
AN APPLICATION OF ABSTRACT INTERPRETATION OF LOGIC PROGRAMS:

OCCUR CHECK REDUCTION ~

Harald SCndergaard
Dansk Datamatik Center

Lundtoftevej 1C, DK-2800 Lyngby, Denmark

Abstract: The occur check in Robinson unification is superfluous in most
unifications that take place in practice. The present paper is concerned with
the problem of determining circumstances under which the occur check may be
safely dispensed with. The method given draws on one outlined by Davld
Plaisted. The framework, however, differs in that we systematically apply the
abstract interpretation princlple to loglc programs. The alm is to give a
clear presentation and to facilitate 3ustification of the soundness of the
method.

1. Introduction

In the present paper we study the application of ~bstract inCer/greratlon to
the well-known occur chec#]2robYe~ of logic programming. Our main interest
lies in utilizing the abstract interpretation approach for the purpose of
improving Prolog compilers.

One may think of a Prolog program computation as a sequence of unifica-
tions mgu(s, b, a), where s is some (current) substitution, while a and b are
atomic formulas. Typically, we let a denote the left-hand side of a clause,
while b occurs in some right-hand side, and mgu(s, b, a) yields the most gen-
eral unifier of s(b) and a. The princlpal effect of Prolog compilation follow-
ing the principles of (Warren 1977) is the translation of each positive
literal, a, into code doing mgu(s, b, a) for all possible s and b.

Abstract interpretation may provide more information about the diversity
of s(b)-variants that can actually occur at a given program point, and an
optimizing compiler may capitalize on that to generate more specialized target
code. Particular applications of this idea include generation of mode
declarations (Hellish 1981) and detection of atom determinacy (Hellish 1985).
One may even imagine applications to determine the best storage management
policy or backtracking behaviour of a given program.

2. Abstract Interpretation of Logic Programs

The principle of abstract interpretation is rather well established in the
case of imperative languages (Cousot 1977). In this section we outline the
idea of abstract interpretation as applied to logic programs.

A logic program shall be understood to denote a computation in the
universe of substitutions. It consists of a finite number of definite
clauses, together with a goal. We introduce the notion of /zrogram pol}TAg as
indicated by boxes in Figure I. These alternate with negative literals, such
that the right-hand side of a clause has m atoms (m Z 0) and m+l program points
for some m. For any fixed program, we let P denote the set of program points,
and Pij~P denotes the program point immediately after bi] , the 3'th atom
(3 ~ u) in the right-hand slde of the i'th clause.

This work was done at Datalogisk Institut, Copenhagen University

328

Pi0 Pi I Pi ,m-1 Pim

Figure 1; A clause with program points

By substitutions we mean idempotent, almost-identity mappings s: S = X -~ H(X)
from the set of variables X to the set of terms H(X). The set of such mappings
Is pre-ordered by the usual 'More general than" relation, ~, defined by s I ~ s 2
iff 3s~S. ss I =s 2. An equivalence relation, ~, on S is defined by s I ~s 2 Iff
s I ~ s 2 ^ s 2 ~ s I. By thls, equivalent substitutions are equal modulo con-
sistent renaming of varlables. We shall use & also in the sense of ~/~. The
equivalence classes are partially oraered by ~, and when an artiflclal top ele-
ment, fail, is added, they form a complete lattice [Eder 1985). This would not
be so if we had allowed non-idempotent mappings. Robinson's unification
algorithm (Robinson 1965) always yields substitutions In our sense.

We may now glve the program a slightly different interpretation, namely as
denoting the computation of all the possible substitutions that may occur at
a given program point. Thus the new universe conslsts of mappings from pro-
gram points to sets of substitutions, and we call these mappings YoF_s. For-
mally, a log is a mapping L:P-~2 S, and we denote the set of logs by L. The
collection of substltutions is a natural analogue to sets of stat~B In the
case of imperative languages, and we shall call the given interpretation for
the coYYeetinr/,~emantlcs, following (Nlelson 1982). Its usefulness for static
analysis of imperative programs has been well established.

