
VERIFICATION OF AN ALTERNATING BIT PROTOC~. BY MEANS OF PROCESS AtGEBRA

J,A, BERGSTRA, J,W, KLOP

Centre for Mathematics and Cemputer Science

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

We verify a simple verslon o? the alternating bit protocol in the system ACP~ (Algebra of
Communicating Processes with silent actions) augmented with Koomenls falr abstraction rule.

INTRODUCTION

Let D be a finite set of data. These data are to be transmitted through an

unreliable medium from location 1 to location 2, by means of a transmission

protocol T.

With rl(d) we denote the act of reading datum d at location I, whereas

w2(d) denotes the act of writing value d at location 2. The external (higher

level) specification of the behavieur of T is this:

T = de~D rl(d).w2(d).T

From its initial state T is enabled to read any d e D, thereafter T will write

d at 2 and subsequently return to its initial state.

A very interesting mechanism to implement T is the alternating bit pro-

tocol (from [2]). This protocol turns out to be sufficiently complicated to

serve as a test case for protecol verification methods (see HAILPERN & OWICKI

[7] and LAMPORT [8] for instance).

We will present a description and verification of ABP (the alternating

bit protocol), in terms of process algebra. Our presentation makes extensive

use of ACP~, Algebra of Communicating Processes with silent actions, as well

as of ideas by C.J. Koomen from Philips Research.

The advantage of process algebra in contrast to techniques based on

temporal logic and Hoare-style verification is mainly that the entire veri-

fication is done in terms of calculations on the protocol itself. Both safe-

ty and liveness are simultaneously dealt with in the equational calculus of

process algebra.

The structure of this note is as follows:

1. Explanation of the architecture of ABP.

2. Axioms and rules of pr0cess algebra.

3. Verification of ABP.

This work was sponsored in part by ESPRIT contract 432 METEOR.

Remark. It must be said that ABP as explained here is only one of the many

variations on the same theme, and among these a rather simple one. Process

algebra is well suited to specify individual protocols; at present the speci-

fication of classes of protocols is not supported by process algebra. For

other issues of a philosophical nature we refer to [i0] and [i!].

i. ARCHITECTURE OF ABP

1.1. The protocol can be visualised as follows:

1 2 >

There are four components:

S: sender. S reads data d at 1 (d6 D), and communicates the data to channel

K until an acknowledgement has been received via channel L.

K: data transmission channel. K communicates data in DO u D1 (Di = {dilde D}),

and may communicate these correctly or communicate an error value e. K is sup-

posed to be fair in the sense that it will not produce an infinite conse-

cutive sequence of error outputs.

R: receiver. R receives data from K, outputs them at 2 and sends back acknow-

ledgements via L.

L: acknowledgement transmission channel. The task of L is to communicate boolean

values from R to S. The channel L may yield error outputs but is also sup-

posed to be fair.

The components S,K,R and L are processes. The protocol T is described by

?M(SlIKIIRIIL)-

Here I[denotes parallel composition and ~H encapsulates S I{KIIBIIL by requiring

that no external processes may interfere in the communications at ports 3,4,5

and 6.

In order to obtain an abstract view of the protocol the operator r I is

applied, which replaces internal actions (in I) by the silent action r. Thus:

T = ~I~(SII~ILRHLI

I0

Verification amounts to a proof that this T satisfies the equation

T = d6~D rl(d).w2(d).T I

1.2. Structure of the com~onents of ABP.

1.2.1. Data and actions.

D is the finite set of data that is to be transmitted by ABP. For d 6 D,

dO and dl are new data, obtained by appending 0 resp. 1 to d. We write:

DO = {dO I d6 D t

D1 = {dlidED}

D = D u DO u D1 u(0,l,e).

D is the set of data that occur as parameter of atomic actions.

For t6 {I, 6} there are read and write actions:

rt(a), read a 6D at t

wt(a), write a 6~ at t,

Here t 6 {i 6} is called a port (or location, but we prefer port).

Communication takes place at ports only:

rt(a) lwt(a) = j,

where j is an internal action. Another kind of internal action is i. It cor-

responds to internal choices made by K and L. The entire alphabet A of pro-

per actions is then as follows:

A = {rt(a)) 1 5 t~6, a &~D}u {wt(a) I l~t~6, a~ ~}u{i,j,~}.

