ooooboooao
5110 19840 169-203

Partial Computation with a Dataflow Machine

5 — & T — 2 S SIS D ERS S

Satoshi ONO, Naohisa TAKAHASHI and Makoto AMAMIYA
ZINEF S AT - =R E=AA - IRE B A

Musashino Electrical Communication Laboratory
Nippon Telegraph and Telephone Public Corporation
3-9-11 Midoricho Musashino-shi Tokyo 180 Japan
HAREEE AT RBEBEXEEHFEHR
(@180 HEHRKBEBHHEE 3 —9—11)

Abstract

This paper presents a new dataflow computation model, called
Generation Bridging Operator (GBO) model. The main features
of the GBO model are as follows:

(1) The use of a partially ordered color set, called a tree
structured set, as well as newly defined firing rules
extended from those of the colored token (CT) model.

(2) The ability to process a closure (a pair composed of a
function and an environment), which 1is essential to
higher-order function evaluation. This model also has
computational power for partial computation.

This paper also discusses a category of the GBO model named
Dynamic Coloring Static Bridging (DCSB) model, in terms of
its ability and limitation with regard to closure processing,
partial application and partial simplification. Furthermore,
this paper clarifies a dataflow graph generation method for
the DCSB model by describing the main differences in code
generation between the DCSB model and the CT model.

The proposed dataflow models are promising for applicative_
programing language machine architecture.

1. Introduction

Applicative programming languages[1-3] have various attractive
features wherein they facilitate writing short and clear
programs, as well as understanding and verifying these programs
using clean mathematical semantics. It has also been pointed out
that it is easier to detect parallelism in an applicative (or
functional) program than in an imperative one [13]. From these
points of view, many researchers have studied both dataflow
machines[4-7] and parallel reduction machines[8,9] to find ways
to execute applicative programs efficiently.

Although several promising dataflow machines have been actually
implemented, there are still some problems to be solved.

(1) They don't have the ability to process a closurell0]l (or
funargfl1l]l) which is a pair composed of a function and an
environment in which the function is to be evaluated.

(2) They cannot implement a partial computation[l12] mechanism.

The closure concept, however, plays an important part in
higher-order function evaluation, while partial computation can
reduce redundant computation. To overcome the above-mentioned
problems, a new dataflow computation model called Generation
Bridging Operator (GBO) model, is proposed. The main features of
the GBO model are as follows:

(1) It uses a partially ordered color set, called a tree
structured set, as well as newly defined firing rules
extended from those of the colored token (CT) modell[4].

(2) This model <can process a closure, and has a partial

computation ability.

In the following sections, the GBO model is first defined, and
compared with the CT model. Next, the GBO model is classified
into four categories in terms of how to assign a color and how to
determine an attribute of a dataflow graph node. After defining
an applicative language, the dynamic coloring static bridging
(DCSB) model, which is one type of the GBO model, is discussed in
detail from ‘the viewpoints of function application, <closure

175

processing and partial computation. Finally, a dataflow graph
generation method for the DCSB model is clarified by describing
the main differences in code generation between the DCSB model
and the CT model.

2, Generation Bridging Operator Model

23243335 it - 1+ - Tttt -1+t 1+t

In this section, computation rules for the GBO model are defined.
First, a conventional dataflow model using a colored token
mechanism is described. Next, basic terms used in this paper are
defined. Finally, the computatibn mechanism based on the GBO
model is discussed.

2.1 Dataflow Model

(1) Dataflow graph

In a dataflow model, programs are represented by means of graphs
consisting of nodes and grg¢s. A node represents an operation and
an arc defines the data dependency between two nodes. Each node
is connected to input arcs il, i2, ..., ir and output arcs ol,
02, «¢e, 0. If a node is fired (or executed), a token, which
has a result value and a destinatioh, is generated and sent to
its destined nodes through its output arcs. Tokens on the input
arc(s) of the node are removed.

As shown in Fig. 1, nodes are classified into three categories
according to the relationship between the input and output arcs ;
operation nodes, merge nodes and distribution nodes. An
operation node is fired when it has tokens on all its input arcs,
and then, sends a result token to its output arc. A merge node
receives a token from one of its input arcs, and sends the token
to its output arc. A distribution node sends a separate copy of
an input token to each output arc. In order to simplify the
following discussion, an operation node is assumed to have either
one or two input arc(s). An output arc is called a static arc,
if its destination is determined during compilation time. On the

ol 02 Os
Operation node Merge node Distribution node

Fig. 1. Dataflow nodes

other hand, it 1is called a dynamic¢ arc, if its destination is
determined as a result of the operation.

(2) The CT model

Every token has a result value, together with its destination and
a color. The color of a token represents 1its execution
environment. A color is often called a label, and assigning a
color to a token makes it possible for more than one token to be
traveling on an arc at the same time [4,5]. When a token has a
value "x
in the following figures, [x |c is used instead
of [x 1c)

" and a color "c", it is represented as [x Ic. (Note:

The principal rules of firing based on the CT model are defined
as follows:

[Firing rules for CT modell

(a) An operation node having only one input arc, a merge node and
a distribution node are immediately firable, when an input
token arrives at the node.