The computations thus laid down may not terminate. This is our reason for
introducing yet another logic program inter~etation which includes a
universe of imlxcecise log descriptions. The idea is that we pay the price of
possible imprecision in computations in order to guarantee their termination,
and we say that we 82yIroifl~dte the computation of logs, In spite of the impre-
cision, such an approximating computation may -as we shall see - still yield
useful information. The exact design of the obl]ects used as approximations
depends on the purpose of the analysis, that is, what program properties we
want to expose. So one can have many different approximating interpretations.
In Section 5 we describe 2-Y~s- the approximations used for our purpose.

In order to utilize resulting approximations, we must be able to interpret
them rigorously. So, a well-deflned correspondence between logs and A-logs
has to be stated. This is done formally by giving a pair of adjoined mappings,
the so-called a/2stractlon and concrst2;atlon functions (Cousot 1977). The
operators defined by the various interpretations must respect this correspon-
dence, at least so far as to render the analysis sound, i.e. to guarantee that
only ~=afe approximations are created. In thls sense the correspondence
induces the abstract interpretation, whence the latter is sometimes called an
inducec/se~antlc2 (Nielson 1982). We return to these topics in Section 7.

3. The Occur Check Problem

An essential part of Robinson's unification algorithm is the binding of varl-
ables x to terms £ in order to generate substltution components x ~ t.
Before doing so, however, it must be checked that x is not itself a constituent
of t, since in that case unification should fat1. The fact that such continual

329

term checking is time consuming constitutes the occur chsck pr'o, bJem. The
usual solution ls to omit the check, thereby allowing for ci~Y~/-/2227c/2ngs.
These, however, may cause unwanted behaviour of programs, such as non-
termination due to attempts to dereference a circularly bound variable, or
acceptance of theorems not true in the first order predicate calculus. For
example, one may use Prolog without occur check to '~rove" that

(~) Vy Bx.Q(x,y) Implies Hx ~y. Q(x,y)

Henceforth, we shall call unification wlthout occur check ~ha_/Yo~ uni,~icarlon,
as opposed to RobJnSOn unif~catlon. It has been argued that in practice -
owing to Prolog programmers" style - shallow unlflcations never create clrcu-
far bindings. This is in conflict with the author's experience and in any case
not a satisfactory argument. What we want is a method to distinguish [at com-
pile time) cases where shallow unification can safely be used, in order that
the most approprlate code may be generated.

4. Problem Analysis

We shall analyse the problem of determining potential creation of circular
bindings by shallow unification in some detail. We must look for computable,
sufficient conditions for the absence of circularity, or dually, necessary
conditions for circularity. We assume that we are given negative literal -b
and positive literal a.

An obvious prerequisite for circularity is the repeated occurrence of some
variable in a. For example, in (~), a becomes Q(f(u), u), whlle b is Q(x, f(x)).
The example is depicted in Figure 2. The legend is: There is a node for each
variable constituent in b or a - upper nodes stem from b, lower ones from a, A
dashed line connects a variable with the variable constituents of some term
with which it must unify. A zigzag link indicates a multiple occurrence of a
variab i e.

x x
b: Q(x, f(x))

I I

I i

I I

a: Q(f(u), u)
u u

Fiqure 2; The short ci~cult indicating posslble circularity

Clearly, creation of circularity will reveal itself as a cycle in a graph like
this. In a static analysis like ours, however, the cycle may not show Itself
directly as above. The reason is +_hat nodes correspond to variable consti-
tuents of the or2~inaY (sets of) terms in a program while we must take into
account cycles created by applying substitutions s to b before unification.

In this more complex case, the cycle above is found to always take one of
the two forms shown in Figure 3. The accompanying examples are straightfor-
ward, but before we explain the graphs, two definitions are needed. We say
that two variables x and y ~9/~_re a variable by substitution s if and only if
s(x) and s(y) have a variable constituent in common (thls is formalized in the
next section). And we say that a variable x s~s a varlable y by substitu-
tion s if and only if y is a multiple constituent of s(x).

