REWRITING WITH A NONDETERMINISTIC
CHOICE OPERATOR :
FROM ALGEBRA TO PROOFS

Stéphane Kaplan
Department of Applied Mathematics
The Weizmann Institute of Science
76100 Rehovol (Israel)

LRI. Bat. 490
Université des Sciences
91405 Orsay (France)

Abstract :

The privileged field of classical algebra and term rewriting systems is that of strictly
deterministic systems: the confluence property is generaly assumed to hold, which
ensures determinism about the result of the computations, even if there exist several
different computation paths. In this paper, we develop a new formalism introducing a
bounded nondeterministic choice operator 't into algebraic specifications and related
term rewriting systems; nondeterminism about the result becomes allowed in this
framework, We define the algebraic and the operational aspects of such systems, and
investigate their relationship. Methods & lo Knuth-Bendir are developed for automatic
theorem proving in such theories. Several examples are considered, including a toy con-

current language, for which non-trivial properties may be automatieally proved.

352

INTRODUCTION

The field of term rewriting systems has greatly developed during the past several
years. It provides an appropriate operational description for algebraic specifications,
defining abstract implementation via symbolic evaluation. Also, powerful thecorem
proving tools exist for such systems. However, an essential constraint on those sys-
tems is that they must be confluent. Roughly speaking, the confluence property
means that, even if different computation paths are possible in order to evaluate a
given term, the result must be unique. Therefore, nondeterministic and concurrent
specifications have gseemed banished from that framework.

In this paper, we propose a new formalism that allows nondeterminism to be intro-
duced in term rewriting systems. This formalism extends the classical (strictly
deterministic}) one, while maintaining its most important properties : coherence
between the algebraic and the operational aspects, possibilities of automatic
theorem proving. Our main idea is to introduce a special purpose operator t, realiz-
ing bounded nondeterministic choice. All the non-confluence that is authorized in
such a system is compelled to derive from the sole operator *. This operator under-
goes a particular treatment in the procedures that we shall define, whereas the
other operators will behave classically.

We had to define a new algebraic and operational formalism, the technicalities of
which are sometimes intricate. We advise readers who do not wish to concern them-
selves with these details to skip directly to example 4.1, that consists of the proof of
a property in a nondeterministic specification. The main idea behind this paper
should be understandable via that example for a reader who knows about classical
term rewriting systems. For similar reasons, most of the proofs of our results are
not given in the text itself, but postponed to appendices - except particularly
relevant ones.

Our formalism can cope with a large class of concurrent specifications. In that
respect, we are very much indebted in the work of the ACP group in Amsterdam.
Actually, the results of this paper apply to a simplified version (strictly functional,
no explicit sequencing) of ACP. An important difference between our approaches is
that a model, for us, must salisfy either atb = a or a t b = b; the semantics of our
formalization consists of the class of all such models. For the ACP group, semantics
is defined via certain particular (initial) models, in which the previous property need
not be verified : the operator t is not systematically eliminated. The benefil of such
simplificalions applied Lo Lhe ACP [ramework is thal cufomalic Lheorem proving is
now possible via the techniques developed in this paper.

A crucial hypothesis of our approach is that all the compulalions evenluolly ter-
minafe, as it is the case for classical term rewriting systems. Thus, we need not con-
sider the properties of infinite nondeterministic calculi, as found for instance in
[Nivat 80}, [BW 81], [Poigné 81], [Hennessy 1982].

Part | defines the algebraic basis of our approach. Part 2 introduces our notion of
rewriting, and establishes its connection with the algebraic aspects of the formalism
via a Birkhoff theorem. Termination and normal form computation issues are dis-
cussed. Part 3 defines our extended notion of t-confluence. A Knuth-Bendix theorem
and completion procedure are given, allowing the t-confluence of terminating non-
deterministic term rewriting systems to be checked. Lastly, part 4 considers the

353

application of these methods to theorem proving in structured nondeterministic
specifications. Several examples, including a toy concurrent language, are given. We
assume that the reader has a basic knowledge of algebras, and term rewriting sys-
tems (cf. [ADJ 78], [HO 80] for basic references), nondeterminism (ci. [Nivat 80],
[Apt 84]) and concurrency {cf. [Hoare 78], [Milner 80}, [Brookes 83], [Boudol 84]).
However, notations and concepts are systematically redefined, and the paper should
be self-contained.

1. THE ALGEBRAIC FRAMEWORK
1.1. The Free Models

An tsignafure consists of :
. a set of domain names S, called sorts,

* a set of operator names Z, with an arily function on S. For some sorts seS,
there may exist a distinguished operator : % : 8 X g » g, that will represent the
nondelerministic choice between two elements of sort s. For such a sort s,
there may exist a distinguished constant : §; : » s, standing for the deadlock
constant. Such operators appear in several algebraic frameworks (cf. eg.
[Hoare 78], [Milner 80], [Boudol 84]). We shall write * and 6 instead of 1, and d
when no confusion is possible.

Moreover, we consider only well-formed signatures (cf. [HH 80], [GM 81]), imposing
for instance that there is at least one constant operator per sort s (different from

8s).

Let X = (Xy)ses be an infinite set of typed variables. We define, as usual, the set
Tgu(X) of the ferms that are well-formed on the signature (S,ZuX). We define
Tsx2(X) as the subset of Tg5(X) containing no * symbol. Tgy and Ts,s® stand for the
two similar sets of terms containing no variables. Such terms are often called
ground terms.

We consider occurrences in terms as finite strings of integers in the usual manner.
For a term t and an occurrence w in t, i, stands for the subterm of t the root of
which is at occurrence w. tfwe+t'] is the term t, where ti, is replaced by the term t'.
Substitutions are defined in the usual way. The application of a substitution ¢ to a
term t is written to. We say that a term t matches the term G, called a pattern, at
occurrence « via the substitution ¢ if t), = Go. Two terms t and t' are unifioble if
there exists a substitution o such that to = t'o. In that case, they admit a most gen-
eral unifier--i.e. a substitution u that is a unifier of t and t', and such that for every
unifier o of L and L', Lhere exisls a substilulion ¢’ such that ¢ = uo'. A conlext is a
term KeTgs(X) with a distinguished variable occurrence. K[t] denotes K where this
variable cccurrence is replaced by the term t.