(b) Assume that "x" and "y" are arbitrary values and that "a" is
an arbitrary color. An operation node, having two input arcs
"arcl"™ (left-side arc) and "arc2" (right-side arc), |is
firable if and only if two tokens [x la and [y la are
available on "arcl" and "arc2", respectively. ,

(c) When the node described in (b) is fired, tokens [x la and
[y la are removed from the input arcs. Normally, a result
token with color "a" is sent to its output arc, unless the
node 1is a special node for setting a color (e.g. "Link"
instruction node described in Section 3.2).

e oy

Lio

An example of a firing in the CT model is shown in Fig. 2. In
this figure, "a", "b" and "c" are different colors. The two
input tokens both having color "a" (i.e. [x la and [y la)
are available for operation "f". Therefore, "f" is fired using

x" and "y". The result token [£(x,y) la is

sent to the output arc. On the other hand, since "f" gets only

input values
one token for each of the colors "b" and "c", "f" cannot yet be
fired in either execution environment.

Note that there is no interaction between the tokens having
different colors. Therefore, one dataflow graph can be shared
among multiple execution environments.

[p (ol |
[Ja Ly] ::;> [jilb

Fig. 2. Colored token (CT) model

2,2 Tree Structured Set
In this section, the notion of a tree structured set is defined
and 1its features are discussed. First, some terms used in this
paper are defined.

[Definition 1] Relation 2
The symbol > represents the partial order relation between two
elements of C. That is;

for all a,b,c €C

> a
>b A b2c =-> a>c
>b A Db2a -> a=>h
[Definition 21 Relation >

If nau and‘ ubu are elements of "C",

a>b 2 (axb) A not(a =b)

[Definition 3] Relation @
We define the new relation @ as follows:

a®b iff a > b and there are no x €C such that a > x > b

This condition states that "a" is prime over "b" (or "b" is prime
under "a").

[Definition 41 Composition series

The series of ai (ai €C, 1i=0,1,..,k) 1is a composition series
from "a" to "b", and "k" is called its length if and only if
there exists a series such that

a=alQal® ... ® ak =b

[Definition 5] Ancestor and descendant

If there exists a composition series from "a" to "b", whose
length 1is "n", then "a" is an ancestor of "b" by "n" generations
(and "b" is a descendant of "a" by "n" gepnerations).

[Definition 6] Tree structured set

The set "C" is a tree structured set, if and only if every
element of "C" has at most one element which is its ancestor by
one generation. (Note that this definition does not assume the
existence of the maximum element in set "C".) |

L

l is shown in Fig. 3. In this figure,

/a\ c2 © d2 1is true, while b2 Q@ d2 is
1

An example of a tree structured set

sz false. Element "cll" is a descendant

///J%\\\\\ I of element "a" by 2 generations, and
Cit Ci2 Ci3 C2 element 1 1is an ancestor of element
! "d2" by 4 generations. For a tree

d2 structured set, we can immediately

Fig. 3. Tree structured get the following theorem.
set example

175
[Theorem 1]
Assume "C" is a tree structured set, and "a" and "b" are elements
of "C", such that there exists a composition series from "a" to

"b" whose length is "n". Then, "a" is a unique ancestor of "b"
by "n" generations.

[Lemma 1]

Assume that "C" is a tree structured set, and that "a" and "b"
are elements of "C", Then, a » b if and only if there exists a
unique composition series from "a" to "b".

[Lemma 2]

Assume a ; b >c (a,b,c€C) and that "p" is the 1length of the
composition series from "a" to "c", and that "gq" is the length of
the composition series from "a" to "b". Then, there exists a
unique composition series from "b" to "c" and its length is
"p-q".

_ 2.3 GBO Model Defigigigg___

In the GBO model, an operation node has a special arc tagged with
an integer "n" between two input arcs, as shown in Fig. 4. The
special arc and the integer "n" are called a bridge and
~generation difference, respectively. To simplify the following
discussion without the loss of generality, it is assumed that
n > 0. If n< 0, the direction of the bridge is reversed and the
genération difference is changed from "n" to "-n". If n = 0, the
bridge can be omitted and the node is the same as that for the CT
model.

As in the case of the CT model, every token has a color,
representing its execution environment. 1In the case of the GBO
model, however, a set of token colors is a tree structured set.
The firing rules of the GBO model for two input operation nodes
are modified from those of the CT model as follows:

[Firing rules for GBO model 1

An operation node, having two input arcs "arcl", "arc2" and a

~.4
()

a) n»>o0

b) n=20

=
firing

Fig. 4. Generation bridging operator (GBO) model

bridge from "arcl" to "arc2", is firable if and only if

(1) Two tokens [x la and [y lb are available on "arcl" and
"arc2", respectively,

(2) A composition series from "a" to "b" exists and its length
equals the generation difference for the bridge.

As shown in Fig. 4, if the operation node "f" is fired, a result

token [£(x,y) Ib is sent to its output arc, except the case

the node "f" itself computes the result color. Unless the length

of the composition series from "a" to "b" is 0, [y lb 1is

removed from the input arc while [x la remains on the arc. If

the length is 0, both [x la and [y b are removed.

If a node has a bridge from "arc2" to "arcl", assume that [x la
is on "arc2", and that [vy 1b is on "arcl" instead of (1)
above. Then, the same firing rules apply.

From Theorem 1, color "a" can be uniquely determined, if <color

"b" and integer "n" are given. From Lemma 1, an integer "n" can
be uniquely determined, if colors "a" and "b" (a > b) are given.
Lemma 2 insures the firability <for a multiple node dataflow

graph.

Given the expression

W = X +y+ y*z

If "x" and "y" are fixed to 2 and 3, respectively, w is

simplified to the following expression "w23".
w23 = 5 + 3%z

Further simplification is possible, if "z" is fixed. Using the
CT model, there is no interaction between tokens having different
colors, as described in Section 2.1. Therefore, the CT model can
simplify "w23" only if the color of "z" is identical to the color
of value tokens "x" and "y". This simplification process using
"2z" is destructive, however, since "w23" cannot be reused with
another "z". 1In other words, the simplified expression "w23"

cannot be shared among multiple execution environments.