The communication function .I- :A ×A-->A yields $ (deadlock or failure) ex-

cept in the case mentioned before: rt(a) lwt(a) = j.

Of course the abstraction operator will introduce Milner's silent action ~"

and the universe of discourse consists of the processes over A U = A u{<}.

Furthermore H~ the set of subatomic (or communication) actions is:

O U {rt(a) ,Wt (a)} ,
t 6 {3,4,5,6} a~]D

and I~ the set of internal actions ks just {i,j~.

1.2.2. The individual components.

We will first give the well-known state transition diagrams (or 'process

graphs') for S,K,L and R. Here a node is a state and an arrow denotes an

action (i.e. state transition of the process). Both state and actions can be

parametrised by data.

![

Channels:

K:

(ae DO u DI)

K = aeDOuDl r3(a),(i.w3(a) +i.w3(e)).K

L:

L = z__ r6(a).(i.w5(a) +i.w5(e)).L
a~{0,1}

Note that K and L, after receiving input, have a nondeterministic choice,

by doing one of both i actions.

At the level of this equational specification of K and L fairness is

not yet mentioned. Fairness will come in when abstraction is applied to re-

move the i's.

Se~der:

S

r5(I) ~,w3(dO
rs(e))

.... __)0//rl { d)

rs(o)

rs(0)

rs(e)

S = S0.SI-s

= n (n= 0,1) S n Z rl (d) .S d
d6D

n w3 (dn) n S d = .U d

n = n + r5 (n) U d (r5 (l-n) +r5 (e)).S d

12

Receiver:

I
r~+(dO~

r4(dl)

w6(l] ._~4(dI)

.... ~/~2(~)

[
R = RI.R0.R

Rn= [d~D r4(dn)+ r4(e)).w6(n).R n + j

+ 7- r4(d(l-n)).w2(d).w6(l-n)
d6D

(n= 0,i)

2. PROCESS ALGEBRA

2.1. ACP____~.

Let A be a set of atomic actions and . I - : A~A-~A a communication function,

which is commutative and associative and for which ~ acts as a zero.

A r denotes Au{X); ~ is the silent action, that results from application of

the abstraction operator.

The signature of operations of processes that we will use is this:

Table I.

I

alternative composition (sum)

~equential composition (product)

parallel composition (merge)

left-merge

eo~unication merge

encapsulation

abstraction

deadlock/~hilure

silent action

IS

An ACP~ algebra is an algebra of the above signature (where I extends the

communication function on atoms) and which satisfies the axioms in Table 2.

Here H~ A, I~ A, ~ I and a,b,c range over A.

ACP~

x + y = y + x AI

x+(y+z) = (x+y)*z AZ

x+x = x A3

(x + y)z = xz + yz A~+

(xy)z = x(yz) AS

x+~S = x AO

6× = 6 A7

(~Ib)l= = al(blc) c2

~la = 6 C3

, l l y : , l l . y * y L ' + , tY c.1

a~L x = ax CM2

(ax)Ly = a(xIJy) CM3

(×+ y)ILz = ,L, + y[[_' cM4

(a x) l b = (a l b) x CM5

~I(b~) = (alb)~ cM6

(ax)l(by) = (alb)(xIJy) CM7

{x+y)Jz= xlz + ylz CM8

xJ(y+z) = xly + xlz CMg

aH(a) = a i f a~H OI

BH(a) = 6 i f a ~ H D2

aH(X + y) = aH(X) + @H(y) D3

aH(xY) = BH(X).aH(y) D~

x~ = x T!

Tx + x = ~x T2

a(Tx + y) = a(Tx + y) + ax T3

T~_X = ~x TMI

(~x)~Ly = ~(xlly) TM2

~Ix = ~ TCI

x l T = ~ TC2

(~x)ly = xly TC3

xl(Ty) = xly TC4

TI(T) = ~ TII

~l(a) = a iF a~ l T12

~l(a) = ~ i f a (l [13

T i (x+y) = Tl(x) + Ti(y) TI4

zi(xy) = ~!(x) .Ti(y) TI5

Table 2.

i 4

ACPr algebras satisfy the combinatorial identities shared by finite proces-

ses. In order to deal with infinite processes we will further assume that

the following second order principles and rules are satisfied in the process

algebra in which we model ABP, the alternating bit protocol.

