuit indicating possible circularity

Clearly, creation of circularity will reveal itself as & cycle in a graph like
this, In & static analysis like ours, however, the cycle may not show itself
directly as above. The reason is that nodes correspond to variable consti-
tuents of the orvosna/ (sets of) terms in a program while we must take into
account cycles created by applying substitutions s to b before unification.

In this more complex case, the cycle above is found to always take one of
the two forms shown in Figure 3. The accompanying exaemples are straightfor-
ward, but before we explain the graphs, two definitions are needed. We say
that two variables x and y shere a variable by substitution s if and only if
s{x) and s(y) have a variable constituent in common (this 1s formalized in the
next section), And we say that a variable ¥ speswms a variable v by substitu-
tion s if and only if y 1s a multiple constituent of s(x).

330

b: Qx,y) b: Q));{O

sl {gr—z, yrr2} s: {x+gly, ¥l /”\

a: QUEW), u) a: QglE), u)) dI—z.:b
(a) (b)) i

Figqure 3: The two paradigms for circularity

In Figure 3(a), x and y share z by s. This 1s indicated in the graph by a
full-drawn edge between (every pair of nodes labeled) x and y. In Figure 3(b},
X spawns y by s. This is indicated in the graph by a full-drawn edge from
(every node labeled) x to itself,

A cycle now takes the form of a mixed meth beginning and ending in the
same node, A mixed path is defined to be one consisting of the three kinds of
edges from above with the following two restrictions: 1) 1t starts with a dashed
edge, and ends in a full-drawn edge (and so is not empty), and 2) it has no two
adjacent dashed edges,

The reader may wonder about the reason for distinguishing zigzag (“same™)
edges on the one hand and full-drawn ("share” or "spawn”) edges on the other,
The point is that the former are of a temporary nature and will be used only
during a test for circularity, whereas the latter ones reflect festures of sub-
stitutions to be logged and carried around in an approximate form, just as
subsgtitutions are propagated in usual computations.

Note that cycles correspond to potenéia/ generation of circular bindings,
rather that guaranteed generation., On the other hand, any circularity will
yvield a cyclic mixed path in a graph.

5. Approximations

It follous from the above analysis that - in order to serve our purpose - &
substitution approximation must convey two kinds of information: First, which
pairs of variables share by the current substitution, and second, which vari-
ables spewm, The particular objects that we will use to approximate substitu-
tions are called A-svbstituwtions, The set of A-substitutions is denoted by
Sp. An A-substitution sp € Sp consists of two sets, G ¢ X and E € X#, Suppose
the A-substitution sp = (G, E) represents a substitution s: X — HX), The
intended meanings of G and E are:

- for all variables x € G, s(x) is definitely a ground term,

- for all pairs (x,y)¢E, where 2 #y, x and y may share a variable by s, while
(x,%) € E indicates that x may spawn by s, that is, s(%) may have some mul-
tiple variable constituent.

The information kept with G was not found necessary in our analysis, but it
proves useful and not too expensive, In the graphs, painted nodes will
correspond to G, while full-drawn (non-zigzag) edges correspond to E, Note
that E is symmetric but not reflexive.

To every substitution s &S corresponds a c/osest gporoximation n(g) e Sp.
Let warct) denote the multiset of variable constituents in term t, Extending
(in the natural way) the operators n and - to work on multisets, we define the
transformer n: S — S by nls) = (G, E) where

331

G={xeX|var(sx)) =0}

E={(®yle x? |2y avar(s@xnvar(syN #0310 { (X,%) ¢ X2 |var(s(x))-X £ 6}

2x2. Then G and E form complete lattices under usual set
x

E is & complete lattice under the lexical ordering £,,

Let €= 2X and E =
inclugion, Sy = G
defined by

(Gl, El) SA (GZ, EZ) 1ff G-l CGZ v (G1= G2 A E} = 52).

This ordering is induced by ¢ and the demand for a momofonicn. We say that
the A-substitution s, safe/y gpmroximates the substitution s 1f and only if
nsl)ga sp .

