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Abstract

We describe the results of an experiment in which the Nuprl proof
development system was used in conjunction with a collection of sim-
ple proof-assisting programs to constructively prove a substantial the-
orem of number theory. We believe that these results indicate the
promise of an approach to reasoning about computationally meaning-
ful mathematics by which both proof construction and the results of
formal reasoning are mathematically comprehensible.

1 Introduction

In this paper we describe a step toward a high-level environment for for-
mally proving theorems of constructive mathematics. In particular, we
describe a formalized proof of the fundamental theorem of arithmetic. The
aspects we will emphasize are not restricted in relevance to number the-
ory but instead, we believe, indicate the promise of our approach for other
branches of constructive mathematics. The basis for our work is the Nuprl
proof development system [4], a system which combines a sequent calculus
formulation of a higher-order constructive logic, with a proof system sup-
ported by a proof-editor, a definition facility, and a metalanguage in which
one can write proof-assisting programs. We have constructed a set of such
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programs and used them to prove the well-known theorem that every pos-
itive integer has a unique factorization into a product of powers of primes.
The resulting collection of definitions, theorems and proofs is mathemati-
cally understandable and very readable, and also implicitly defines correct
programs which realize the constructive, or computational, content of the
theorems proven.

We describe here the results of one of the first major experiments with
the Nuprl system. In the process we will discuss some of the features of
the system and refer to aspects of the Nuprl logic, but our main concern is
to show the kind of formal reasoning that Nuprl makes possible. Central
to the discussion in this paper is the structure of reasoning in Nuprl and
the role played in it by proof tactics. The basic unit of inference in Nuprl
is called a refinement; one constructs, via a proof editor, a tree-structured
proof in a top-down style by successively refining a goal to produce subgoals.
The “size” of the refinement steps is under the control of the user; one can
write programs which can be used as new inference rules. If such a program
can provide justification in terms of the primitive inference rules that the
subgoals it generates from a given goal entail the goal, then the name of the
program can appear in the proof as the rule used in the refinement step. It
thus becomes possible to completely suppress much of the meticulous detail
involved in a formal proof, and to construct a collection of programs which
approximate the higher level steps of informal mathematics. Although the
collection of tactics we used is a long way from meeting this goal, it is an
indication of what can be done, and using it we were able to completely
prove from scratch in a reasonable amount of time a substantial theorem
of number theory.

There are many other systems for aiding in the construction of formal
proofs; three such systems, AUTOMATH (3], LCF (8], and the system of
Boyer and Moore [2], have been extensively used. None, however, combine
the features which we believe make Nuprl a promising tool for develop-
ing formalized mathematics, although the project of Coquand and Huet [7]
appears to be heading in a similar direction. One of the most important
distinguishing features is the mechanism for constructing and manipulat-
ing proofs, i.e., the coupling of a high-level programming language serving
as the formal system’s metalanguage with a highly visual proof editor and
definition mechanism. Another is the expressive power of the logic, which
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permits natural representations of concepts from computationally mean-
ingful higher mathematics.

In the next section we give a short overview of some important aspects
of Nuprl. That section describes work done by others at Cornell; the work
described in the subsequent sections was done by the author. Section 3
contains a discussion of how the necessary concepts of number theory were
formalized, and in section 4 we discuss some of the proof tactics employed
and illustrate how they were used in the actual proofs. In the last section we
draw conclusions from the experiment and discuss some future directions
for our work.

2 Nuprl

Nuprl [4] is a proof development system developed at Cornell under the
direction of Joseph Bates and Robert Constable. Its formal basis is similar
to the constructive type theory of Martin-Lof [14] and is intended to be
suited to the formalization of constructive mathematics. Both constructive
logic and objects of constructive mathematics are represented naturally in
the Nuprl theory. The implemented system provides a general definition
facility so that mathematical formulas have a compact display form which
approximates that of mathematics textbooks.