I. Recursivespeqificgtipnp{incip!e (RSP)

II. Koomen's fair abstraction rule (KFAR)

III. Handshaking axiom (HA)

IV. Expansion Theorem (ET)

We will explain I-IV below. First, however, we allow ourselves some methodo-

logical remarks.

Remark i. At present it is not possible to provide a remotely complete axio-

matisation of processes that is of use "in general". But the equational (sub)-

systems ACP and ACP~ are a fixed kernel. Here ACP consists of the axioms

AI-7,CI~3,CMI-9,DI-4, i.e. the left column of Table 2.

Remark 2. The system ACP was introduced in [3], and ACP r was introduced in

[4]. We view ACP r as a reformulation of the basic issues of Milner's CCS [9]

Comments on the relation between ACP~ and CCS are in [4].

Remark 3. Koomen's fair abstraction rule has been derived from an idea that

C.J. Koomen and R. Schutten used in experimental work on protocol verifica-

tion . At Philips Research Eindhoven they have developed a formula manipula-

tion package based on CCS.

2.2. Explanation of the principl@s I,II,III,IV.

2.2.1. The[ecursive specification principle.

Let X,Y,Xi,Y i (i6~) be variables for processes. We write X for {xili6 co}

and Y for {Yili6~] . If z is a collection of variables then t(Z) denotes

an ACP r term over Z.

Let EL A. We call the term t(Z) E-guarded if each variable in t(Z) is

preceded by an atom in E and t(Z) does not contain an operator ~I" Here

'preceded' is defined thus: if t is a subterm (occurrence) in x and s in

y, then t precedes s in x.y; likewise in x~y (but not in xlly).

Examp!e: a. (X{IY) + b.X and a.X. (XIIY) +~.(b~ X) are {a,b}-guarded, but

~.X + b.Y, ~XIa¥ and (aX[IY)~bZ are not E-guarded for any E.

We call an equation X = t(Z) E-guarded if t(Z) is E-guarded.

15

Remark. The reason for excluding operators ~I in an E-guarded term is that

it is problematic to find a suitable definition of guardedness in the presence

of such operators. Here 'suitable' refers to our wish to obtain unique pro-

cesses (by RSP; see below) as solutions of systems of guarded equations.

E.g. the following system has infinitely many solutions:

x = a.r{b } (Y)

y = b.~{a}(X)-

Namely, every X = a.p with a,b not in the alphabet of p is a solution.

DEFINITION. A recursive specification SE(X;X) is a collection of E-guarded

equations (over ACP):

X. : t.(X)
1 1

together with an equation

x = t(X).

Remark. If P'Pi (i6oJ) satisfy the system of equations SE(P;Pili6~o) then

we want to view S E (X;Xilie~) as a specification of P involving auxiliary

processes Pi (i&~)-

Of course this definition includes the case of a finite specification.

The recursive specification principle (RSP) states that a recursive

definition singles out a unique process (if any). In more formal notation:

SE(X;X) sE(Y,¥)
(RSP)

X=Y

2.2.2. Koomen's fair abstraction rule (KFAR).

This rule allows to compute %-i(X) for certain X, thereby expressing the fact

that certain steps in I will be fairly scheduled in such a way that eventually

a step outside I is performed. This is the formal description of KFAR:

(KFAR)

Vn6~ k Xn= in'Xn+l+Yn (inE I)

•l(Xn) = I-.I-I(Y0 +... +Yk_l)

16

Here Z k = {0, k-l} and addition in subscripts works modulo k.

We illustrate the effect of KFAR in two simple examples:

(i) Suppose X = i.X + a where a~ I. Then an application of KFAR yields:

~I(X) = T.a. This expresses the fact that, due to some fairness mechanism, i

resists being performed infinitely many times consecutively.

(ii) Let Y = i.Y, then TI(Y) = r,~. To see this note that Y = i.Y +~ and apply

KFAR.

For a different approach to fairness in processes we refer to DE BAKKER

& ZUCKER [i].