On the other hand, the GBO models make it possible to share "w23"
among multiple execution environments, as follows:

(1) If tokens [2 la and [3]Ja are available, expression "w"

is simplified to expression
w23 = 5 + 3*z
whose color is "a", as shown in Fig. 5-a).

(2) Assume that colors "bi" (i=1,2,...) satisfy bi ® a
(i=1,2,...). Expression "w23" can be concurrently simplified
using multiple "z" tokens, which have different colors "bi"
(i=1,2,...) . For example, "w23" is simplified to [8 1b1l,
if the input token [1 1bl arrives at the input arc of the
multiply operation node, as shown in Fig. 5-b).

The capability to share a simplified dataflow graph is
computational power not found in the CT model. The computational
power of the GBO model is discussed in more detail in Section 3.

c:D

a)

Prarewd
firing

(a>bi)

b) Computation when'“z" is defined.

Fig. 5. The GBO model computation example

2.5 Classification of the GBO Models

From the viewpoints of coloring and bridging methods, the GBO
models can be classified into the following four categories.

SCSB Static Coloring - Static Bridging
SCDB Static Coloring - Dynamic Bridging
DCSB Dynamic Coloring - Static Bridging
DCDB Dynamic Coloring - Dynamic Bridging

The coloring methods specify how to assign a color to an
execution environment and are divided into two categories;

static and dynamic. A coloring method is <called a static
coloring, if, all colors are assigned (or scheduled to be
assigned) before execution [6]. On the other hand, a coloring
method 1is <called a dynamic c¢oloring, if color allocation is
possible during execution (e.q. at function application)
time [7]. It 1is necessary to use a dynamic coloring method to
allow for recursive functions. '

The n;idgingzmg;hgds specify how to determine the generation

- 10 -

difference on a bridge. These are also divided 1into two
categories; static and dynamic. The dynamic¢ bridging method
permits determination of the generation difference on bridges
during execution, while the static bridging method requires that
the generation difference on bridges be determined at compilation
time. As shown in the following section, static bridging imposes
certain restriction on function sharing.

From a practical point of view, the DCSB model appears more
attractive, and 1is therefore discussed in more detail. A brief
comparison is also made between the DCSB and DCDB models.

3. Function Application with Dataflow Model

o s o e e A e s S S e T e e S ame G E S e T S A T e T S TR S e e S e e T e e e e o
P R S S T S S S R S S e S S S S S S S e R e e mEE T m e EEEEEEEEE

In this section, the computational power of the DCSB model is
discussed. The concepts of <closure, partial application and
partial simplification are considered. The relatiops between
programs written in an applicative programming language and
corresponding DCSB model dataflow graphs are shown. Then, DCSB
model ability and limitation are discussed, and some comments on
the DCDB model are made.

3.1 Applicative Programming Language

. ——————— —_ 1 ——— T " e —— > G - — " S — G T " WD S —— - "

This- section introduces an applicative programming language which
is an extension of VALIDI[3].

The factorial function can be defined as follows:
fact:function = “[[n] if n=0 then 1 else n * fact(n-1) £fi]

where a string ":function™ indicates the data type of the symbol
"fact"™ and may be omitted. "Fact" is a function name, and the
right-side of the equation "“[[n] if ... ~ fi 1" is a function
definition. "N" is a formal parameter, and "if ... fi" is a
function body.

Computation is the combination of function applications and

- 11 -

cC

simplificatjons. A function application replaces the function
name with its definition, and substitutes actual parameters for
formal parameters., It corresponds to the beta reduction
rule[ll]. Some functions are primitive and defined as axioms.
Replacing a primitive function application with its.result value,
is called a simplification. In the following, infix operators
such as "+", "*" as well as "if-then-else-fi" are assumed to be
primitive.

For example, computation of fact(3) are shown

“[In] if n=0 then 1 else n * fact(n-1) fi 1(3)
= (if 3=0 then 1 else 3 * fact(3-1) fi)

fact (3)

.
.

= (3 * fact(2))
= (3 * “[[n] if n=0 then 1 else n * fact(n-1) £fil(2))
= (3 * (if 2=0 then 1 else 2 * fact(2-1) fi))

= (3 * (2 * (fact(1))))

= (3 * (2 * (1 * (1))))
=6

Local value definitions can be used in a block enclosed by "{"
and "}". The local definition equates its left-side identifier
to its right-side expression.

For example, all of the following function definitions are

equivalent.
poly = “[[x] { y=x-1 ; z=y**2 + 2%y + 3 ; return z }]
poly = “[I[x] { z=(x;l)**2 + 2*(x-1) + 3 ; return z } 1]
poly = “[[x] (x=1)**2 + 2*%(x-1) + 3]

Identifiers defined in the block are named bound variables as are
the formal parameters in the function body. The scope of the
local value definition is within the block. The return value of
the block 1is specified by the return expression[3]. This
language uses static binding (lexical binding)[1ll]l. Therefore, a
free variable in the block is bound to the formal parameter of
the surrounding function definition or to the value definition of

- 12 -

187

the surrounding block.
For example, assume

f = "[[x] {y=(x-1)**2 ; g

“[[z] y+2*(x-1)+z] ; return g(3)}]

Variables "x" and "y" in the function definition of "g" are free
variables, whereas "z" 1is a bound variable., Variable "y" is
bound to the value definition in the surrounding block, and
variable "x" is bound to the formal parameter of function "f".