For a given relation -, >, " will denote its reflexive and transitive closure, and -1 its
inverse. Thus, (- U »™1)" denotes the reflexive, symmetlric and transitive closure of
-,
An t-model M of a given signature (S,2) consists of :
* & family of sets (My)ses indexed by S;
» afamily eval™ = (evalM), g of applications eval¥ (Tgx)s » My

such that, for any context K[X], for any t,t',t"€Tgz :

354

(0) either: evaP(K[t+t]) = eval®(K[t]),
or: evall(K[t1rt']) = eval(K t'])
(0 eval'(K[(t+t) ¢t]) = eval(K[te(t+t)])
2] eval(Kltrt' 1) = eval{(K[t' tt])
(3) eva(K[t1t]) = eval(K[t])
(4) eval® (K[t 16]) = eval(K[t])
evalM(K[61t]) = eval(K[t])

Note :
*» Property (0) means that in an tmodel, a choice has to be done between the two
arguments of the nondeterministic choice operator 1.
e Properties (1) to (4) respectively state the associativity, commutativity, idempo-
tency (actually, (0) implies (3)) and neutrality of ¢ for the nondeterministic choice
in the t-models. This will be henceforth referred to as the ACIN property. This
assigns the meaning of bounded nondeferministic choice to the t operator.
« In the classical, strictly deterministic case (cf. e.g. [ADJ 78]}, models are defined
providing a family (Mg)seg of sets, and for each operator {: s¢X - Xsy»8 in £ an
interpretation M Mg, X - - - Mg »Mg. However, this is not possible in our formalism,
since we need to be able to describe a model M in which a¥ ¥ bM = a¥, while
Mgl M M) = fMSbM)‘ This is clearly not compatible with the classical definition of an
interpretation M However, there is no contradiction in our formalization, since we
simply have :

evalM[atb] = eval¥[a], and evalM[{(ath)] = evalM[{(b)] .
This is why the notion of model had to be re-defined in our framework.
» The class of the -models is called MOD. The class of the t-models M such that evai
is surjective is called the class of the finitely generaled t-models {gMOD.

In general, Tgy is not an ft-model. Intuitively, to view it as an t-model, we need to
specily how choice is done between the arguments of the t symbol, for every
occurrence of 1 in every term of Tgy. To do so, we define an t-choice as a partial
application :
C:TggxN' »{1,2].

Intuitively, for a given term t and an occurrence w of * in t, we will have :

(c1) evalM[t] = eval[t{w « left-son (t),)3] iff C{tw)=1

(cs) evalM[t] = eval'[tiw « right-son(t)} | iff C(t,w) =2
in the *-model determined by C. Of course, an t-choice must satisfy certain proper-
ties reflecting the ACIN constraints concerning choice.’

An t-choice C being given, we define the class MODC of the t-models as those models
which satisfy the two previous conditions (c,) and (cp). We define analogously the
class ngODC of the finitely generated models of MODC.

We define ~(as being the smallest equivalence relation on Tg y that salisfies :

(c')) t ~¢ tlw ¢ left-son (¢),)] fC(tw)=1

(e'z) t ~¢ tlw « right-son (£},)} ifC(tw)=2
Then, the set-theoretical quotient of Tgy by ~¢ is likely to be in MOD?, and to be the
most general object of MOD®. Formally, we define an t-morphism from an t-model M
into an tmodel M’ as a family ¢ of applications : ¢5 : Mg—= My such that :
eval¥ (1) = pyleval®(t)) (for any te(Tgyz)s). |
We also define an t-equivalence as an equivalence relation on Tgy that respects the
ACIN properties of 1 and d.

1For the sake of readability, this is precisely done in Appendix 1.

355

Theorem 1.1
s MOD and {gMOD, with t-morphisms, are non-emptly categories. They admit no ini-
tial object.?

« For a given t-choice C, MOD® and $gMOD®, with t-morphisms, are categories that
both admit Ty 5/ ~¢ as initial object.

. MOD = V¢ t-choice MOD®
fgMOD = UG t~choice ngODC

« Every t~model of fgMODC is isomorphic to the set-theoretical quotient of Tex/™~¢
by an t-equivalence.

1.2. The Equations

Definition
Let M and N be two terms of Tgg(X) of the same sort. We shall say that an 1-
model A satisfies the equaiion M = N, which we write : A=M =N ,ifand only if :
for any context K, and for any ground substitution o,
eval(K[Mo]) = eval™K[Ns]).

Note : if Ai=M = N, then in particular AEMtP = NP, for any PeTs 5(X).

For a set E of equations, MODg (resp. {gMODg) is the class of the models (resp. the
finitely generated models) that satisly every equation of E. For a given t-choice C,
MODE and fgMOD§ are defined analogously. The couple formed by a t-signature and a
set of equations will often be called a nondeterministic specification.

Let ~z be the equivalence relation on Tgy generated by the pairs K[Mo] ~; K[No] .
We define ~gyc as the smallest equivalence relation on Tgy containing ~5 and ~g,
and respecting the ACIN properties of 1 and §. Then :

Theorem 1.2
* MODg and {gMODg are non-empty categories.

. For a given t-choice C, MODL%' and ngODE are categories that admit Tg g/ ~g ¢ as
initial object.
. MOD Y ¢ 1—choice MODg
ngOD Y ¢ t—~choice ngODEC.
» Every t-model of 1gMODZ is t-isomorphic to the set-theoretical quotient of
Tgz/~guc by a t-equivalence.
* LetMandNbein Tgy Then:
feMODE =M =N iff Tgg/~pue EM=N
MODE=M=N iff M~p, o N [Birkhotf Theorem. Weak form]
The last point is similar to the classical Birkhoff theorem for "deterministic” alge-
bras. llowever, it considered to be a weak form because it assumes a given T-choice,
and it applies on ground terms. We subsequently provide a stronger form, that is

choice independent and applies to terms with variables. This last point is proven in
Appendix 2, the other points being quite straightforward.

i

Until now, we defined the algebraic framework that is needed for the expression of
the nondeterminism. In the next section, we deal with the cperational aspect of the
question, via the introduction of a generalized notion of rewrite rules.

?Except in the pathological cases, where there is at most one term per sort with an t symbal,

356

2. REWRITING WITH NONDETERMINISM

2.1. In order to take into account the properties of %, we say that two terms M and
M in Tgy(X) are ACIN-equal, and we write MAYN W' if they are equal modulo the
Associativity, the Commutativity, the /dempotence of t, and the Neutrality of § for
. Note that ACIN unification and pattern-matching are decidable (cf. [Kirchner 84]).
Classically, we say that a term is flatiened when adjacent occurrences of the symbol
+ are merged, identical terms under an t symbol are assimilated, and all the
occurrences of 6 are removed (cf. [BP 85]). For instance, a flattened form of the
term at((btc)t(dt((ctb)tH(etf,g)))) is t{ab,c,H(t{e,fl,g)} (where braces "{}" recall
that the arguments of 1 are to be considered as a set).

Definition
An t term rewriting system (or, shortly, an 1—TRS) R is a finite set of couples
(Ap) of terms in Tgz(X).
» We define the associated rule-reduction relation as being the smallest binary

predicate ~>% on Tg y(X) such that :
M AN K[Ao], N AN Klpo], (\p)€eR
M~>EN
e We define the associated choice-reduction relation as being the smallest binary
predicate —=»§ on Tg5(X) such that :

KMt N} -»5% K[M], K[M1*N]—=>>5K[N]

KM 18] =5 K[M], X{6rM]-—»EFKML
« We define the reduction relotion associated to R as being = = —=»F U =5,
« Its T-closure is the relation >=»p = [(-<»pu > Hu->51"

M and N stand for any terms in Tg x(X). K is any contexi and o any substitution.