2.2.3. Axioms of standard concurreqc~.

We will adopt the following axioms of *standard concurrency*; all axioms

(1)-(6) hold for finite processes from ACP~. In [5] these axioms are proved

simultaneously with induction on term formation; we will only need here

axioms (3)- (6) .

(2) (xlay)~_z : x}(ay~ z)

(3) xly = ylx

~4~ xlly = yltx

(5) x[(y[z) = (xly) Iz

2.2.4. Handshaking axiom (HA).

The handshaking axiom expresses the fact that all communications are binary,

i.e. work by means of handshaking.

i
mA) xtYIz :

2.2.5. Expansion Theorem (ET).

This theorem, in the context of CCS due to MILNER [9] and for ACP r formulated

in [4], can be shown for finite processes from ACP r. (See [5].) The Expansion

Theorem presupposes HA and the axioms of standard concurrency (except (i),(2)).

The following notation is used: Let Xl,...,X k be processes. With X i we denote

merge of all X n such that n 6 {i k}-{~ . With X i'j we denote the merge

of all X such that n£ {i k}-{i,j}.
n

ET is then formulated as follows (for k > 3):

17

{ET) xi~Xi ~ (xilxj) ~ X i,j
Xlll'"llXk = 1 @ i(k + l¢i<j&k

ET is an indispensable tool for the calculation of terms of the form

Xl! 1 ... fIX k. Essentially it is a generalisation of the axiom CMI of ACP~-.

3. A VERIFICATION OF ABP

Let T* = ~ rl (d) .w2 (d) .T* and T = ~ISH(SIIKIILIIR) in the notation of Sec-
d D

tion i. Section 1 fixes a set of atomic actions A and a communication function

on it.

Using ACP U + RSP + KFAR + HA + ET we will show: T = T*. Stated different-

ly:

[

rI~H{SH~IILHR) = d~D rl(d).w2{d~.h~(SllKilLllR)

For the proof we use the following notation:

Using this notation we have:

'S K]

L - L I ~ . ~ ° . ~ J "

For b 6 { 0,1} we write

{S b S 1-b X]
Tb(x,y) = r @ - "- " K

In particular, T = TO(s,R).

CLAIM: Tb (X,y) ~ I ~ l

L "

The claim proves T=T * as follows:

18

 is1s°sl o

rl(d).w2(d).Tl(sI.s, R0.R) =
deD

S0-sl-s I K]
r l (d).w2 (d). 7 D r l Ca).w2 (a). r I ~H ~ . R . - - ~ - p ~ = deD

rl (d} .w2 (d) . e ~ rl (a) .w2 (a) .T .
deD a D

Thus T satisfies an CA-guarded) recursion equation which is also satisfied

by T*. It follows by RSP that T = T*.

PROOF OF THE CLAIM. We write

= S .S .X K --5 Gb<x,y) ~[b 1-b ~
L IR1 bRbYJ

and

IR - . R . Y

Terms l i k e Gb(x,Y) and Gdb(X,Y) can be r e w r i t t e n us ing the Expansion Theorem.

ET will yield 4 + 6 = lO terms and in all cases in this proof at most 2 of

these terms are not equal to ~. In the sequel we will use applications of

ET as a single calculation step. (Note that it is entirely feasible to veri-

fy all these applications of ET automatically.

NOW :

b a~D ~ Sd.S x
T (X,Y) = rl (d) . ' RI_~R b =

L

b Y- ~l(d~.hGeIx,yi. d£D

b
We will derive a recursive specification for Gd(X,Y):

b l-b • K1 I Ud. S .X (i.w4 (e) + i.w4 (db))

J- - % ~ ~ 1-~. ~ . / i . ~ L L ~-b.Rb.Yj j ~

19

.w6 (b) .R b.

Ud.S .X K

• - - - Ri_b Rb Y + i. j .Z = J "J'J'~H (i.w5(e) +i.w5(l-b)).L

f ibJ I U d .S .X K
_ _) = lwit~z= ~[~ w2~a~<b~Rb Y

F li [b l-b

• b l-b
Ud.S .X

w5 {l-b) .L

Sd.S .X K

L R 1 -b~ + R b"

+ i. j. ~H L L R 1-b~ R b. +

i
ioj,z!