Tf%e p&et of logs, L, as defined in Section 2, forms a lattice under point-
wise inclusion and is the universe for the collecting semantics. Our approxi-
mate semantics makes use of what we call an 4-/og to associate with every peP
a set of A-substitutions, Formeally, an A-log is & mapping Lp:P — 27A, and we
denote the set of A-logs by Lp. Under pointwise inclusion, Ly forms a lattice,
and this is the universe of our abstract interpretation, When restricted to a
finite set of variables, the lattice is of finite height., This will be the case
in our abstract interpretation, since no variable renaming ever takes place,
We later define vwhat it means that a log is safely approximated by an A-log,

6. The Method

We merely give a loose description of the method, It was inspired by those
outlined in (Plaisted 1984) and works in two steps as explained below,

6.1, Preunification

Much of the apmroximating unitficatrion can be done once for all. So we apply
preunitication on every pair of atoms (b,., ay). The result is either rg2/ or
an intermediate object Tijk which we call & femp/ate. Preunification of (b, a)
ig done in three steps:

1) Robinson unification is applied to the pair.

2) If 1) did not yield fail, the following deterministic rewriting is applied
to {(b,&)}): Pairs (f(tq,....t), £t ..., ty")) are split inte n pairs
by, t1), 00y, ty). Since 1) succeeded, an irreducible pair consists of
at least one variable,

3) Templates are created by replacing every pair (t,t’} by the pair of mul-
tisets (var(t), var{t’)). Thus templates may be seen as sets of bindings:
A variasble is bound to the multiset var(t) if it should unify with the
term t. An example of a template is given in Figure 4,

X X y 2 z
byt 0, £k, ¥)), 9z, 20 R q 9 9 9
I\ v i I

T ' r o\ vy t t

13k ¢\ W ! |

ag: Qlglu, w),), glu, v)) d b ¥ Iy &
u u v u v

Figure 4: A pair of atoms to be unified and the corresponding template

332

Note that templates are graphs having only dashed edges. The abstract
interpretation consists in applying A-substitutions to templates. The
resulting graphs in turn will be manipulated in order to reveal potential cir-
cularity and to vield new A-substitutions, as described in the sequel.

For reasons soon to be clear, we actually apply f4v A-substitutions to a
template, an wgper and & Jower one, Let T be a template, and let sy and sy be
A-substitutions. Then T s, sp’] denotes the graph that results from applying
sy to the upper nodes of T, and s’ to the lower nodes, As already mentioned,
we picture these applications by filling out the ground nodes G and adding
full-drawn edges for the share and spawn edges E.

6.2. Iteration

After preunification, an iteration process propagates A-substitutions among
program points, mimicking a usual computation. There is a crucial difference,
though, The essential feature of the approximating computation is what we
will call Jocality. 1t generates A-logs having the property that every A-
substitution attached to the program point p, exclusively has variables
Jocal to the i’th clause. This is the virtue (ot shared by the collecting
semantics) that renders the usual renaming of variables superfluous,

There is a price to be paid for this property. In a usual computation, the
unification of b,y and ay provides for all necessary exchange of information
between by, and the k’'th clause. The approximating computation, however, for-
gets abcutjbi . temporarily, owing to the locality. So, before returning an A-
substitution trom the k’'th clause, the relation to bij must be reestablished,
as indicated in Figure 5. That is, the iteration is defined in terms of two
kinds of spproximating unification, & forward one, A-unifys, and a Sbackward
one, A-unifys,

Pkn

Pk0
J]
ag + Dbkl ces D .o by l ;
- U S W

point of call point of return
A-unifyd A-unifys

Fiqure 5: The propagation of A-substitutions

333
Let ep = nle) be the empty A-substitution, More precisely then, we compute the
least fixed-point of the operator IterhA: Ly — Ly, defined by
IterA = ALp. Ly " where (8y°, Lp") = Itipgg, tep, Lyl
The operastor It: Px(SyxLp)— SpxLp provides for the propagation of A-

substitutions from a program point p;, to the end of the i'th clause. It car-
ries the current A-substitution and A~log, and is defined recursively by