Computation of f£(2) are shown below (unnecessary parentheses are
omitted). '

£(2) = “[Ix] {y=(x-1)**2 ; g= “[[z] y+2*(x-1)+z] ;
return g(3)}1 (2)
= {y=(2-1)**2 ; g= “[[z] y+2*(2-1)+2z] ; return g(3)}
= {y=1 ; g= "[[z] y+2+z] ; return g(3)}
= {y=1 ; g= "[[z] 3+z] ; return g(3)}
= {y=1 ; g= “[[z] 3+4z] ; return “[[z] 3+z]1(3)}
= {y=1 ; g= “[[z] 3+z] ; return 343}
=6
3.2 Function Application with the CT Model

A function application is accomplished in the following way.

(1) A new color is obtained from the free color pool.

(2) Actual parameters to the function are given the color
allocated in (1). Then, they are sent to the function body.

(3) The function is computed with the color in (1).

(4) The result is given the color with which the application is
accomplished.

Figure 6 shows the instructions used for the function
application. Three instructions i.e. "call", "link" and "rlink"
(reverse 1link) are defined. For convenience, we dive names
"argl", "arg2" and "result"™ to tokens on input arcs "arcl",
"arc2" and on an output arc, respectively. In the figure,
symbols "a" and "b" represent colors, and symbols "dest" and
"destl" are the destination node names. A pair of a color and a
destination name is called an activated object name. We assume

.13

1R
that the value field of the token can contain an activated object

name.

The symbol
| ;
to dest : b | destl

v
means that the token having both color "a" and a value

a

representing an activated object name is sent to the destination
specified by "dest". The activated object name value is a pair
of the color "b" 'and the destination node name "destl". We refer
to the token field as:

tname.value.color = b
tname.value.name = destl
tname.color ' = a
tname.destination = dest

where "tname" stands for a token name.

The destination is specified only for the token on the dynamic

arc.

The "call" instruction allocates a new color and inserts it into
the color field of the activated object name. The "link"
instruction accepts two tokens. It actually sends the first
token to the activated object specified by the second token. The
"rlink" instruction is the complement of the "link" instruction.
It sends the 1linkage information to the specified activated
object. This linkage can be used to send the result tokens back
to the caller. '

A dataflow graph for a function application is shown in Fig. 7.
In the figure, "fname” accepts the token [*# | £ la where
"*" symbol indicates the "don't care" condition.

The symbols "x1", "x2",..., "xm" are actual parameters to the
function "f", while "yl", "y2",..., "yn" are the destination node
names for the result tokens. The new notations introduced 1in
this figure are explained in Figs. 8 and 9. The three dataflow
graphs in Fig. 8 are identical in meaning. In. Fig. 9, the
operation node a), is an abbreviation of the dataflow graph b).
The notation'#yl stands for the activated o¢bject name constant

14

Joes
[§:¢}
el

—> static arc
---3 dynamic arc

% don't care

[XHestila rﬂd—eteia:$t
O aes
dest] @ =t

Fig. 6. Instructions for the CT model function application

fname

Fig. 7. Dataflow graph for a function application

a) 2 X_ Yy b) X y. 2 c) Xy, 2

()

-
COD GHD RO

Fig. 8. Modified notations for operator nodes

X Y by X. ¥
&5 3
~ o

Fig. 9. Abbreviated notation for operator nodes

- 15 -

< s
.
Moy

| S

[L1 yll.

As described in Section 2.1, there is no interaction between
tokens which have different colors. This enables dataflow graphs
of a function to be shared by tokens having different colors. It
is impossible, however, to share partially computed graphs among
several colors. Therefore, the CT model cannot process a closure
(or funarg) which is a pair composed of a function and an
environment in which the function is to be evaluated. The notion
of closure plays a very important role in functional programming
languages, and therefore, the computational power of the CT model
is considered insufficient.

The next section discusses the function application in the DCSB
model, which allows implementation of the closure concept.

3.3 Function Application with the DCSB Model

—————————————— 700 (S T . S T SEm e S GEE MR e o G S e - 20 G M G ———— — —— ——

For function applications with the DCSB model, three
instructions, "call", "link" and "rlink" are extended from those
for the CT model, and two new instructions are added. These are
shown in Fig. 10. 1In the figure, it is assumed that there exists
a composition series from color "a" to color "b" and that the
length of the series is "n" (n > 0).

The "call" instruction accepts an activated object name as an
input token. If argl.value.color = ¢ , the "call" instruction

allocates a new color "d" which is prime under "c", and the color
field of the activated object name is replaced with "d". This
instruction preserves the property of the tree structured set
defined 1in Section 2.2. The "link" and "rlink" instructions are
slightly modified from those for the CT model to reflect the GBO
model firing rules. The "rlink" instruction outputs the

following result token.

i

result.value.color min (argl.color, arg2.color)

[}

result,.,value.name argl.value.name

result.color = arg2.value.color

result.destination arg2.value.name

The "send" instruction is similar to the "link" instruction

- 16 -

Fig.

10.

[cJaest],
(2 -»
dest] 5

Instructions for the GBO model function application

-17 -

(XD
C:"'\

except that color re-assignment is not performed. The "pair"
instruction creates an activated object name from the current
environment as follows:

result.value.color min (argl.color, arg2.color)

result.value.name arg2.value.name

]

result.color min (argl.color, arg2.color)

Using these extended instructions, the function application
sequence for the DCSB model is identical to that for the CT model
shown in Fig. 7. In the fiqure, "fname" stands for an activated

object name.