The basic objects of reasoning in the Nuprl theory are types and mem-
bers of types. The rules of Nuprl deal with sequents, i.e., objects of the
form

z,:Hy, z9:Hyy ..., z, : H, >> A

(sequents, in the context of a proof, are also called goals). To assert the
truth of the sequent essentially means to assert that given members z; of the
types H;, a member of the type A can be constructed. An important point
about the Nuprl rules is that they allow one to construct a member in a top-
down fashion. They allow one to refine a goal, obtaining subgoal sequents
such that a construction for the goal can be computed from constructions
for the subgoals.

Space limitations prevent us from giving details concerning the Nuprl
type theory; however, a few general remarks should suffice for the purpose
of this paper. Nuprl has a rich set of type-building operations. In addition
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to such conventional type constructors as cartesian product, there are con-
structors whose purpose is to represent fundamental notions of constructive
logic, via the propositions as types correspondence. This correspondence
gives a direct translation for the usual quantifiers and propositional con-
nectives of logic. The basic idea behind this correspondence is that we can
associate a type with each formula such that the formula is (constructively)
true if and only if the type associated with it has a member. To prove a
statement P of constructive mathematics, then, one first translates it into
the Nuprl type theory, obtaining a type T', and then attempts to prove >>
T by applying refinement rules until no more unproved subgoals exist. The
system then can compute, or eztract, a term ¢ which is a member of the
type T and which embodies the computational content of the theorem P.
For example, if we prove in this way the formula

Vz:int Jy:int where z+y=0

the term extracted from the proof will be a function which takes an inte-
ger z and produces an integer y such that z + y = 0. The existence of
such a function is the meaning of constructive truth for the formula. An
important point about this translation is that it is largely transparent to
the Nuprl user; we will return to this point later. We have phrased the
preceding discussion in terms of constructive mathematics. However, one
can also view Nuprl as a system for program synthesis in the spirit of [13];
one proves theorems which are program specifications, and from the proofs
the system can extract proven correct programs. Applications of the Nuprl
methodology to program synthesis are discussed in [4]. The Nuprl sys-
tem also provides a mechanism for evaluating the programs extracted from
proofs.

Proofs in Nuprl are trees where each node has associated with it a
sequent and a refinement rule. The children of a node are the subgoals
which result from the application of the refinement rule of the node to
the sequent. The refinement rule is either a primitive inference rule, or a
program written in ML [8]. Such a program is called a refinement tactic
(being similar to an LCF tactic [8]), and when given a sequent as input
it applies primitive inference rules and other tactics to build a proof tree
with the sequent as the root. This resulting proof tree is hidden except for
its unproved leaves; these become the children of the input sequent, and
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the name of the tactic becomes its associated rule. Tactics, then, act as
derived inference rules: the Nuprl display of a node of a proof tree can
show as an individual step a tactic invocation; such a higher level step is
correct because of the way the type structure of ML is used. For more
on the Nuprl tactic mechanism, see [6]. There is one substantial decision
procedure which is not a tactic, i.e., which is part of the Nuprl system and
is invoked as a primitive inference rule. This procedure is called arith, and
it proves subgoals which follow by certain simple kinds of reasoning about
the primitive relations (equality and less-than) over the integers.

The basic component of a Nuprl session is the library, which contains
a linearly ordered collection of definitions and theorems. Proofs are stored
with the theorems. One interacts with Nuprl by creating, deleting, and
manipulating objects using special purpose editors.

Some of the details regarding the components of Nuprl just discussed
will be given as necessary in what follows. For a complete account of the
system, we refer the reader to [4]. For more on using Nuprl to develop for-
mal mathematics, see the forthcoming report of Kreitz [12] on constructive
automata theory.

3 Representation

In this section we discuss how we represent some basic concepts of ele-
mentary number theory, and then we present the statements of the main
theorems and of some of the important lemmas. An important point to
note here is the conciseness and readability of the Nuprl mathematical def-
initions and statements we have written. In what follows, when we exhibit
Nuprl objects what is presented is in exactly the same form (except for
small differences in white space) as would appear on the screen during a
Nuprl session.