330

x y

b: O(x, y) 9------9
! !

s: {x ~-~ z,y~-~ z } ! !
! !

a: Q(f(u), u)
u u

(a)

x

b: Q(x)
I%

s: {x~-~g(y,y)) I %

a: Q(g(f(u), u))
u u

(b)

Fiqure 3; The two Daradigms for clrcularity

In Figure 3(a), x and y share z by s. This is indicated in the graph by a
full-drawn edge between (every pair of nodes labeled) x and y. In Figure 3(b),
x spawns y by s. This is indicated in the graph by a full-drawn edge from
(every node labeled) x to itself.

A cycle now takes the form of a mi~'edp~ beginning and ending in the
same node. A mixed path is defined to be one conslsting of the three kinds of
edges from above with the following two restrictions: I) it starts with a dashed
edge, and ends in a full-drawn edge (and so is not empty), and 2) it has no two
adjacent dashed edges.

The reader may wonder about the reason for distinguishing zlgzag ("same")
edges on the one hand and full-drawn ("share" or "spawn") edges on the other.
The point is that the former are of a temporary nature and will be used only
during a test for circularity, whereas the latter ones reflect features of sub-
stitutions to be logged and carried around in an approximate form, just as
substitutions are propagated in usual computations.

Note that cycles correspond to]9otentiaY generation of circular bindings,
rather that guaranteed generation. On the other hand, any circularity will
yield a cyclic mixed path in a graph.

5, Approximations

It follows from the above analysis that - in order to serve our purpose - a
substitution approximation must convey two kinds of information: First, which
pairs of variables mere by the current substitution, and second, which vari-
ables 2pa~. The particular objects that we will use to approximate substitu-
tions are called ~-substitutlons. The set of A-substitutions is ~enoted by
S A. An A-substitution s A ¢ S A consists of two sets, G c X and E c_X =. Suppose
the A-substitution s A = (G, E) represents a substitution s: X-~H(X). The
intended meanings of G and E are:

- for all variables x ~ G, s(x) is defYniteYy a ground term,

- for all pairs (x,y) ~ E, where x ~ y, x and y may share a variable by s, while
(x,x) ~ E indicates that x may spawn by s, that is, s(x) may have some mul-
tiple variable constituent.

The information kept with G was not found necessary in our analysis, but it
proves useful and not too expensive. In the graphs, painted nodes will
correspond to G, while full-drawn (non-zlgzag) edges correspond to E. Note
that E is symmetric but not reflexive.

To every substitution s ~ S corresponds a cYosest approxlmatJon ~(s) ~ S A.
Let vat(t/ denote the muYtIBet of variable constituents in term t. Extending
(in the natural way) the operators n and - to work on multisets, we define the
transformer ~: S -~ S A by ~(s) = (G, E) where

331

G = {x~Xlvar(s(x))=0}

E = { (x,y) E X 2 1 x~y ^ var(s(x))~ var(s(y)) ~ 0) U { Ix,x) ~ X 2 I var(s(x))-X ~ 0 }

Let G = 2 X and E = 2 X2. Then G and E form complete lattices under usual set
inclusion. S A = G x E is a complete lattice under the lexical ordering ~A,
defined by

(GI, El)~A (G2, E2) iff G I c G 2 v (GI= G 2 ^ E l c_ E2).

This ordering is induced by ~ and the demand for a mono ton ic n. We say that
the A-substitution s A ~WeY~v ~7~proximates the substitution s !f and only if
~(s) SA SA •

The set of logs, L, as defined in Section 2, forms a lattice under po!nt-
wise inclusion and is the unlverse for the collectlng semantlcs. Our approxi-
mate semantics makes use of what we call an 2-1~z to associate with ~vecy p ~ P
a set of A-substitutions. Formally, an A-log is a mapping LA: P -4 2 A, and we
denote the set of A-logs by L A. Under polntwise inclusion, L A forms a lattice,
and this is the universe of our abstract interpretation. When restricted to a
finite set of variables, the lattice is of finite height. This will be the case
in our abstract interpretation, since no variable renaming ever takes place.
We later define what it means that a log is safely approximated by an A-log.