3.4 Closure Processing with the DCSB Model
The DCSB model is a generalization of the CT model, and has at
least the same computational power. One of the additional power’
resulting from this generalization is the ability to process a
closure.

In the DCSB model, a closure 1is represented by an activated
object name. A set of colors having total ordering is used to
specify the environment of the function. The color field of the
activated object name is the minimum color of this set.

Assume that function "f" is defined as follows:

f = "[[x]1 “[lyl "[lz] g(x,y,2) 1 11

" n 11} n,n
r

where "g(x,y,z)" represents some expression of "x y" and z

such as "x+y+z".

Identifier "z" in expression "g(x,y,z)" is a bound variable in
the expression “[[z] g(x,y,2z) 1. However, "y" and "x" are free
variables and are bound by the surrounding function definition.
The dataflow graph for "f" is shown in Fig. 11 a).

Now, consider the evaluation of the following block where "x0",
"y0", "z0" and "zl" are -constants. A corresponding graph is
shown in Fig. 11 b).

{ fx =-£(x0) ; fxy = £x(y0) ; return f£xy(z0)+fxy(zl) }

- 18 -

a) Dataflow grg?h for function definition "f£",
where f = (x] “[ly]l “[[z] g(x,y,2) 1 1]

b) Dataflow graph for expression
{ £x = £(x0) ; fxy = fx(y0) ; return £xy(z0)+fxy(zl) }

Fig. 11. Dataflow graphs for closure computation
with the DCSB model

- 19 -

fx = £(x0)
= “[Ix] "[ly]l "[[z] g(x,y,2) 1 1 1 (x0)
= [yl “([z] g(x0,y,2) 1 1

Thus,
fxy = f£x(y0)
= "[lyl “[[z] g(x0,y,2z) 1 1 (y0)
= "[[z] g(x0,y0,2)]
Therefore,
xy(z0)+fxy(zl) = “[[z] g(x0,y0,z) 1 (z0)

+ “[lz] g(x0,y0,2) 1 (zl)
= g(x0,y0,20) + g(x0,y0,z1)

Note that the value sent back to node "L1" in Fig. 11 b) (the
result of "f(x0)") is an activated object name which is the
representation of a closure. The destination node name field of
the value is node name "fx" in Fig. 11 a). Similarly, the value
sent back to "L2" in Fig. 11 b) is also an activated object name
whose destination node name field is "fxy" in Fig. 11 a).

Details of the closure computation process with the DCSB model
are shown using a simpler example. Consider evaluating the block

val = { add= “[[x] “[ly] x+y 1 1 ;
inc=add(l) ; return inc(4)*inc(3) 1}

The evaluation proceeds as follows:

add (1)
“[Ix] "Iyl x+y 1 (1)
“[lyl]l 1+y 1

inc

Value "inc" is a closure and is applied to an actual parameter
ll4ll.

Thus, inc(4) “lly]l 1+y 1 (4)
1+4

5

1]

Figure 12 shows the computation process for the above evaluation
with the DCSB model.)
(1) -(2) An activated object name [| | add 1 is given to the

- 20 -

185

~

"call" instruction. "l" means that the function "add"
has no free variables. A new color "c" (1l Q® c) is
allocated dynamically as the result of "call"
instruction execution.

(3)-(4) A constant "1" is sent to the body of the function

"add".
(5) The destination node name for a result token is sent.
(6) A free variable "x" in the function body of "inc" |is

bound to the actual parameter of the function "add".
(7)-(8) A closure, including a function name "inc" and an

environment color c", 1is returned as the result of
add (1) .
(9) A new color "d" (¢ ® d) is allocated dynamically as

the result of "call" instruction execution.

(10)-(12) An actual parameter and a result destination node name
are sent to the function body of "inc".

(13) The token (6) and the token (11) are matched at the
generation bridging operator "+", and a result token is
produced.

(14) The result token is returned, and the evaluation of
inc(4) is finished.

Similarly, inc(3) is evaluated, repeating steps from (8) to (14).
Evaluation steps from (1) to (8) are shared and are not repeated}

As shown above, an environment is specified by a set of colors
having total ordering. The order corresponds to the binding
order of free variables, and static binding allows us to analyze
it at compilation time. The analyzing algorithm is closely
discussed in Section 4.1. The environment is represented by the
minimum color of the set, and a closure is specified by an
activated object name. A function application is executed using
a color prime under the color sub-field of the activated object

name.

In this way, the DCSB model has general computational power to
evaluate a function application in an environment specified by a
closure, on condition that static binding is used. The CT model

lacks this power.

- 21 -

195

T9pow €SDA 9yl Y3ts oarduwexad uortzeandwo) °*Z1 °*HOTJI

CEloto

mm———t >

BU
@
N o o v e e e - - —— - - - —1

- 22 -

Given a function;
f = "lIlx,y,2] g(x,y,2) 1

If variable "x" is fixed to "x0", we can obtain a function of the

remaining formal parameters "y" and

lizll;

fx = “[ly,z] g(x0,y,2z)]

As shown above, applying a function "f" to a subset “of the
parameters and computing a function taking the rest of the

parameters is called a partial application.

In the above example, further partial application is possible.
If wvariable "y" 1is fixed to "y0", then the following function
"fxy" can be computed.

fxy = “([z] g(x0,y0,2) 1

Another partial application is possible for "fx". = If wvariable

"z" is fixed to "z0", we can obtain "fxz", where
fxz = "[lyl g(x0,y,z0) I

The partial application sequence for the DCSB model is_ shown in
Fig. 13, where the application order is "x", "y" and "z" in
sequence.,

The DCSB model can execute partial application only if the
partial application sequence is statically determined at
compilation time. For example, consider a function application
f(x0,y0) where £f="I[[x,y]l x-y 1. There are the following
three partial application sequences. '

a) apply "f" to "x0" and "y0" simultaneously.
b) partially apply "f" to "x0", then "y0".
c) partially apply "f" to "yO0", then "x0".