The complete self-contained library constructed for the fundamental
theorem of arithmetic contains 59 definitions. Of these, 36 are for generic
objects, such as the logical connectives, which would be of use in any math-
ematical theory built in Nuprl. There are 15 general definitions dealing
with basic list and integer relations and types, and only 8 which are in any
way particular to the development of this theorem.
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As indicated earlier, the logical connectives of predicate calculus have
direct encodings in the Nuprl type theory. An important point is that one
need not be aware of these representations. The definition mechanism can
be used to suppress their display, and the Nuprl rules which apply to the
representations are just what one might expect for the corresponding logical
notions (interpreted constructively).

The definition mechanism of Nuprl is basically a macro facility. For
the definitions for logic, we use this mechanism directly. For mathematical
definitions, however, we employ a level of indirection in order to achieve a
kind of abstraction. As a simple example we consider the definition of N,
the natural numbers. This can be defined in terms of the (primitive) type
of integers, Int, using the subtype constructor. To do this, we first prove
a theorem (named N_) whose statement and first refinement rule is:

> U1
BY explicit intro { n:Int | 0<n }

U1 is the type of all (“small”) types, and we prove that it has a member by
explicitly introducing the type we wish to define. The Nuprl definition for
N, then, will reference this theorem instead of the actual term; this reference
is made using the Nuprl term term_of (theorem-name), which denotes the
term extracted from named theorem. Thus N appearing in Nuprl text is
just a display form for term of (N_), which in turn denotes {n:Int|0<n}.
More generally, we will use lambda abstraction; e.g., if we were to redefine
integer addition in this way, we would prove a theorem >> Int->Int->Int
by introducing Ax.Ay.x+y. This technique has several advantages, the
most important of which is that it associates a type with each defined
object. This makes it possible to construct an effective membership tactic
(to be described in the next section) without which our proofs would have
been unbearably tedious.

In figure 1 we show the 8 definitions particular to this theory. The name
of each definition is shown followed by the statement of the theorem it is
extracted from (which is the type of the object), followed by the actual
object being defined. @ The type Fact has a definition which uses two
previously defined types and the primitive type contructors list and #
(the cartesian product constructor). Thus Fact is the type of all lists
of pairs of integers where the first integer is at least 2 and the second is
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Fact:
U1l
({2..) # N+) list

ordered:
Fact -> Ul
Al. V tails h't of 1. if hh = hd(t) then h.1 < hh.1

divides:
Int -> Int -> Ul
Ain. 3 k:Int where i*k = n

prime:
Int -> Ul
An. 1<n &V i:{2..n-1}. - iln

all_prime:
Fact -> U1
A l. V tails h't of 1. h.1 prime

exp:
Int -> N -> Int
Amn. ind(n; n,y.0; 1; n,y.m*y)

eval:
Fact -> Int
A1l. list_ind(1; 1; h,t,v. v * h.1Th.2 )

PrimeFact:

U1
{1:Fact | 1 ordered & all factors in 1 prime }

Figure 1: The main definitions.



positive; these lists will represent the factorizations of integers into products
of powers. The function eval is used to multiply out such factorizations; its
definition uses the primitive Nuprl form 1ist_ind for recursion over lists
and also references the definitions for integer exponentiation exp (whose
display form uses 1), and for projection from pairs (denoted .1 and .2).
Informally, this definition of a recursive function can be read as follows.
Given a list 1, if 1 is nil then the value is 1; otherwise, 1 is h.t (the dot
serves as the Nuprl notation for cons) and so first compute the value v of
the function on t, then multiply it by the result of applying exp to the
two integers comprising the pair h. For example, the result of computing
the expression eval(<3,2>.<4,1>.nil) would be 36. prime is defined in
terms of divides (the display form for the divides relation uses “1”, and a
dot is used to separate the parts of the quantified formula). The definitions
of ordered and all prime use definitions which are based on list_ind.
The definition

V tails ht of 1 . P

is a recursively defined predicate which is true for a list 1 if P is true
whenever the cons of h and t is a tail (or suffix) of the list 1. if h =
hd(1) then P is true if 1 is nil or if 1 is not nil and P is true for h
the head of 1. This kind of predicate is noteworthy, since it illustrates the
expressive power of Nuprl’s higher order logic; types are first-class citizens
of the theory, and so the same form which is used to define recursive integer-
valued functions over lists can also be used to recursively define type-valued
functions, and hence predicates (since we represent propositions as types),
over lists. Finally, the type PrimeFact of all prime factorizations can be
defined as a subtype of Fact using previous definitions (all factors in 1
prime is the display form of the definition all_prime, etc.). For example,
the prime factorization of 12 is <2,2>.<3,1>.nil.