Note :
» For the —=» p relalion, one step of reduction is often called a {ronsilion. Transitions
associated with =% and —»>§ are respectively called rule-transitions and choice-
transitions. The G's are the left-hand sides and the D’s are the right-hand sides of
the rules of R.
« Frrom on operational point of view, —>p is strictly equivalent to the classical term
rewriling syslem generaled by
RUf xty-x , xty>y , xté-x, 61x-x 1.

Nevertheless, these two interpretations of R are viewed, algebraically, in a com-
pletely different manner. This is particularly visible in how the closure is computed,
ag'in the following.
« Intuitively, > p plays the role of

- reflexive, transitive closure w.r.t. the ¢ operator,

- reflexive, transitive and symmetric closure w.r.t. the rules of R viewed as equa-

tions.
This is how >3>5 will capture both the equational aspect of the equations of R, and

the asymmetric (irreversible) aspect of a choice-transition. This leads to the follow-
ing result :
Theorem 2.1 [Birkhoff Theorem. Strong form :]
MODpl=M =N
iff
for all M’ such that M>—»>pM’, there exists M’ such that N>—>M" and M'>—>»M

357

for all N' such that N> pN’, there exists N’ such that M>—»N"" and N'>—»N’
Schematically -

1]
(Throughout the paper, in this kind of diagrams, full arrows stand for arrows existing
by hypothesis, while dashed arrows stand for conclusions of the property being pic-
tured).
Proof :
The proof of that theorem is long and tedious, and of no particular interest for the
purposes of this paper. It can be found in [Kaplan 85].
Note that Theorem 2.1 extends the classical Birkhoff theorem for strictly deter-
ministic specifications. As opposed to Theorem 1.2 (weak form), it does not rely on a
specific t-choice.

Example 2.1
In this specification, !<int>p<proc> stands for : emit the integer <int> and then
behave like the process <prec>. We algebraically specify an operator P such that :
P(0) = ¢ and P(n+1) =106 112p6 1 .. 1 12npd

So, P(n+1) can emit, nondeterministically, any even integer between 0 and 2n. The
operator 'w’ is an auxiliary function, such that n{n) = 2n.

P(0))

P(s(n)) - Pt !nr(n)ips

0 -3

" 0
n(s(m) - s(s(n(n)
We will prove properties about that specification in section 4.

2.2. Termination

For a given nondeterministic term rewriting system R, we say that —=>, is finitely
terminating if there exists no infinite chain :
t1_>>Rt2—>>R s 9>Rt’n$>R R

Now, as in section 1.2, —=»p is operationally equivalent to the classical term rewrit-
ing system RS generated by :
RUf xty-x , xty=y , xt0-x, 5tx-x {.

For classical systems, powerful criteria have been developed in order to check the
finite termination property (cf. e.g. [Dersh 79],[DF 85]). Some works considered ter-
mination of systems with ACIN-like properties ({BK 84a), [BP 85]). These criteria,
based on partial orders in Tgz(X) are applicable to our case. Moreover, it is easy to
check that the { xty»>x , xty-y , xt0-x, 6tx-x | classical rewrite rules do not intro-
duce specific non-termination. Thus :

Theorem 2.2
-3 p is finitely terminating if and only if the classical term rewriting system
Re18SS js finitely terminating.

358

The t—TRS appearing in this paper have been shown to be terminating, using
simplification orderings on the corresponding classical term rewriting systems.

2.3. The Normal Form Function

We recall that a term t is a normal form, or rreducible when there exists no t’ such
that t—>>1". Otherwise, a lerm u is a normal form of a term t if t-2 *"u and u ig a nor-
mal form. Let —=»> be the reduction relation associated to a finitely terminaling
1—TRS R. As in the classical case, the set of the normal forms of a term teTgy(X),
that we denote {NF{t), is finite. One thus has the following version of the Birkhoff
Theorem 2.1, that provides an effective criterion to check equality in MODg :

Theorem 2.3
MODR =M =N iff [NF(M)} = {(NF(N)}}

The proof easily follows from Theorem 2.1, under the previous stronger hypothesis of
finite termination.

3. 1 CONFLUENCE

3.1. Confluence is known to be a crucial property for classical term rewriting sys-
tems. Given a binary predicate -, this predicate is cenfluent iff for any term
tETS,E(X),S

if there exist t; and t; such that t-"t;,ts,

then there exists t’ such that ty,ty~ "t

[fig. 21
Of course, in our framework, a relation —=>5 will never be confluent because of
reductions such as t{Ma—»pt; and tMa—>pts. We are thus led to define a specific
notion of confluence.
Before doing this, we shall add a restriction to the t+~TRS that we censider. We will
suppose thal they are lefi-t-free, which means that the left-hand sides of the rules
are in Tg 5°(X) (i.e. contain no t symbol). The reasons for that are threefold.
» Firstly, the statement of our definitions, and of our subsequent results, will be
much more readable : we will not have to consider ACIN pattern matching or
ACIN unification. Also, the corresponding algorithms will be far less time consumn-
ing.
. Sgecondly, all the examples that we were led to consider are naturally left--iree.
This is mainly why all the forthcoming results, that we obtained first in the gen-
eral case, will be presented under the assumption of left-?-freedom.

*
3 5 jgthe reflexive and transitive closure of ~*. a-b,c stands for a+b and a—c. Similarly for ab-c.

359

» Finally, a non-left-t-free rule such as f(atb)—»>c expresses some context-
sensitive constraint about the choice operator. This would be contrary to our
conception of what the t operator is. In particular, it should be able to choose
between its arguments in a context-free manner,
Theorem and Definition 3.1 _ _
Given a finitely terminating t—TRS R, the following properties are equivalent :
(i) Wtels®(X)
for any t; and 15 in Tgp(X) such that t—=>ptts,
for any t’; such that t;—»pt",
there exists t3 such that t%,to~ ptg
for any t’5 such that t,—>pt’s,
there exists t, such that t'5,t,—>pt,
(ct. [fig. 3])
(ii) VieTgs®(X), if there exist t; and tp in Tgg(X) such that t—»pty,ts then t,
and tp have the same setl of normal forms for —.
(iii) WteTsz®(X), if there exist t; and t; in Tgy(X) such that t—>pt4ts, then
R !: tl = tg.
In that case, —»p is said {o be tconfluent
Schematically :

- ~
\12“”’ x \‘.\ﬁ
-

[fig. 3
Proof : Implications (i) => (i) and (iii) <=> (i) are just a malier of definition.
Equivalence (ii) <> (iii) is a consequence of theorem 2.3. x

Note :
* It follows from Definition 3.1 that for a t-confluent system, the following property is
satisfied :

VLETS,EG(X), \V/tl,tgﬁTS'g(X),

t=>t; and t—=>"ty = Ttaelgp(X) st t;—=>"t; and t—> 'ty (1)

This does nof imply the confluence, in the classical sense, of =>*% ag it would have
been Llhe case il ({) had been quanlified over t € Tgg(X) (cf. [Huet 77]). Here, the
hypothesis that ¢ does not contain any ’t’ symbol is erucial.
* It should be noticed that, compared with the classical deterministic case, 1
confluence is a kind of local confluence : consideration of global confluence would be
irrelevant in our framework.
¢ Intuitively, the ft-confluence condition means that all the non-confluence in a
specification comes from choice-transitions (at the occurrence of 1 symbols), and

4 For instance, the simple system a -+ bc satisfies (1) but is not confluent. Nevertheless, it is t-confluent.

360

not from rule-transitions. We illusirate this notion on several examples.