J

F b .Z~ • Gd (X,Y) j. Li.j.j.i.j +i.j .

We can now apply KFAR for k =6 and Y0 = 6, Y1 = i.j.Z, Y2 = " " "

This gives:

b
I-i(Sd(X,Y)) = r. ri(i.j.z) .

=Y5 =~.

20

Hence:

Tb(x,Y) = d~D rl(d).ri(Gb(x,Y))= de~D rl(d).L-.~i(i.j.Z) =

= deDZ rl(d)'%~'%-'~-'~ (Z) = d~D rl(d)'~I(Z) =

~" b l-b I 1 I Ud.S .X K
= d~D rl(d)'~I~H ~ L 2(d).w6(b).Rb.y =

= d ! rl(d)'Y-I~w2(d)'~H L Lw6(.Rb.y =

T rl(d).w2(d~.ri(Kb(x,~)~ = d~D

b l-b I 1 b I Ud'S .X K
(with Kd(X,Y) = ~H ~ L W6 (b)°Rb.~

The next part of the proof of the claim consists in deriving a recursion
b equation for Kd(X,Y) :

b 1-b A
b IUd.S .X K

J ~d Cx'Y) = J'~H - -

[(i.w5 (b) + i.w5 (e)).L Rb.y =

I. I l t ~Ud.S .X K

= J" "~H t w5(b).L I R .Y L w5(e).L Rb.y

I ud'Sb l-b.x 1 (i.w4(e) +i.w4(db)).K]]
: J jv'iJJ~Hl -L ~ 3J

2!

(with V = ~H L L R~.Y J) =

= j. j.V+i.j.j "~H ~ ---b------- +

f~:~ ~-~x ~'~' 1!]

~ b l b w6 }]
t u d - ~ - x ~ 1

Applying KFAR we get:

~i(Kb(x,y)) = ~.~i(i.j.W) = r.Z-.~]~(V) = r.T I

We conclude :

[C ~ ~j

{V) =

22

1-b ! A

= ~ rl (d) .w2 (d).ri~H ~ ~ ; d~D

This finishes the proof of the claim and the verification of ABP.

[11 DE BAKKER, J.W. & J.I. ZUCKER, Compactness in semantics for merge and
f~ir merge, Report IW 238/83, Mathematlsch Centrum Amsterdam 1983,

[21 BARTLETT, K.A., R.A. SCANTLEBURY & P.T. WILKINSON, A ~ote on reliable
f~ll-duplex transmission over half duplex lines, CACM 12,No.5 (196~) o

[3] BERGSTRA, J.A. & J.W. KLOP, Process Algebra for Synchronous
Co~unication, Information and Control, vol.60, Nos.l-3, 1984,
109-137.

[4] BERGSTRA, J.A. & J.W. KLOP, Algebra of Communicating Processes,
to appear in Proc. of the CWI Symposium Mathematics and Computer
Science (eds. J.W. de Bakker, M. Hazewinkel and J.K. Lenstra),
North-Holland, Amsterdam 1985.

[5] BERGSTRA, J.A. & J.W. KLOP, Algebra of Comcn~unicating Processes with
abstraction, to appear in Theoretical Computer Science, 1985.

~6] HAILPERN, B.T., Verifying concurrent processes using temporal logic.
Springer LNCS 129, 1982.

[7] HAILPERN, B.T. & S. OWICKI, ~rifying network protocole using temporal
logzd, in: Trends and applications symposium, National Bureau of
Standards 1980.

[8] LAMPORT, L., Specifying concurrent program modules, ACM Toplas, Vol.5,
No.2, p. 190-222.

[9] MILNER~ R., A Calculus of CorM~unicating Systems, Springer LNCS 92, 1980.

[i0] SCHWARTZ, R.L. & P. MELIAR SMITH, From state machine to temperal logic~
specification methods for protocol standards, IEEE Transactions on
communication, Vol.30, No.12 (1982) p.2486-2496.

[ii] YEMINI, Y. & J.F. KUROSE, Cc~n c~rrent protocol Verifieatian techn4~uas
~rantee correctness? Computer networks, Vol.6, No.6 (1982), p.
377-381.

23