6. The Method

We merely give a loose description of the method, It was Inspired by those
outlined in (Plaisted 1984) and works in two steps as explained below,

6.1, Preuni£ication

Much of the ~p/2roxlmdtlng uniWica~iOn can be done once for all. So we apply
preunif'ycation on every pair of atoms (blj , ak). The result is either fal] or
an intermediate object Ti3 k which we call E templ~te. Preunification of (b, a)
is done in three steps:

1) Robinson unification is applied to the pair.

2) If I) did not yield fail, the following deterministic rewriting is applied
to {(b,a)}: Pairs (f(t I tql),f(t1', tn')) are split into n pairs
(tl, t1') (tn, tn'). Since I) succeeded, an irreducible pair consists of
at least one variable.

3) Templates are created by replacing every pair (t, t') by the pair of mul-
tisets (var<t), var(t')). Thus templates may be seen as sets of blndings:
A variable is bound to the multiset var(t) if it should unify with the
term t. An example of a template is given in Figure 4.

hi3: Q(x, f(g(x, y)), g(z, z))

ak: O(g(u, u), f(v), g[u, v))

Tijk:

x

R

I
I

d
u u

x y

I

v

z z

l I

! I

u v

Fiqure 4; A ~lr of atoms t p be unlfzed and the cqrrespondlnq template

332

Note that templates are graphs having only dashed edges. The abstract
interpretation consists in applying A-substitutions to templates. The
resulting graphs in turn will be manipulated in order to reveal potential cir-
cularity and to yield new A-substitutions, as described in the sequel.

For reasons soon to be clear, we actually apply ~wo A-substitutions to a
template, an upper and a lower one. Let T be a template, and let s A and s A' be
A-substitutions. Then T[s A, SA'] denotes the graph that results from applying
s A to the upper nodes of T, and s A' to the lower nodes. As already mentioned,
we picture these applications by filling out the ground nodes G and adding
full-drawn edges for the share and spawn edges E.

6.2. Iteration

After preunification, an iteratlon process propagates A-substitutions among
program points, mimicking a usual computation. There is a cruclal difference,
though, The essential feature of the approxlmating computation is what we
will call loc~YY~y. It generates A-logs havlng the property that every A-
substitution attached to the program polnt PlJ exclusively has varlables
local to the i'th clause. This is the virtue (riot shared by the collecting
semantics) that renders the usual renaming of variables superfluous,

There is a price to be paid for this property. In a usual computation, the
unification of bii and a k provides for all necessary exchange of information
between biiand thee k'th clause. The approximating computation ,. however, for-
gets about'bi~ temporarily, owing to the locahty. So, before re%urning an ~-
substitution ~rom the k'th clause, the relation to bi3 must be reestablished,
as indicated in Figure 5. That is, the iteration is ~efined in terms of two
kinds of approximating unification, a forwarrf one, A-unify&, and a b~ckward
one, A-un ify?,

Pi,j-1 Pij

ai ~" ... ~ hi3 ~ .-.

~ k0 Pkn "I
ak ~" 1[---7 bkl "'" ~ "'" bkn [- ~

point of call point of return
A-unify~ A-unify~

Fiqure 5; Th e proDaqati0n of A-substitutions

333

Let e A = ~(e) be the empty A-substitution. More precisely then, we compute the
least fixed-point of the operator IterA: L A -~ L A, deflned by

IterA = iL A. L A' where (SA', LA') = It(P00, te A, LA)).

The operator It: Px(SAXLA)-~SAxLA provldes for the propagatlon of A-
substitutions from a program po!nt PIJ to the end of the i'th clause. It car-
ries the current A-substitution and A-log, and is defined recurslvely by

It(Pi,j-1, (SA, LA)) =

if PIj exists then (SA', LA')

where k is chosen such that the template T = TI3 k exlsts, and

else (s A, L A)

SA'" = A-unify~£sA, T)

LA'" = LA[PkO-4LA<PKO) U {SA'"]3

(SA'" , L A'') : It(PkO, (SA'" , LA'"))

s A' = A-unify~(s A, SA", T)

L A ' t = L A ' '[pl j-~LA ' '(Pi3) U {SA'}]

The expression F[x-~y] denotes the mapping which acts like F, except that It
returns y for x.