Example 3.1
A trivial example of a specification that is nol t-confluent is the following :

fla,b) = a , i(a,b)-—»b .
However, the following system is equivalent to the previous one on Tsg®, that is -
confluent :

f{a,b) = ath

This shows again the interest of a specific operator 1, that conveys all the nondeter-
minism allowed in a (1-)confluent system.

Example 3.2
In this example, we specify a toy concurrent language, along the lines of the ACP
framework {cf. [BK B4a,b]). The operators are the following :

¢ -- The deadlock
'<integer> b <process> -- Emit <integer> and behave like <process>
<process>||<process> -- Interleaved execution of processes
<process>||_<process> -- (Technical}
<bool>:<process>|<bool>:<process> -- Guarded choice
The equations are :

plip = pllptplle

(ibpiL p = lib(llp)

sl p - ¢

True:p | Truepp® —=> ptyp

Truerp | False:p’ = p

False:p || Truerp —=»> p’

False:p | False:p” —» &

Criteria developed in the next section allow us to show that this specification is *-
confluent. We shall also prove various properties about it.

3.2. Knuth-Bendix Theorem for t-Convergence

In this section, we consider under which conditions a system is t-convergent. As in
the classical case, we need to consider the notion of critical pair.

Definition 3.2
Consider Llwo rules G, -2»D; and Gz —» Dg such thal, for a morn-vericble
occurrence of Gy, Gy, and Gg are unifiable. Let o be their most general unifier.
The pair :
< Gifw «Dalo, Dyo >
is called a critical pair.

Notes :
e We use the fact that the system under consideration is left-t-free. Thus, neither

G, nor G, contain the % symbol. For non left-t-free systems, we would have con-
sidered rules such that Gy, and G, are ACIN-unifiable.

» We also need to suppose that the rules under consideration are left-linear. This
means that a variable may appear at most once in the left-hand side of a rule. We
now have the following result :

Theorem 3.3 [Knuth-Bendix theorem for 1-TRS]

361

Given a finitely terminating, left-t-free and left-linear 1—TRS R, the following pro-
perties are equivalent :

(i) —>p is *-confluent

(ii) For every critical pair <t,t'> of R, {NFp(1)} = {NFp(t')}

This is the central result of this paper. In particular, it enables us to decide whether
a finitely terminating 1—TRS is confluent or not, via the following method :

» compute all the critical pairs of the system (which are in finite number});

e compute and compare their normal forms.

Note : The implication (ii) => (i) of theorem 3.3 is not true if the left-linearity
hypothesis is not satisfied. A counter-example is given in Appendix 3.
Proof : {cif. Appendix 4).

3.3. Completion procedure

As in the classical case, it is interesting to consider a completion procedure, that
iransforms a set of equations E into a left-t-free, left-linear and t-confluent +—TRS R.
We now concentrate on the left-t-freedom hypothesis. In order to maintain the left-
t-ireedom assumption, we shall suppose that the equations of E are already oriented,
so that the left-hand sides are ft-free. Then left-t-freedom has to be incrementally
ensured.

Example 3.3
We give here a naive example, in order to illustrate the previous poinl. Realistic
examples are provided in the next chapter. Let E be the set:

P(x) = a(x) * b(x) 1 c(x)
Q(P(x)) = d(x) 1 e(x) t1(x) tg(x)
Q(a(x)) = d(x)

The system (when left-to-right oriented) has the unique following critical pair :

< Qlalzib(x)te(x)) , d(x)re(x)tf(x)1g(x) >. The completion pro-
cedure should generate new equations, in order to ensure that these two terms have
the same set of normal forms. These normal forms currently are :

for Q(a(x)tb(x)te(x)) @ { d(x), Qb(x)), Qc(x)) }
for d(x)te(x)M(x)1g(x)} : {d(x), e(x), 1(x), g(x) }

Notice that the term d{x) appears in the previous two sets. In order to ensure the 1-
confluence, it is thus sufficient to generate the equation QbE)N1Q(c(x)) =
e(x)t(x)tg(x) (which is sound). However, this is not acceptable here since we are res-
tricted to left-t-free rules. Our experiment also shows that such rules tend to cause
infinite loops in the completion procedure. For instance, it is often the case that for
a critical pair <ath,ctd>, just adding the rules (a=»c,b—4d) or (a—»>d,b—»d) (when
they are sound) allows the completion procedure to stop, whereas adding the rule
atb—»ctd would lead to non-termination. llowever, it is not possible to systemati-
cally decide which group of rules is sound and may be added.
Notice now that there is one situation in which it is possible to add a left-t-rule,
namely when one of the sets of normal forms is reduced, after elimination of the
common elements, to a singleton. We shall give the completion procedure in this
case. In spite of this restriction, it appeared — surprisingly enough -- that all the
examples drawn from "natural’ theories that we considered correspond to that
situation.

362

Completion procedure

Given

- a set E of equations M=N ,

- a simplification ordering > such that for each equation M=N, M>N and M is -
free and left-linear.

Eg‘—E; Rg‘“gé; ie Q.

If E; = ¢, then STOP-WITH-SUCCESS.

2. Egyt
For each equation M=N in E, do
NFy_y « {NF(M)] - (NF(N)§ ;
NFy_y « {NF(N)] - {NF(M)};
if NFy.y = NFy.y then SKIP ;
if NFy_y|>1 and |[NFy_yl>1 then STOP-WITH-FAILURE
else -- Suppose that NFy._y is the singleton {m]|
Equx ¢ Egux + (m = 1{u, ueNFy_y})

- e

Ej « Eaux
Choose an equation M=N in E,.

@

4. 1f M and N are uncomparable via >, then
if E; # ¢, then choose another rule in E;
else STOP-WITH-FAILURE.

5. -- We suppose that for instance M > N, and that M is -free and
- linear.
Rpodit ¢ {(A—=>p)€R; | A or p contains an instance of Mj
Riy1 « By — Rpoair+ IM—>NJ
Y « the set of the critical pairs of Riyy;
Eipy ¢ By + Rpoan—tM=N} +7Y;
i«i+l;GOTO 1.

With respect to the classical Knuth-Bendix completion procedure, only step 2. is

new. In the classical case, the corresponding "'do'" loop is reduced to the following :
M « NF(M); N « NF(N) -- Both M and N are singletons.
Eaux‘—Eaux'}'(M:]V) -

Examples of the application of the completion procedure are given in the next sec-

Lion.