It(pj -1, (sp, Lpd) =
if pjqexists then (sp’, L")
where k is chosen such that the template T = T, exists, and

X

7Y = A-unifysisp, T)

Ly’ = Lalpkg—LalpggiVU sy 1]
(53", Lp"") = Itlpgg, (sp”" ", Ly" "))

sy’ = A-unifytisp, sy, T)

Ly’ | = Lp"Ipyj—Llp " (py5u {sy"}]

else (sp, Lp)

The expression F[x—y] denotes the mapping which acts like F, except that it
returns y for x.

6.3. A-unification

The two kinds of A-unification are loosely described in terms of five primi-
tive operators., We leave out an exact description of these, relying on the
explanatory power of the eight examples given in Figure 6. Suffice it to say
that

- "Upper" extracts the upper A-substitution from a graph,

~ “Lower" extracts the lower A-substitution from a graph,

- "ransG" transfers groundness information in a graph,

~ "TransE" transfers share and spawn information in & graph, while

- "TestC” tests a graph for circularity. It works by adding temporary zigzag
edges between nodes having the same labels (and being both upper or both
lower), It then detects potential circularity by finding possible mixed
paths forming cycles in the graph,

We may now define the A~unifications:
A-unifys (s, T) = Lower (TransE (TestC (TransG (TL sy, e31))))
A-unifys (sp, 8, T) = Upper (TransE (TransG (T{ sy, 547103)

The order of applying the primitive operations 1S crucial. So i1s the fact that
circularity tests are performed only in forward A-unifications.

334

We now turn to the exemples, In all cases we assume that we are performing

forward R-unification, The initial graph appears just after application of A~
substitutions. The intermediate graph is the (temporary) result of TestC. The
final graph is ready for A-substitution extraction by Lower,

1
2}
k)]

4)

Preunification fails, so no template was ever created,
The template becomes very simple: no circular bindings can be created,

We are given that y is ground, TransG will transfer ground information to
the extent of painting all nodes. TestC will realize that no circular
bindings may be created (or rather, they may, temporarily, but in that
case even shallow unification will ultimately fail). Lower will extract a
lower A-substitution having G-component {u, v} to indicate that u and v
from here on represent ground terms,

We are given that x and y may share, TestC finds no circularity, TranskE
will find that sharing may apply to u and v as well, and Lower will extract
that information by yielding an A-substitution with E-component {{u, v)}
(E is understood to be symmetric). Note that fZzra/ graphs can never indi-
cate circularity, and in this example, circularity will not be signaled on
return either, since the circularity test is not part of a backward A-
unification.

Atoms Initial graph Interm. graph Final graph

b: Qlg(f(x), gy, 2)))
1| spiep (fail)

a: Q@@lu, f@in

b: Qx,x)
2| 8yt ep

a: QGu,u)

M C Om o~ -0 X

>

b: 0k, x,¥)

!

3| sp y), @

2

Qlu, v, v)

& O e) X |C O — O X
P e W | o o e s

| R T B &
& O — -
[.

<

G W o BN

= -
‘< ﬁ"
T R b

k]

1.

41 spr @, ((x,y)D)

a: Qu,v)

[

1
{
t
b
1M

Q Om -

|
!
]
4
u

]

{
t
]
b: QG £¥))]
|
|
;
]