6.3. A-unification

The two kinds of A-unification are loosely descrlbed in terms of five primi-
tive operators. We leave out an exact description of these, relying on the
explanatory power of the eight examples given in Figure 6. Suffice it to say
that

- '~J1~r" extracts the upper A-substitution from a graph,

- '~uower" extracts the lower A-substitution from a graph,

- '~ransG" transfers groundness information in a graph,

'TransE" transfers share and spawn information in a graph, while

'TestC" tests a graph for circularity. It works by adding temporary zigzag
edges between nodes having the same labels (and belng both upper or both
lower). It then detects potential circularity by flnding possible mixed
paths forming cycles In the graph.

We may now define the A-unificatzons:

A-unify; (SA, T) = Lower (TransE (TestC (TransG (T[SA, e A]))))

A-unify~ (SA, SA' , T) = Ul~r (TransE (TransG (T[SA, SA'])))

The order of applylng the primitlve operatlons is cruclal. So is the fact that
circularity tests are performed on ly in forward A-un iflcations.

334

We now turn to the examples. In all cases we assumethatweareperforming
forward A-unification, The initial graph appears 3ustafter application of A-
substitutions. The intermediate graph !st he (temporary) result of TestC. The
final graph is ready for A-substitution extraction by Lower.

I) Preunification fails, so no template was ever created.

2) The template becomes very simple: no circular bindings can be created.

3) We are given that y is ground. TransG will transfer ground information to
the extent of painting all nodes. TestC will realize that no circular
bindings may be created (or rather, they may, temporarily, but in that
case even shallow unification will ultimately fail). Lower will extract a
lower A-substitution having G-component {u, v} to indicate that u and v
from here on represent ground terms.

4) We are given that x and y may share. TestC finds no circularity, TransE
will find that sharing may apply to u and v aswell, and Lower will extract
that information by yielding an A-substitution with E-component {(u,v)}
(E is understood to be symmetric). Note that k~naY graphs can never indi-
cate circularity, and in this example, czrcularitywill not be signaled on
return either, since the circularity test is not part of a ba&kward A-
unification.

Atom s

I b: Q(g(f(x), g(y, z)))

1 I sA:eA
I
I a: Q(g(u, f(u)))

b: Q(x, x)
I

2 I sA: eA

l a: Q(u, u)

l
I b: Q(x,x,y)

3 I SA: ({Y}" ~)
t
1 a: Q(u,v,v)

i I

I b: Q(x, f(y))
I

4 I sA: (0' {(x,y)})

l a: Q(u, v)

Initial graph Interm. graph Final graph

(fail)

x
?
I

I
I

u

x x y

! i !

t { I

[I |

6 6 6
u v v

x y

i i
I f
! !

6 6
u v

x
?
!

!
!

6
u

x x y
r-z-a
! ! |

(I I

t i I

u v v

x y

£ '"9
t I

I I
! t

u v

x
ql

I
I
I

u

x

?
!

|
!

u

x

I
I
I

u
x

I
!
!

v

Y
9

!
I
!

v

Y
,p

I
I

I
,L
v

F i q u r e 6; S a m p l e t n " a p h s

335

6

Atoms

b: Q(x, y)

SA: (0, {(x,y)})

a: Q(u,g(u, u))

b: Q(x)

SA: (.0, [(x,x)})

a: Q(g(u, u))

b: Q(g(x, y), x, y)

SA: e A

a: Q(u, v, v)

b: Q(x, g(y, z))

SA: ({x), [(y,z)})

a: Q(u, g(u, v))

x
q

Y
?

!