Theorem 3.4
The completion procedure takes a system E of equations as input, and produces,
when it stops, a system RR of left-t-free, left-linear rules that is finitely ter-
minating, t-confluent, and such that :

ViveTss(X), ERt=t iff {NFpe(t)} = (NFra(t)}
Proof : The correctness of the procedure derives from the following facts :
(1) At the end of every step 5., one has =z = = gp, Thus, for the final step,
= p = = pp. This leads to the conclusion of the theorem, using Theorem 2.3.

(2) Finite termination, left-t-freedom and left-linearity are incrementally ensured
via the ordering >.

(3) At STOP-WITH-SUCCESS, R; = RR is t-confluent, because it admits no more criti-
cal pairs. =

363

Of course, this completion procedure may be given a much more efficient form, as in
[Huet80)]. The oplimizalions proposed for the classical completion procedure, based
on adequate marking and fair rule consideration, carry over to our framework.

4. THEOREM PROVING IN NONDETERMINISTIC THEORIES

4.1. In this section, we address the problem of proving inductive properties in non-
deterministic theories presented by an 1~TRS R. A property M = M’ is an inductive
theorem if and only if it is valid in the class igMODy of the finitely generated models
of the theory. Inductive properties are usually proved in two different ways :
« explicitly using induction techniques, as in [BM 79], [Bidoit 81],
+ via so-called inductionless induction techniques, that involve Knuth-Bendix
algorithms, and in theories that are specified in appropriate ways (ci. refer-
ences below).
In this section, we rely on the second approach. It has been carefully investigated in
the case of classical equational rewrite rules ([Goguen 80], [Musser 80], [HH 80],
[Fribourg 84], ...), rewriting modulo equations ([JK 84]), conditional equations
([Kaplan 84], [RZ 85]), etc. Those investigations led to the design of large systems for
theorem proving (cf. [HH 80], [Lescanne 83]). We are going to extend such methods
to our formalism of nondeterministic systems.

From now on, we suppose that the theory is defined by a left-t-free finitely terminat-
ing 1—TRS R on the signature (5,2}, such that :

(i) Z may be partioned in Constr U Der U {1);,{(6)} , where operators in Constr are
called construciors and operators in Der are called derived operafors. We add
the technical condition that every (75 qnsir)° [the set of terms of sort s formed
with constructors only] must be non-empty, for any s€8S.

(ii) For any t,t' € T qnstr, then t = p v ifft =t

(iii) For any ieDer, for any vector ' of terms of Ts.constr Of suitable arity, for any
TEiNFR[f(t)]g, then risin TS,Constr~

These conditions are commonly imposed in the classical framework. We have to see
how they may be realized in the nondeterministic case.

- Condition (i) is just a methodological choice.

- Condition (ii) is sometimes formulated by saying that R generates no equations
between constructors. This condition is generaly ensured by forbidding, in R, rules of
the form M—=>M', where symbols oceurring at the root of M and M arc both in
Constr.

- Condition (iii) is far more difficult to ensure. It states that functions corresponding
to the derived operators are well-defined with respect to constructors. One can also
say that their definition is sufficiently complete {(w.r.t. Constr). The methodologies
that have been developed in the classical case (cf. [Bidoit 81], [Fribourg B4],...) are
still applicable in our framework. They were sufficient to develop the examples in
this paper, and their principles inspire the examples developed by the ACP group.

We return now to the question of the proofs in theories specified as previously. As in
[HH 80], the completion procedure of section 3 is modified into an inductive comple-
tion procedure, in the following way : the following step 4. is introduced between
step 4. and step 5. of the completion procedure. Note that step 4’. realizes an
exhaustive case analysis on the equation M = M’ chosen (and oriented in step 4.).

364

4. -~ M>M and M is t-free.
it M=c(My, - My)and M’ =c(M'y, - - M) with ceConstr,
then E;« Ei+ (M; = M;)ie[1.a] i GOTO 2.
else
it M=c(M,, - - M)and M =¢ (M4, -, M,) with ¢,c’eConstr and c#c’,
then STOP-WITH-DISPROOF
else
if M=ec(M,, - -,HM,) with ceConstr and M’ is a variable

(or symmetrically in M and M’),
then STOP-WITH-DISPROOF
else

if M=c(My, - M) withceConstr and M’ = t{ty, . . . ,tp}, -- M’ is flattened
then
-if the root symbol of at least one of the t; is a constructor ¢’ # ¢,
then STOP-WITH-DISPROOF else
-if every t;, for je[1..n}, is under the form t; = e(t;1, - = - ,tjq),
then Ei « Ei ¥ (M] = T“’l,j T tp,j;)ji[l..n] ; GOTO 2
else
-if the root symbol of at least one of the t; (but not all of them) is the
constructor c,
then STOP-WITH-FAILURE else GOTO 5

else GOTO &
Now, one has the following result, stating the correctness of that procedure.

Theorem 4.1
Let M = M’ be a property to be verified. We suppose that the inductive comple-
tion procedure is applied toR u { M =M’ {, and eventually stops.
« If the procedure stops with "STOP-WITH-DISPROOF”, then M = M’ does not
hold in fgMODg.
e If the procedure stops with "STOP-WITH-SUCCESS”, then M = M’ is a
theorem of fgMODg.

When the procedure stops with STOP-WITH-FAILURE, no conclusion can be drawn
about the veracity of M=N in the inductive theory.

The proof of theorem 4.1 is similar to the proof for the classical case (cf. e.g. [HH
80]). Actually, it should be emphasized that this principle is rather independent of
the formalisin (classical rewriting, rewriting modulo equations, conditional rewrit-
ing) that is understated, if a correct Knuth-Bendix completion procedure may be
provided for the framework under consideration. Note that there is a new failure
case, when an equation such as c(t) = ¢(l') 4 d is chosen (c being a constructor and
the root symbol of d being a derived operator). In that case, nothing can be said
about the theorem to be proved. We are now going to show how this method applies
to different examples.

4.2. Proof Examples

Example 4.1

We consider again the specification of example 2.1, for which we wish to prove that,
for any n, the signal that P(n) nondeterministically emits is an even number. To that
effect, we first enrich the specification with the predicates 'Q’ and 'even’, with the

365

following rules :

Q&) —=> True
Q('x b p) = even(x)
even(0) —=> True
even{s(0)) - TFalse

even{s(s(z))) —=» even(x)

The predicate 'even’ checks whether an integer is even, and Q checks if the signal
emitted by a process is even. It should be noted that, for a process p = ath (in
flattened form), the set of the normal forms of Q(p) is exactly the union of the nor-
mal forms of Q(a) and Q(b). This allows the fact that @ has a "sufficiently complete"
definition (in the sense of this chapter) to be verified.