Figqure 6&: Sample aphs

335

Atoms Initial graph interm, graph Final graph
X y b ¢ ¥ | X y
b: o, yv) R . G—" =
[i\ | i\ ! A
S| syt B {xy)h) 1 AR 1 t 1 A
i / \ | / \ 1 / \
a: QQ,g,u) 6 dé b bt D b b d b !
u u u u u u u u u
X X b
b: Q&) a0 8D <O
PR " ! A
6 | spt @ (=, T R ! tA
§ 1o | 1o 1 Lo {
| &l Qg u) 6 b § d=b ; R - T
i u u u u u u !
X y X yIX X yix y X
b e,y x.wla o ¢ 9l gze—a 2| o —a—
v | t vt 1 i v !
7 | sptep v !] v t ' v !
\ i/ { t v/ | | v/ i
a: Qu,v,v) [$ & ¥ bz b | O 4
u v v u v v u v
X y z b4 y 4 X y z
b: Qx, gly, z)) L] 2 { * ? * * @
1 L i 1 [[1 t 1
8 1 =p: ({3, {ty,20h) ! | i t ! | ! { 1
i t i i 1 i i 1 f
a: Qu, g, v)) s 8 L S $) + 3
u u v ! u u v u u v
Ficure 6; Sample graphs, continued

5) We are given an A-substitution indicating that x and y may share a vari-
able. TestC finds circularity possible in this case,

6) We are given that x may spawn a variable, TestC reveals that circularity
is possible, Also, TransE will record that u may spswn a variable, Lower
will extract an A-substitution containing precisely that piece of infor-
mation, i.e, having as E-component {(u, ujj}.

7) TestC finds no circularity since the cycle in the intermediate graph is
not a mixed path, However, TransE will find that u and v may share a vari-
able and that, furthermore, the former may spawn a variable, Lower will
indicate this by extracting as E-component {(u;, u), (u, v)}.

8) % is initially ground, and y and 2z are suspected to share a variable,

TransG will mark u and v nodes as ground and subsequently delete the (y,z)
edge. TestC finds no circularity, This is a forward A-unification, so
Lower yields an A-substitution having G-component {u}. On returm, it will
effectively be concluded that v and z cannot share.

Note that the method also yields useful groundness information which may be
used for optimizing purposes. In a way, circularity information just comes
out as a sort of by-product.

336

As an example of the limitstions of the method we give the simplest program
for which it will »of be detected that occur checks are unnecessary!

e Qx, %)
Qly,z) ¢ Ry, z
Ru,u) «

7. Soundness

We now lay down what it means for the method to be sound with respect to the
collecting semantics, Note that the collecting semantics can be given in the
style of IterA of Section 6.4, We just change the universe from Ly to L and
give the primitive operators a different interpretation: A-unify+ then denotes
Robinson unification, while A-unifyt denotes the identity function on S. In
accordance with this interpretation, the templates will constitute the i1nitial
connection graph (Kowalski 1875) of the program,

in Figure 7 we show the involved universes. In all cases these are com-
plete lattices, The orderings on logs and A-logs are pointwise inclusions:

L=l iff vpeP.L(plcLl'(p)
LA ELA' 1ff ¥peP. LA(p)E LA'(p)

"Collecting” world "Approximating” world
Substitutions 8,5) Sp. <) A-substitutions

Sets of substitutions (25, <) :2‘: (ZSA, €) Sets of A-substitutions
Logs (L, =) ’ (Lp, =) A-logs

Figure 7: The central universes

Whereas the lattices on the left have height w, the heights of the approximating
ones are all finite, provided the set of variables X is, We take the adstrac-
tion function, o, and the concretization function, v, to have types as given
by Figure 7 and define

aS) = {ns)lsesS}
r(Sp) = {seSindlesy]
These are monotonic and fulfil the requirements (Cousot 1977) that
5 & r(S)) and Sp = a(rSp))

for all S¢S and Sy €Sa. An A-log Lp safely approximates (s.s.) a log L if and
only if it does so pointwise:

Ly sa. L iff vpe P, Lp(p) s.a. L)

337

A set of A-substitutions S, safely approximates a set of substitutions S if
and only if every substitution in S is safely approximated by some A-
substitution in Sp:

Sy s.8. 8 iff ¥vse$S dsp €5,.5 s.a. s

Thus we accept a slip of exactness in two dimensions: First, the set of A-
substitutions may be too large, and second, the approximation of a particular
substitution may not be closest. In the case of substitutions we have as
already mentioned:

Sp S.a. 8 1ff n(s) S S

In general then, to verify soundness, we must show for corresponding operators
Q:D — D and 2p:Dp — Dp, working on corresponding universes D and Dy, that @,
safely approximates Q, We define

Qp s.8. Qiff vdeDvdy eDp. Wy s.8.d = (@) s.a, &d)) .