Although all of the above function applications compute "x0-y0",
the dataflbw graphs for each application sequence are different,
as shown in Fig. 14, Therefore, it 1is impossible to share
dataflow graphs having different partial application sequences.

- 23 -

192

Fig. 13. Dataflow graphs for partial application
with the DCSB model

a) apply "f" to "x0" and "yO" simultaneously.

b) partially apply "f" to "x0", then "yOo",

c) partially apply "f" to "y0", then "xO".

Fig. 14. Dataflow graphs for £(x0,y0),
where £ = “[[x,y] x-y]

- 24 -

Notice that the difference in the graphs in Fig. 14 is 1localized
to the generation difference only. Since the DCDB model can
determine this difference dynamically, the DCDB model can share
the function graph even if partial application sequence is
different. From this perspective, the DCDB model has a more
general code sharing ability than the DCSB model.

3.6 Partial Simplification_yiEE_EEE_DCSE Model

VALID as well as other recent applicative programming languages,
such as SASLI1], permits functions to be non-strict. A
non-strict function is a function which can return a result, even
if some of the parameters are undefined. Since any composition
of strict functions gives a strict function, non-strictness of
the function derives from non-strictness of primitive functions.
A typical non-strict primitive function is an "if-then-else-fi"
function. Consider evaluating a function application £(1)
where

f = "[Ix] { g = "[lyl if x>0 then x else y fi + x]
return g(2) + g(3) 1 1

-e

£(1)

“[lx] { g = “[lyl if x>0 then x else y fi + x]
return g(2) + g(3) } 1 (1)
= { g = "[lyl if 1>0 then 1 else y fi + 11 ;
return g(2) + g(3) 1}

= {g="[lyl 1 +11] return g(2) + g(3) }
= { g = "[lyl 21 return g(2) + g(3) }

= "[[yl 21 (2) + “[lyl 21 (3)

=2 + 2

= 4

-e

In the above computation, "if 1>0 then 1 else y fi" is
simplified to "1" at the time "y" is not bound (i.e. "y" is
undefined). Therefore, a further computation from "1 + 1" to "2"
can be shared among function applications g(2) and g(3). As
shown above, simplifying an expression having undefined variables

is called a partial simplification.

The string reduction mentioned above has a general partial

- 25 -

€D
(SR N

simplification ability. On the other hand, the DCSB model
requires that the color of the result token be statically
determined. Therefore, the model can have only restricted
partial application power. Consider the expression evaluation

"if x>0 then x else y fi" shown above, where the colors of "x"

and "y" are "a" and "b" (a > b), respectively. If "x" -equals
1, we can obtain a value for the expression without "y".
Therefore, the result color may be "a". However, if "x" equals
-1, wvalue "y" 1is required and the result color should be
min(a,b)=b., To avoid such a non-determinancy, the result color
must always be "b". Therefore, with the DCSB model, it is
impossible to execute a simplification corresponding to the
reduction from "if 1>0 then 1 else y fi" to "1", unless "y" is

bound and is allocated color "b"™ by a function application of
ugn.)
The DCDB model has no such constraints. From this perspective,

the DCSB model has 1less partial simplification power than the
DCDB model.

4, Code Generation Method for the DCSB Model

One difficulty encountered with the DCSB model is that chis model
requires the generation difference on each node to be determined
statically at compilation time.

In Section 4.1, a notion of a relative generation for an
expression is introduced. Section 4.2 gives a description of
code generation for function applications. 1In Section 4.3, code
geheration for simplifications is discussed.

4.1 Relative Generations for Expressions
Each expression of an applicative programming language has an
environment in which the expression is to be evaluated. Such
environments have a tree structure corresponding to the binding
process of free variables and formal parameters [11].

- 26 -

Pt
(o)
it

Now, we would like to introduce a notion of relative generation,
which corresponds to the depth of access environments[1l].

Consider the applicative programming language desc;ibed in
Section 3.l. Function "r" <can be defined as follows, where
r("<expression>") gives a relative generation for the expression:

(1) If "x0" is a constant, then r("x0") =0
For example, r("1") =0

(2) If "e" is an expression of "x1", "x2",..., "xn", then
r("e") = max (r("x1"), r("x2"), oo , £("xn"))
For example, if r("x")=1 and r("y")=2, then
r{"x+y+3") = 2

(3) If "f" is a function definition containing no free
variables, then
r("f") =0
For example, r(""[[x,y] x+yl") =0

(4) If "f" is a function definition containing ' free variables
"x1", "x2",...,"xn", then
r("E€") = max (r("x1"), r("x2"), ... , r("xn"))
For example, if r("x")=1 and r("y")=2, then
("7 [[z] x+y+z 1") = 2

(5) 1If "f" is a function definition with formal parameters "x1",
"x2",...,"xn" and r("f")=n, then
r("x1") = r("x2") = ... = r ("xn") = n+l
For example, r("x") in a function definition “[[x] x+1] 1is
eqdal to 1.