Now, one wants to prove the inductive thecrem : Q(P(n)) = True , (\vn). It is thus
added to the whole system, that currently consists of :

P{0) -=> 4 (1)
P(s(n)) —=> P(n) 1 !n(n)lps (2)
(0) = 0 {3
n(s(n)) - s(s{n(n))) 4)
Qo) —=> True 5)
Q(x b p) —=> even(x) (8)
even(0) = T (7)
even(s(0)) = F (8)
even{s(s(0)) —> even(x) (9)
Q(P(n)) —=> True (10)

Note that rules (1) to (9) define a specification that verifies the hypotheses of 4.1 :
the constructors are T and F for the booleans, and <int>b<proe> for the processes.
Other operators may easily be checked to be derived operators. Note also that rules
(1) to (9) admit no critical pair. We now follow the application of the completion pro-
cedure to the whole system (1) to {10).
e There ig a critical pair between (1) and (10) :

<Q(8), True >, that normalizes into <True,True>.
» There is a critical pair between {2) and (10) :

<Q(P(n) * ![n(n)]p6) , True >. The normal forms of Q(P(n) + {[n(n)]b38) are {True ,
even{m(n}){. Thus, the completion procedure generates the new rule :

even{n{n)) —=> True (11)

« There is a critical pair between (3} and {11} :

<even(0) , True>, that is eliminated, as before, by normalization.
* There is a critical pair between (4) and (11) :

<even(s(s(n(n))) , True > . Now, even(s(s(m(n)))—>g_y; True. Thus, that critical
pair is eliminated, and the inductive completion procedure stops with success, hav-
ing generated no new equation between constructors. This concludes the
proof. =

Example 4.3 (Example 2.4 continued)

For the specification given in example 2.4, the constructors are True and False for
the booleans, 0 and succ for the integers, and I<int>p<proc> for the processes {plus
processes 8N4 Oprocesses). The previous proof method allowed us to prove the following
properties :

366

(piLp)ILp”
pli(e lip")
pl(plip™)

it
el
F=

L
[(p’
(p’

i

The proof scripts, being much longer than for example 4.2, are not given here. This is
also true for the next examples. They are provided, though, to illustrate the interest
of our methods.

Example 4.3

We slightly modify the previous example in order to include synchronous corminuni-
cation, still in the spirit of the ACP works. The construction "¢ !!i > p’ stands for
sending message i (an integer) along channel ¢ (conventionally represented by an
integer), and then behaves like the process p. ‘¢ ?7?ip p' is defined analogously.
Synchronous communication (defined by "'} may occur only via two channels the
surn of the labels of which is less than or equal to three (recall that this is intended
to be a toy concurrent language !). The construct I<int>p<proc> exists as before
{comimunication to the outside world). The specification itself is :

X+ 0 —=> X

% + 5(y) = s(x+y)

pllp’ = (plLp)r(Le)teip)
(tibp L p = tip(pllp)

sl p > @

{(etibp)lLyp = 6

(c?ipp)llLp = 6

(eibp)| (i b p) - 6

(e?ibp)l(c??i'bp —=> &

(e?ibp)l(cthbp) —=» Aux(c+c,pp)
(e?ipp)|(e??pbp) —=» Aux(c+c,pp)

Aux(0,p,p’) = Whplip
Aux(s(0),p.p") = O pbplp
Aux(s(s(0)),p,p’) = IssO) b pllp
Aux(s(s(s(0))).p.p") = s(s(s(O) bpllp
Aux(s(s(s(s(x)))),pp) —=>

True:p | True:p’ = prp

True:p | False:p’ = p

False:p | True:p’ —=» p

False:p | False:p’ = §

Note that the equations defining synchronous communication might have been given
more simply by :

367

x < s(s(s(0)})) = True => Auxgx.p,p‘g = xp pip’
x < s{s(s(0))) =False => Aux(x,p.p’)] —=» o

These are conditional rewrite rules, which we do not know, yet, how to include in our

framework.)) i

The constriuctors of the processes in the specification are !<mt>}a<proc_:>,

<int>N<int>p <proc>, <int>77<int>p<proc>. We are able to prove the following

properties :
p|(p’]p") = pip')i "
1 é%’h v = D)
bpl (bip'bmp) = (bip] bup) [brip”)
b:iptglvp = (bip] b:p’ T%b:q%b p%
bp] bi{p 1 q) = (bplb:p)1t{bplbig

An other interesting property to establish would be :
o C!;‘XI"’]]D l e?2yb p* = p |l p'ly\x] ,
However, this is not formalizable via a finite number of equations, because of the
substitution operation p’[y\x]. This may be simulafed in the following way : one
explicitly specifies the sort of the arithmetlic expressions, and one redefines ade-
quately %,he sort of processes. Then, the substitution operation becomes an operation
of the specification :
—i Nl Iprocess X arith-expr X integer - process,

that is finitely axiomatizable. This is done in details in [Kaplan 86]. We were then
able to prove the previous theorem via our methods.

5. CONCLUSIONS

In this paper, we have considered the feasibility of term rewriting systems taking
into account nondeterminism. In particular, we have managed to maintain the
coherence of the following "waterfall” scheme :
algebraic behaviour : terms, equations, models
=> simulation of equalions via rewriting. Birkhoff theorem
= tlerminalion, confluence. Knuth-Bendix Theorem
—> completion procedure. Inductive completion
==> proof in well structured theories

The main characteristic of this work is that it leads to eutomatic theorem proving
methods, extending principles now widely used in the deterministic framework, and
implemented in large systems, to nondeterministic specifications. We have
developed several examples thal illustrate the applicability of the method to non-
trivial specifications.

The questions lhal need furlher allenlion are essenlially the lollowing :

- how can the procedures we have designed be efficiently implemented ? We have
already shown the soundness of several optimizations : avoiding ACIN pattern-
malching and unificalion through the assumption of left-1-freedom, ete. However,
computations are still time and space consuming ;

- we also have to determine the precise range of application of our methods. We feel
that we have shown their applicability to nondeterministic computations. Our long-
term project is the congideration of concurrent computations, in the spirit of our
last examples. The proof methods that we have designed apply to properties slightly
different from those usually considered in this field. In particular, we seem to be
able to deal with almost arbitrarily complex data structures. For instance, we could
specily and prove facts about a complicated kind of communication channel i
example 4.3. However, we cannot take into account non-terminatihg computations.
A possible approach would be to consider only their finite approximations. For

368

example, in order to specify a process such that P = !x p P, we can synthesize the
process P such that P(0) =46 and P(s(n)) = !xbP(n), and prove properties about
P(n), for every n. But this will not allow to deal with properties such as f{airness or
partial correctness. The work of [PF 85] might be relevant in this respect.

Acknowledgmentls : We wish to thank C.Choppy whose work [CJ 85] stimulated our
personal research in the field. It is also a pleasure to thank a reviewer of a previous
version of this work for very careful reading, and suggestions.

It has been partially supported by the Esprit METEOR project. We also thank the
Laboratoires de Marcoussis for their hardware support.

369

BIBLIOGRAPHY

[ADJI 78] J.A.Goguen, J.W. Thatcher, E.G. Wagner,

An initial algebra approach to the specification, correctness and implementation of abstract data
types, in Current Trends in Programming Methodology, Prentice-Hall N-J. (1978)

[Apt 84] K.Apt,

Ten years of Hoare's logic : a survey. Part Il : nondeterminism, . Theoretical Computer Science 28
{1984).