I

I

6

v

Inztzal graph

x y
? --~

I I%

u u u

x

t ~

d b
u u

y x

9 ?
/ I

u v

x y z

! ! I

! | !

6 d ~
u u v

Interm. graph
x y

u u u

x

! %

u u

x y x y

% I I I
~I I I

u v v

x y z

I ! I
I I I

I I I

u u v

Final graph

x y

u u u

x

u u ~

x y x Yl
t

1

~ I , II

x y z

t ~ 9
! ! I
1 ! !

u u v

FiQure 6. SamDle cwaphs, continued

5) We are given an A-substitution indicatlng that x and y may share a vari-
able. TestC finds clrcularity possible in this case.

6) We are given that x may spawn a variable, TestC reveals that circuiar!ty
is possible. Also, TransE will record that u may spawn a varlable. Lower
will extract an A-substitution containing precisely that piece of infor-
mation, i.e. having as E-component {(u, u)}.

7) TestC finds no circularlty since the cycle in the intermediate graph is
not a mixed path. However, TransE wlll find that u add v may share a varl-
able and that, furthermore, the former may spawn a varlable. Lower will
indicate this by extracting as E-component {(u ~, u), (u, v)}.

8) x is initially ground, and y and z are suspected to share a varlable.
Transg will mark u and y nodes as ground and subsequently delete the (y,z)
edge. TestC finds no circularity. This is a forward A-unification, so
Lower yields an A-substitution having G-component {u}. On return, it w111
effectively be concluded that y and z cannot share.

Note that the method also yields useful groundness information whlch may be
used for optimizing purposes. In a way, clrcularlty information 3ust comes
out as a sort of by-product.

336

As an example of the limitations of the method we glve the simplest program
for which it will not be detected that occur checks are unnecessary:

Q(z, x)
Q(y, z) ~ R(y, z)
R(u, u)

7. Soundness

We now lay down what it means for the method to be sound with respect to the
collecting semantics. Note that the collecting semantics can be given in the
style of IterA of Section 6.2. We just change the unlverse from L A to L and
glve the primitive operators a different interpretation: A-unify& then denotes
Robinson unlfication, while A-unify~ denotes the identity function on S. In
accordance with this interpretation, the templates w111 constitute the initial
connection graph (Kowalski 1975) of the program.

In Figure 7 we show the involved universes. In all cases these are com-
plete lattices. The orderings on logs and A-logs are polntwise inclusions:

L m L' iff Vp E P. L(p)~ L'(p)
L A EL A' !ff Vp { P. LA(P) ~ LA'(p)

'Eollecting" world '~p~oximating" world

Substitutions (S, <) (SA, ~A) A-substitutions

Sets of substitutions (2 s, g) ~-~ (2SA, :) Sets of A-substitutions
Y

Logs (L, ~) (LA, =-A) A-logs

Figure 7; The central universes

Whereas the lattices on the left have height ~, the heights of the approxlmating
ones are all finite, prov!ded the set of variables X is. We take the 8/~strac-
t2on function, ~, and the concretization function, r, to have types as given
by Figure 7 and define

~(S)= {n(s) Is~S}
F(S A) = {s~Sl~<s)~S A }

These are monotonic and fulfil the requirements (Cousot 1977) that

S c_ flu(S)) and S A = u[r(SA))

for all S c_ S and S A c_ SA" An A-log L A safely approximates (s.a.) a log L if and
only if it does so pointwise:

L A s.a. L iff Vp~P. LA(p) s.a. Lip)

337

A set of A-substitutions S A safely approximates a set of substitutions S if
and only if every substitution in S is safely approximated by some A-
substitution in SA:

S As.a.s iff VsES3s AEs A.s As.a.s

Thus we accept a slip of exactness in two dlmensions: First, the set of A-
substitutions may be too large, and second, the approximation of a particular
substitution may not be closest. In the case of substltutions we have as
already mentioned:

s A s.a. s ire n(s) ~A SA

In general then, to verify soundness, we must show for corresponding operators
R: D--~ D and RA: DA--~ DA, working on corresponding universes D and DA, that ~A
safely approximates o. We define

~A s.a. ~2 iff Vd6DVd A~D A. [d A s.a. d ~ RA(dA) s.a. R(d)) .