Most of the lemmas proved in this theory concerned elementary prop-
erties of the defined objects, such as the fact that the value of eval was
always at least 1. Many of these were discovered during the course of prov-
ing the major lemmas. These major lemmas, however, were straightforward
expressions of lemmas used in the informal proof which the formal proof
was based on.

Three of the major lemmas express familiar properties of the integers:
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>> V i,j,p:N+ where p prime & pli*j. pli Vv plj
> Vi,n:Int. ilp VvV - iln

> V a,b:N+ where ( V d:{2..}. ~(dla & dIb) ).
3 m,n:Int. m*a + nxb = 1

All three of these have interesting computational content. For example,
the system can extract from the first theorem a (proven correct) program
which takes three positive integers ¢, j and p, where p is a prime dividing the
product 17, and returns a value which indicates whether the prime divides
i or j, along with the appropriate factor. The program extracted from
the third lemma takes two relatively prime positive integers as input and
returns a pair of numbers which are the coefficients of a linear combination
of the inputs which equals 1.
The existence part of the main theorem is

> V n:{2..}. 3 1:PrimeFact where eval(l) = n

and its proof is just an application of the lemma
> V k:N. Vn,i:{2..} where i<n & n-i<k
& (Vad:{2..G-1)}. -(@ln) ).
3 1:PrimeFact where eval(l) = n

This lemma is a recasting of the existence part of the main theorem in a
form which allows us to carry more information through the induction (the
main step of the proof is to do induction on k). The where clause of this
lemma can be viewed as a loop invariant.

Finally, we have the uniqueness half of the fundamental theorem pre-
ceded by two supporting lemmas.

>> Vp1,p2,i:Int.
pl prime => p2 prime => pi<p2 => 0<i => -(p1l(p21i))

>> V1:PrimeFact. V p:Int.
p prime => (if h = hd(1) then p<h.1) => — pleval(l)

> V 11,12:PrimeFact.
eval(ll) = eval(l2) => 11 = 12 in Fact
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In the immediately preceding theorem, in Fact is required in order to
indicate that the equality relation is over the type Fact.

4 Proofs and Tactics

It is the combination of the proof editor, high level metalanguage, and
definition mechanism which gives proofs in Nuprl their distinctive character.
It provides a basis for the construction of understandable proofs where the
component formulas have a form which makes their meaning apparent, and
where the inference steps follow an understandable course. At the present,
the construction of powerful tactics for use in formalizing mathematics is at
a beginning stage, and so the degree of automation of the proving process is
rather small in comparison to, say, the system of Boyer and Moore. In this
section we attempt to convey the flavour of proofs in Nuprl by discussing
some of the tactics used and by discussing the proof of an important lemma.
First, however, we give some general information about the experiment.
All of the proofs constructed in this effort were done using only general
purpose tactics. These tactics were designed beforehand, without number
theory as a target, to be of use in most theorem proving efforts. The total
time required to complete the library was under forty hours. This time
includes all work relevant to the effort; in particular, it includes the time
spent on entering definitions, on informal planning, on lemma discovery and
aborted proof attempts, and on proving all the necessary results dealing
with the basic arithmetic operators and relations. We estimate that at
least half of this time is due to certain gross inefficiencies of the current
implementation (having in part to do with the maintenance of display forms
for definitions) that we believe are simple to correct and that should not be
present in the next version of the system. It is interesting to constrast this
figure with the approximately 8 weeks of effort required to prove the same
theorem in the PLCV system [5], a natural deduction system for reasoning
about PL/C programs which had powerful built-in support for arithmetical
and propositional reasoning but which had no tactic mechanism or proof
editor. Boyer and Moore also conducted a proof of the fundamental theorem
of arithmetic, but they do not say how long the effort took (although they
do say that it took only ninety seconds for the final sequence of definitions
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and lemmas to be checked). Thirty-four theorems were proved in our effort,
most of which were simple properties of the defined objects. Much of the
work went into the uniqueness theorem and a major lemma for the existence
theorem. The final collection of proofs contains 879 refinement steps, most
of which were entered by the author (some were automatically applied by
a very primitive analogy tactic). This number might seem somewhat large,
but we believe that current tactic construction efforts will quickly add large
increases in power to the system.