[BK B4a] J.Bergstra, J.Klop,
Algebra of communicating processes with abstraction, CWI Report CS-R8403, Amsterdam (1984).
[BK 84b] J.Bergstra, J.Klop,

Algebra of communicating processes. Part II, CWI Report, Amsterdam (1984)

[Bidoit 81] M. Bidoit,

Une methode de presentation de types abstraits : applications, These de 3e ¢ycle, Orsay (1981)

[BM 79] R. Boyer, J.5. Moore,

A computational logic, Academic Press, (1979).

[Boudol 84] G.Boudol,

An "asynchronous" calculus MELJE, 172 NATO Summer Schocl, La-Colle-sur-Loup, France (1984).

[BP 85] L.Bachmai, D.Plaisted,

Associative path orderings, Proc. 15¢ RTA Conf., Dijon (1985).

[Brookes 83] S.D.Brookes,

On the relationship between CCS and CSP, Proc. 10 [CALP Conf., LN.C.S., Springer Verlag (1983).
{Broy 84] M.Broy,

On the Herbrand Kleene universe for nondeterministic computations, Proc. MFCS 84 Conf., LN.C.S.,
Springer Verlag (1984).

{BW 81] M.Broy, M.Wirsing,

On the algebraic specification of nondeterministic programming languages, Proc. CAAP-81 Conf.,
LN.C.S N.112{1981).

{CJ 85] C.Choppy, C.dohnen,

Petrireve : proving Petri net properties with rewriting systems, Proc. 15¢ RTA Conf., Dijon (1988).
{Dersh 79] N. Dershowitz,

Orderings for term rewriting systems, Proc. 20th Symposium on Foundation of Computer Science,
pp.123-131 (1979).

[DF 85] D.Detlefs, R.Forgaard,

A procedure for autematically proving the termination of a set of rewrite rules, Proc. 15t RTA Conf.,
Dijon (1985).

[Fribourg 84] L.Jribourg,

A narrowing procedure for theories with consiructors, Proc. CADE Conf., Napa (1984).

[GM 8B1] J.Goguen, J. Meseguer,

Completeness of many-sorted equational logic, SIGPLAN Notices {1981).

{Goguen 80] J.Goguen,

How to prove algebraie inductive hypotheses without induction, 5th CAD, Les Arcs- France (1980).
[Hennessy 1982] M.Hennessy,

Powerdomains and nondeterministic recursive definilions, Symposium on Programming, L.N.C.S N.137
{1882)

[Huet 77] G. Huet,

Confluent reductions : abstract properties and applications to term rewriting systems, Procc. 18t
FOCS Conf., Providence (1978).

[HH 80] G. Huet, J-M. Huliot,
Proofs by induction in equational theories with constructors 215t FOCS (1980).
[HO 80] G.Huet, D.C. Oppen,

Equations and rewrite rules : a survey , Formal languages : Perspective and open preblems, R. Book

370

Ed., Academic Press (1980).

[Hoare 78] C.A.R.Hoare,

Communicating sequential processes, CACM 21 666-877 (1978).

[JK 84] J.P.Jouannaud, C.Kirchner,

Completion of a set of rules modulo a set of equations, Proc. of the 11t POPL Conference {1984).
[Kaplan 84] S. Kaplan,

Unification, narrowing with fair conditional term rewriting systems, Internal L.R.I. Report (to appear).
[Kaplan 86] S. Kaplan,

A Birkhoff theorem for nondeterministic specifications, Weizmann Institute Internal Note, Rehovot (to
appear- 1988)

[KB 70] D.E. Knuth, P.B. Bendix,

Simple word problems in universal algebra, Computational preblems in abstract algebra, J.Leech Ed,,
Pergammon Press (1970).

{Kirchner 84] C.Kirchner,

A new equational unification method : a generalization of Martelli-Montanari's algorithm, Proc. CADE
Conf. {1984).

{Lescanne 83] P.Lescanne,

Computer experiment with the REVE term rewriting systems generator, Proc. of the 10t popL
Conference (1983).

{Milner 80] R Milner,

A calculus of communicating systems, L.N.C.S. N.92, Springer Verlag (1980).

[Musser 80] D.L.Musser,

On proving inductive properties of abstract data types, Proc. 7 Conf., Las Vegas (1980)

[Nivat 80] M.Nivat,

Nondeterministlic programs : an algebraic overview, Proc. of the IFIP 80 Conf., North-Holland Publishing
Company (1980).

[PF 85] S.Porat, N.Francez,

Fairness in term rewriting systems, Proc. 15t RTA Conf., Dijon (1985).

[Poigné 81] A.Poigné,

On effective computations of nondeterministic schemes, Proc. of the CAAP-81 Conference, L.N.C.S.
N.112 (1981)

{RZ 85] J.L.Remy, H.Zhang,

Contextual rewriting, Proc. 15¢ RTA Conf., Dijon (1985)

371

Appendix 1 : Definition of a t-choice

Let 8,2 be a t-signature. A t-choice C is an application :

CITs’zXN"*iI,zg
such that :
» let & be in N', and te Tgy. If @ is not an occurrence of t in Tgy then C(t,w) is
undefined.
¢ Lel §,4,t" be in Tsy and let K be a context. A t-choice must perform the same
choices in T=K[tt{t'1L"})] and in 7'=K[(t1)tt""]. Let w stand for the occurrence of
the generic variable in the context K. Then, for instance, the occurrence of the t' is
w.2linT and is w.1.2 in 7. Thus, the following constraints must be fulfilled :

- C(rw) =1 -~ tis chosenin
then C(m,w) =1 and C(T'w.1) = 1

-If Clr,w)=2and Clr,wl) =1 -~ 1" is chosenin 7
then C(7",w) = | and C(7",w.1) =2

-l C(r,w) =2and C(r,w.2) = 2 --1" is chosen in 7

thenC{r",w) =2
s One must have also, with the same conventions :

- C(K[xty].0) = ~C(Klytx],w) %, yE Tg5°
- C(K[x16]),0) = 1 NxeTgx
-C(K[61x],w) =R VxeTsy

It is then easy to check that Tg g/~ is a t-model, just taking as eval’s® the applica-
tion associating to each term of Tgy its class for ~¢.

Appendix 2 : Proof of Theorem 1.2

We just need to prove the last point, namely that :
MODEEM =N iff M~pg, N, for MNeTgy

Here, M and N are ground terms. We can also suppose that E contains only equations
between ground terms, possibly in infinite number. This is because a system of equa-
tions with variables is equivalent to the set of its ground instances.
To establish the properly, we shall use the classical Birkhofl Theoremn in classical
equational theories. We introduce the new sorts 'int’ of the integers, and 'int-string’
of the integer strings with the signature :

O0:-int, s:int - int,

€= int-string, u:int - int-string, .: int-string int-string - int-string
and the equations :

es5=s, se=s, s(ss7)=(ss5Y).5" (\Ws,s, s €int-string).
It is easy to check that the initial model, in the classical sense, of the previous
specification has domains isomorphic to the integers and the integer strings.
We introduce a new operator <, > : s int-string » new-s , 'new-s’ being a new sort. We
shall also use the new constant 'Error’ of 'new-s’. Now, a t-choice being given, we
define :

(a) the following (infinite) sel of equations T (with the conventions of Appen-

Swith ~1=2and ~2=1

372

dix 1} :
+ I C(i,w) is undefined, then <i,5> = error
{where @ stands for the element of int-string representing o).
o If C(K[trt'],@) = 1, then <K[t1V'], &> = <K[t],&.5(0)>
o If C(K[t1t'],0) = 2, then <K[t1t’'],w> = <K[t].&.s(s(0))>

and

(b) the (infinite) set of equations % :
for every t.t'€Tgy such that MODg&=t=t’, for every weint-string, then <t,w> =
<t,w>

We now build, for every t-model A of MOD£, a model (in the classical sense) @(A) of

CUF in the following way : for any me€aA,

- if m=eval¥ (u), for a ueTys s, then m is mapped into ¢(m) = classp g {<w,0>),
- else m is mapped into classp,p(error).