In other words, we demand that the operators respect the s.a. relation.

8. Conclusion

We have described a rather elaborate compile time analysis, The reader may be
left with the impression that we propose to do at compile time all the work we
wanted to avoid at run time, or maybe more. This is not so. The polnt to be
stressed is this: Though possibly elaborate, even very simple compile time
transformations may shorten the run time strikingly, to the effect of bring-
ing the total time far below that used for an interpretation. This was firmly
demonstrated in practice by (Jones 1985) who investigated the applicability of
partial evaluation for compiling and compiler generation purposes. From this
point of view, Prolog compilation essentially consists in partial evaluations
of the unification procedure with respect to the positive literals.

No analysis of the algorithm's time complexity has been undertaken.
Clearly, the critical quantity is the number of variables in a clause, so the
worst case complexity should be measured in terms of V, the largest number of
variables in a clause of the program. The complexity is conjectured to be
exponential in V. This does not say much, though, since V is usually .suite
small and independent of the program's size.

The efficiency is thus considered an empirical question. If it is too low,
a more crude method is easily obtained by taking least upper bounds rather
than coYYecting sets of A-substitutions. In this case, we conjecture that the
time complexity is polynomial in Vo

A whole family of still more intricate methods for detecting circularity
was sketched in (Plaisted 1984). The aim was to give a compYete solution in
the following sense: If no circularity could actually occur, then there should
always be one method laborious enough to determine this. The present method
draws heavily on Plaisted's but differs from those in that it

338

- is simpler, owing to the lack of generality,

- is recognizable as an abstract interpretation. In particular, an approxi-
mating universe is laid down,

- behaves better even in trivial cases ilke Example 2 above, owing to the
use of preunification,

- is guaranteed to terminate.

The method has not yet been implemented. It seems feasible to express other
kinds of program analysis as abstract interpretations. In fact, the iteration
procedure of 'Section 6.2 would seem quite a practicable mould for giving a
solution to the mode declaration problem.

9. References

Cousot, P. and R. Cousot,
Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of flxpoints, /~"oc, 4~ 2C/fPOPZ
S~po, Los Angeles, California <June 1977) 238-252

Eder, E.,
Properties of substitutions and unifications, JournaY oW S~vmboYi'c ComDu-
failOn I,I (March 1985) 31-46

Jones, N. D., P. Sestoft and H. S~ndergaard,
An experiment in partial evaluation: The generation of a compiler genera-
tor, in L/VC9 202: Re;~ritYnq Techniquss and 2pDYlcations (ed. J.-P. Jouan-
naud), Springer Verlag (i985) 124-140

Kowalski, R.,
A proof procedure using connection graphs, Journal of t/~s 2C/F 22,4
(October 1975) 572-595

Mellish, C. S.,
Th8 2utomat)'c Gsnsration of Mode DscYaratlon2 for /~roYog }%~o~ams, DAI
Research Paper no. 163, University of Edinburgh, Scotland (1981)

Hellish, C. S.,
21~s~ract Ints~statlon of" 1~roYog ~o~s, extended abstract presented at
the Workshop on Abstract Interpretation of Declarative Languages, Canter-
bury, England (August 1985)

Nielson, F,,
A denotational framework for data flow analysis, Act~ InfbzT~at2ca 18
(1982) 265-287

Plaisted, D.,
The occur-check problem in Prolog, Proc, In~Y, SymDo L~ic Proprammlng,
Atlantic City, New Jersey <February 1984) 272-280

Robinson, J, A.,
A machine-oriented logic based on the resolution principle, Joul'naY of
~e 2C2F 12,1 (January 1965) 23-41

Warren, D. H. D.,
ImpYsmsntin_q ProY~ - GomDi'ling Predlc~8 L~i'c Fropz'~s, DAI Research
Report no. 39, University of Edinburgh, Scotland (1977)