(6) If "a" is an application of function "f" with actual
parameters
"el", "e2",...,"en" (i.e. a=f(el,e2,...,en)), then
r("a") = max (r("£f"), r("el™), ... , r("en"))
For example, if r("a")=1 and r("b")=0, then
r("“[Ix,yl x+y 1 (a,b)")
=max (r(""[[x,y] x+y 1"), r("a"), r("b"))
From rule (3),
r(""[[x,y]l x+y 1") =0
Therefore,

- 27 -

r(""“[Ix,y] x+y 1 (a,b)™)
=max (0, 1, 0) =1

(7) If "v" is a left side 1identifier of a value

v = e'
r("v") =n

definition

where "e" is an expression and r("e")=n, then

For example, if r("x")=1 and "v" is defined as "v = x+3",
then
r("v") =1
Applying rules (1) - (7) recursively, a relative generation for

each identifier can be assigned.

For example,
f = "[[x] { a=p(x) ; h="[[z] p(a)+g(x,z)+l
return h(x) } 1
where functions "p" and "g" have no free variables,

Relative generations can be computed as follows:

1

(a) r("1") = r("p") = r("q") =0 (from rules (1) and (3))

(b) r(""[Ix] { a=p(x) ; h="1[[z] p(a)+q(x,z)+1 1 ;
return h(x) 1} 1") =0

{ from (a) and rule
(c) r("f") =0 (from (b) and rule
(d) r("x") =1 (from (b) and rule
(e) r("p(x)") =1 (from (a), (d) and
(f) r("a") =1 (from (e) and rule
(g) r(""[[z] p(a)+g(x,z) 1") =1 (from (a), (d) and
(h) r("h") =1 (from (g) and rule
(1) r("z") = 2 (
(3) r("g(x,2)") (
(

from (g) and rule

|
[S

from (i) and rule

(k) r("h(x)") =1 from (4), (h) and

If a function "f" is defined recursively, computation
requires a special treatment. Consider

fact = "[[n] if n=0 then 1 else n * fact(n-1) fi 1
To get r("fact"), we must get
r(""[{x] if x=0 then 1 else x * fact(x-1l) fi 1™)

which requires that r("fact") be defined. This

- 28 -

(4))
(7))
(5))
rule (6))
(7))
rule (4))
(7))
(5))
(6))
rule (6))
of r("f")
circular

reference can be resolved by introducing an unknown quantity to
the above rules. For example, assume

n = r("fact")
Applying the above rules, we can get the following equation.
n = max(0,n)

The minimum value satisfying the above equation should be used as
"n"., Therefore, r("fact") = 0,
This method can also be applied to mutually recursive functions.

4.2 Code Generation for Function Application
As discussed in Sections 3.4 and 3.5, major features not
available in the CT model are the capability of processing a
closure and the partial application feature.

(1) Closure

The applicative language discussed in this paper uses a static
binding rule. Therefore, the environment where free variables
are bound can be computed from the source program. Generation
differences of operation nodes for matching a free variable "a"
and a bound variable "b" are set to "r(b) - r(a)", where "r" is
the function defined in the previous section.

For example, consider function "f", where
f = "[Ix] { a=x+1 ; g="[[y] a+y 1 ; return g(g(x)) } 1

A free variable "a" in the function body of "g" is bound to the
value definition "a=x+1" in a surrounding block. Relative
generations can be computed for "a" and "y" as follows, using the
rules presented in Section 4.1.

r("f") =0 (from rule (3))
r("x") =1 (from rule (5))
r("a") =1 (from rules (2) and (7))
r("g") =1 (from rule (4))
r("y") =2 (from rule (5))

- 29 -

3
(9]

Y
f&

Therefore, the generation difference for matching "a" and "y" is
r("y") - r(nan) =1

We can obtain a dataflow graph as shown in Fig. 15 for the
function definition "f".

[f]

()

-

¢y
3¢ = vLev
%

T
’ v v
v

P I ———

Fig. 15. Dataflow graph for function definition "f"
where f = “[[x] { a=x+1 ; g="[[ly] a+y 1 ; return g(g(x)) } 1

(2) Partial application

Given function definitions,

“[[f] { g = "[[x] g(f,x) 1 ; return g(0) + q(1) } 1 ;
“[LE£,x] £(£f(x)) 1

p
g

The relative generations can be computed as follows:

r(npn) = r(ngn) =0 ;

r("f") = r("q") =1 ;
r("x") = 2
Consider the function application "g(f,x)". The actual

parameters "f" and "x" have relative generations "1" and "2",
respectively. Relative generations corresponds to the order of
binding in the function application process. Therefore, if the
actual parameters of a function have different relative
generations, partial application 1is ©possible. In the above

example, function "g" can be partially applied to the actual

parameter "f" initially. Then, the result function «can be

- 30 -

o’
-
[

applied to the remaining actual parameter "x". This process can

also be simulated by "Currying"I[l] functions as follows:

p= "[[f] { g= "[[x] g'(£)(x) 1 ; return g(0) + g(l) } 1 ;‘
g'= "[[£f] "[[x] £(£(x)) 11 ;

where the function "g'" is a compiler generated function from the
function definition of "g". The partial application approach is
adopted, since it preserves the symmetricity of the parameters,
which permits the sharing of graphs in the DCDB model as
mentioned in Section 3.5. The dataflow graphs for function "p"
and "g" are shown in Fig. 16.

4.3 Code Generation for Simplification

Almost the same method as described in the previous section can
be applied to the code generation for primitive functions. The
only exception is the code for non-strict primitives, such as the
"if-then-else-fi" function, discussed in Section 3.6. Assume

e = if x-1>y then y else z fi ;

and r("x") =a ; r("y") =b ; r("z2") =c ; (a<b<c)
cC-b=m; b-a=n (m, n>0)

Fig. 16. Dataflow graph for function definitions "p" and "g"
“[lfl { = "[I[x] g(f,x)] ; return q(0) + g(1) } 1 ;
“lLE,x] £(£(x))]

Q
nn

- 31 -

204

Then, the following relative generations can be obtained by
applying the rules in Section 4.1.

r("x-1") = a ;
r("x-1>y") = b ;
r("if x-1>y then y else z fi") = ¢ ;

A dataflow graph for an expression "e" is shown in Fig. 17 a),

where symbols "a", "b" and "c" represent the relative generations

of the corresponding arcs.