One can check, in the previcus definition, that the choice of i does not matter. Then,
- Let AcMOD§. It is clear that Al=M = N if and only if the associated model ¢(A)
validates, in the classical sense, the equation <g(M),0> = <g(N),0>.
- By the classical Birkhoff theorem, the previous condition is true for every A if
and only if <p(M),0> =,z <¢(N),0> (here, = p,p is the classical congruence
generated by CUE).
- The last properly is again easily showed to be equivalent to M ~g,pz N.

This concludes the proof of the theorem. .

Appendix 3 : The Hypothesis of Left-Linearity in Theorem 3.3

Consider the following system R : -~ a, b, ¢ and k are constants. x is a variable.
glx,x) -=>» x
k -3 ath

gla,b) —=» ¢

g(b,a) —» ¢
R is a finitely terminating, left-t-free, but not left-linear system. Condition (ii) of
Theorem 3.3 is trivially verified, since R has no critical pairs. However, R is not -
confluent, since g(k,k)eTgs®(X) is such that g(k,k)—=»k , g(atb,k) , and {NF(k){={a,b}
while {NF{g(atb k)}i={a,b,c}.

Appendix 4 : Proof of Theorem 3.3

(1) = (i)

"I'his comes directly from Theorem 3.1.

(i) = (1)

Let t,t’ be in Tgx(X). We say that t—3>0nt’ if and only if there exists a rule A->p, a
substitution o : X»Tgs®(X) and an occurrence w in t such that t); = Ao and t' =
t{wepo]. We have the following lemma :

Lemma :
Under the assumption of theorem 3.3 and hypothesis (ii},
if t =0, U, then {(NF(1)] = {NF(t')}

Intuitively, the lemma states that along a rule transition in which no 't' symbol

373

disappears, the set of the normal forms remains unchanged. Note that t ig allowed to
contain ‘1’ symbols, but not in the subtree on which the strict reduction operates.
Now, implication (ii) = (i) comes directly from the lemma : if teTg5®(X) and t—
>ty,tp, then INF(13)) = INF(ip)d = INF(1)3. =
Proof of the lemma :
Proof is by reductio ad absurdum. Let P stand for the following predicate on Tg5(X) :
P(z) iffi WteTgzp(X), 2=kt => (NF(z)] = (NF(t')1.
If the lemma is false, then there exists at least one t&Tg 5(X) such that :
~P(t) and (WieTgp(X), t=>*t => P(1))
(—>* stands for the irreflexive and lransitive closure of ~3).
Else, one could construct an infinite sequence of terms (L;);eyx such that ~P(4)
and 4;—=>4,,. This contradicls the finite termination hypothesis on -,

Now, for such a t, we shall prove that, actually, P(t) is true, which is contradictory.
We suppose now that t-7%,.,t" and we prove that {NF(t)} = {NF(t')!.
a) It is clear that {NF{t)} 2 {NF(1')}, since 1—>t".
B) In order to prove the converse, let 7 be in {NF(t)}. If t=7, then we obtain a con-
tradiction since t is & normal form and t—>t’. Thus, there exists a term teTgy(X)
such that t—3>t—»>™r. The proof proceeds by case analysis on the transition t—=>t.
£.1) If t—>>°t, (i.e. the transition is a choice-transition), there exist an occurrence &
in t, and two terms M,N in Tg»(X) such that tjy = MN, and t=t[&<M] or t=t[e«N].
Now, for two occurrences v and v’ of a term ¥, we say that vx<v’ if v' is on the path
from v unto the root of ¥, and that vdwv' if neither v«<v’' nor v'«v. We consider three
subcases. R B

* If o L & then suppose that, for instance, t=t[&«M]. Let t° stand for

t{wepo,iM] (which makes sense since wlé). Now, t—>t, thus P(t) holds. Since

=00t t and t” have the same set of normal forms, and thus 7€ {NF(t")}. But,

because t'—=>1", we also have : 7€ [NF({")}.

Pictorially :
Y
o strict
t '
\\r
strict

ool
_—-t
*

-

-

-
T
*If & « w, then t|, = A¢ contains a symbol "+, which contradicts the strictness of
the transition t—» gyt B
*If @ = &, then we suppose, for instance, that t=t[&« M] ("M is chosen’). Then,
there are two possibilities :
» ¢ is an occurrence of Mﬂ(rgore rigourously, the prefix w of w is an
occurrence of M). Then, let t'=t[wepo]. Then t-357,.:t", and we conclude as
before.
= w is an occurrence of N. Then t'—>°t and, thus, 7€ {NF(t')}
This concludes the case §.1.

’

374

B- 2 t—»71, then there exist an occurrence & in i, a rule A—>p and a substitution
0:X-Tgp(X), such that t =AG and t= t[w—po} As before, we proceed with the analysis

of the respectlve locationsofwand @ in t.
el w L &, then let t'= t[wt-po &+«po] (which makes sense since wli). As before,
t%>stmt t, thus INF(t)] = fNF(t’X So 7€ {NF(t*)}, which implies T {NF(t')}.
«If & « @, there are two subcases to consider.
» & corresponds Lo a nonwvariable occurrence of Ao. Let u be the smallest
unifier of Aj; and A. There exists a substitution v such that uv=cui (we can
assume ’Lhat the variables appearing in o and o are distinct). Then
<pp , M[td~pu]> is a critical pair. By (ii), the two elements have the same
set of normal forms, and it is also the case for po=t'|, and }\o[de—p’&]:t,w.
This leads easily to : T€ (NF(t")}. B
= i3 corresponds Lo a variable occurrence x of Ao, Let Var{A) = {x,y;, - -+ ,yni. L
stﬂl matches the rule A—=>p at occurrence w« via the substitulion:
=% P0, Y1 2Y10, - - ¢ Va2 Yool Let t'=t[wepd’]. Then: t—»stmtt Here, the
fact that R si left-linear is important in order to apply P to i ; otherwise, we
would just have : U—=> Tt L. Thus, as before, T€{NF(L')], and Te NF{L')1.
o If w = &, then we conclude as in the previous subcase.
This concludes the proof of theorem 3.3.
-