In other words, we demand that the operstors respect the s.a, relation,

8. Conclusion

We have described a rather elaborate compile time analysis, The reader may be
left with the impression that we propose to do at compile time all the work we
wanted to avoid at run time, or maybe more. This is not so., The point to be
stressed is this: Though possibly elaborate, even very simple compile time
transformations may shorten the run time strikingly, to the effect of bring-
ing the total time far below that used for an interpretation, This was firmly
demonstrated in practice by (Jones 1985) who investigated the applicability of
partial evaluation for compiling and compiler generstion purposes, From this
point of view, Prolog compilation essentially consists in partial evaluations
of the unification procedure with respect to the positive literals.

No analysis of the algorithm’s time complexity has been undertaken.
Clearly, the critical quantity is the number of variables in a clause, so the
worst case complexity should be measured in terms of V, the largest number of
variables in a clause of the program. The complexity is conjectured to be
exponential in V., This does not say much, though, since V is usually quite
small and independent of the program’s size.

The efficiency is thus considered an empirical question. If it is too low,
a more crude method is easily cobtained by taking least upper bounds rather
than collecting sets of R-substitutions. In this case, we conjecture that the
time complexity is polynomial in V,

A whole family of still more intricate methods for detecting circularity
was sketched in (Plaisted 1984). The aim was to give a comp/ete solution in
the following sense: If no circularity could actually occur, then there should
always be one method laborious enough to determine this. The present method
draws heavily on Plaisted’s but differs from those in that it

338

- is simpler, owing to the lack of generality,

- is recognizable &s an abstract interpretation. In particular, an approxi-
m&ting universe is laid down,

- behaves better even in trivial cases like Example 2 above, owing to the
use of preynific&tion,

- is guaranteed to terminate,

The method has not yet been implemented. It seems feasible to express other
kinds of program analysis as abstract interpretations, In fact, the iteration
procedure of Section 6.2 would seem quite a practicable mould for giving a
solution to the mode declaration problem.

9, References

Cousot, P. and R, Cousot,
Abstract interpretation: A unified lattice model for static analysis of
programs by construction or epproximation of fixpoints, FAroc, L4 ACK POPL
Symp., Los Angeles, California (June 1977) 238-252

Eder, E.,
Properties of substitutions and unifications, Journal of Symbolic Compu-
tation 1,1 (March 1985) 31-46

Jones, N, D., P. Sestoft and H, S¢gndergaard,
An experiment in partial evaluation: The generstion of a compiler genera-
tor, in ZMGS 202: Remriting Technigues and Applicstions (ed, J.-P, Jouan-
naud), Springer Verlag (1985) 124-140

Kowalski, R.,
A proof procedure using connection graphs, Jowrmal of the AcK 22.4
(October 1975) 572-595

Melligh, C. S.,
The Automatic Generation of Mode Declarstions for Frolog Frograms, DAl
Research Paper no, 163, University of Edinburgh, Scotland (1981)

Mellish, C. S.,
Abstract Interpretation of Prolog FPrograms, extended abstract presented at
the Workshop on Abstract Interpretation of Declarative Languages, Canter-
bury, England (August 1985)

Nielson, F,,
A denotational framework for data flow analysis, Adcte nformetica 18
(1982) 265-287

Plaisted, D.,
The occur-check problem in Prolog, Froc. Inil. Symp. Loglc Programming,
atlantic City, New Jersey (February 1984) 272-280

Robinson, J. A.,
A machine-oriented logic based on the resolution principle, Jowrmal of
the Ac¥ 12,1 (January 1965) 23-41

Warren, D. H. D,,
Implementing Prolog - Complling FPredicate Logic FPrograms, DRI Research
Report no. 39, University of Edinburgh, Scotland (1977)