However, the relative generation of "e" cannot be determined
uniquely at the merge node, where relative generations of two
input arcs are "b" and "c", respectively. Such a condition is
called collision of the relative generations. This occurs
because the implementation in Fig. 17 a) actually realizes the
non-strictness of the "if-then-else-fi" function. The collision
cannot be permitted since the DCSB model requires relative
generations to be uniquely determined statically.

We <can easily resolve the «collision using dummy "gate"[3]
instructions, as shown in Fig. 17 b). This 1is a strict
implementation of an if-then-else-fi function. This type of
transformation is called collision resolution.

As discussed in Section 3.6, the DCSB model has only restricted
partial simplification power. This is because of the necessity

a) Before collision resolution b) After collision resolution

Fig. 17. Collision resolution

- 32 -

of these collision resolution in the DCSB model.

5. ' Conclusion

This paper has presented a new dataflow computation model, called
Generation Bridging Operator (GBO) model. The main features of
GBO model are as follows:

(1) The use of a partially ordered color set, called a tree
structured_ set, as well as newly defined firing rules
extended from those of the colored token (CT) model.

(2) The ability to process a closure (a pair composed of a
function and an environment), which 1is essential to
higher-order function evaluation. This model also has
computational power for partial computation.

This paper has concentrated on one type of the GBO model, named
Dynamic Coloring Static Bridging (DCSB) model. This paper has
shown the ability and the limitation of the DCSB model in terms
of closure processing, partial application and partial
simplification. Furthermore, this paper <clarified a dataflow
graph generation method for the DCSB model by describing the
essential difference in code generation between the DCSB model
and the CT model.

In order to clarify the effectiveness of the GBO model, the
following feasibility studies are required.

(1) The DCDB model formalization and the study of its ability and
limitation.

(2) Clarification of hardware system implementation based on the
GBO model.

(3) Comparison of the GBO model with the reduction model, in
terms of computational power and hardware implementation
difficulty.

- 33 -

S
Qi
oL e

(4) Discussion of partial computation efficiency with the GBO
model by simulating program execution with both the CT model
and the GBO model.

[Acknowledgements 1

The authors would 1like to thank Dr. Noriyoshi Kuroyanagi,
director of the Research Division at Musashino Electrical
Laboratory, and Dr. Katsuji Tsukamoto, director of the eighth
research section, £for their guidance and encouragement. They
also wish to thank the members of the architecture research group
in the eighth research section, for their helpful discussion.
The authors would also like to express their thanks to Atsuko
Nanmoku for her work on the figure drawings.

References

(11 Turner,D.A.: "A New Implementation Technique for
Applicative Langquages," Software Practice and Experience,
VOl. 9, 1979' pp. 31—49.

[2] Keller,R.M.: "FEL (Function-Equation Language) Programmer's
Guide," AMPS Technical Memorandum No. 7, University of
Utah, April 1982,

(3] Amamiya,M., Hasegawa,R. and Mikami,H.: "List processing
with a Data Flow Machine," Lecture Notes in Computer
Science, RIMS Symposia on Software Science and Engineering,
Springer-verlag,. 1982.

[4] Arvind and Kathail,V.: "A Multiple Processor Dataflow
Machine That Supports Generalized Procedures," Proceedings
of the 8th Annual Symposium on Computer Architecture, May
1981, pp. 291-302,

- 34 -

[51]

(61

(71

(8]

(91

(101"

(11]

(12]

(131

203

Gurd,J. and Watson,I.: "Data Driven System for High Speed
Parallel Computing (1 & 2)," Computer Design, Vol. 9, No.
6 & 7, June & July 1980, pp. 91-100 & 97-106.

Takahashi,N. and Amamiya,M.: "A Data Flow Processor Array
System : Design and Analysis," Proceedings of the 10th
Annual Symposium on Computer Architecture, June 1983, pp.

Amamiya,M., Hasegawa,R., Nakamura,O. and Mikami,H.: " A
list-processing-oriented data flow machine architecture,”
Proceedings of the 1982 National Computer Conference, AFIPS,
1982, pp. 143-151. |

Keller,R.M., Lindstrom,G. and Patil,S.: "A Loosely Coupled
Applicative Multiprocessing System," Proceedings of the 1979
National éomputer Conference, AFIPS, Vol. 49, 1979, pp.
613-622,

Darlington,J. and Reeve,M.: "ALICE : A Multi-Processor
Reduction Machine for the Parallel Evaluation of Applicative
Languages," Proceedings of the 1981 ACM/MIT Conference - on
Functional Programming Language and Computer Architecture,
1981, pp. 65-75.

Henderson,P.: "Functional Programming, Application and
Implementation," Prentice-Hall, 1980.

Allen,J.: "Anatomy of LISP," McGraw-Hill, 1978.

Ershov,A.P.: "Mixed Computation : Potential Application
and Problems for Study," Theoretical Computer Science 18,
1982, pp. 41-67.

Backus,J.: "Can Programming be Liberated from the von
Noumann Style? A Functionall Style and its Algebra of
Programs," Comm. ACM, Vol. 21, No. 8, 1978, pp.613-641.

- 35 =