An important point concerns the relationship between the informal
proof sketch and the formal Nuprl proof. The informal proof was two
pages long and fairly detailed, but no consideration was given to the type
theoretic encodings or to proof obligations arising specifically because of
Nuprl. However, this sketch was able to serve as a guide; the progression
of refinement for the main lemmas of the library for the most part followed
the informal argument. Most of the more tedious steps due to formal-
ization occurred near the leaves of the proof trees, and these lower level
tactic-generated proof obligations often suggested useful lemmas.

The most important tactic was the autotactic. This tactic is generally
automatically applied to any unproved subgoals that result when the user
invokes a refinement tactic. Only the unproved subgoals generated by the
autotactic appear on the screen as children of the refinement, and so the
user need never be aware of the many details handled by it. This tactic will
prove subgoals which follow by certain kinds of equality and arithmetic rea-
soning, and also has a component called Member which attempts to prove
membership subgoals, i.e., subgoals requiring proof that some term is a
member of a certain type. These subgoals arise because of the nature of
Nuprl’s type theory; for example, one must prove the well-formedness of all
formulas introduced into the proof, and these well-formedness obligations
have the form of membership subgoals. Because of the number of mem-
bership subgoals which arise, and because of the uninteresting nature of
the vast majority of them, Nuprl would be unusable if it were not possible
to handle automatically most of the work of proving them. There is no
algorithm to prove all true subgoals of this form, since, for example, this is
the form of a statement that a program meets its specification. Therefore,
Member was designed with user participation as a primary concern. Such a
concern is to some extent in conflict with the other main purpose of such

11



a tactic, which is to automate as much of the proving process as possible.
However, attempting to reduce a membership goal to the simplest possible
subgoals will often result in some of those subgoals being false. At present,
Member is rather conservative, stopping whenever the next step might cre-
ate a false subgoal. For example, it makes no attempt to prove the validity
of an application of a partial function (i.e., a function whose domain is a
subtype), since this can involve proving an arbitrary proposition. Even so,
Member was able to prove almost all of the membership goals which arose.
Usually in the cases where it failed to complete a proof, it succeeded after
oone user-provided step. A crucial factor in the success of this tactic was the
“term_of” style of definition, since it provided types for defined objects.

Most of the other tactics used are of a more familiar nature. We will
briefly describe a few tactics which are somewhat representative of the col-
lection used. Particularly important were the simplification tactics; e.g.,
Normalize was used to put sequents into a kind of normal form. Also im-
portant were tactics based on pattern matching. For example, the tactic
Lemma takes as an argument the name of a lemma and attempts to find
an instance of the lemma to apply to the goal, generating as subgoals the
non-trivial hypotheses of the lemma instance. There is also Backchain,
which applies simple backchaining from the conclusion of the goal via the
hypotheses of the goal. Nuprl has only one integer induction rule, so several
tactics were written to emulate several other common forms of integer in-
duction. Recursive definitions were extensively used in our library, so fairly
frequent use was made of tactics which performed unfolding of recursive
definitions.

Also used were forms of the LCF tactic-combining functions, such as
THENW which applies its first argument and then applies its second argu-
ment to any remaining subgoals which are not “well-formedness” ones (i.e.,
subgoals requiring one to show that some term is a well-formed type —
these were all handled by the autotactic). An interesting kind of tactic is
exemplified by the pair SquashElim and SquashIntro. They apply to a
defined construct we call a “squash”, which we denote | P for P a proposi-
tion. The purpose of this operator has to do with information hiding, but
the interesting point is that one can use it, reasoning about it via the pair
of tactics, without knowing the details of its definition. We are currently
working on a general framework for this kind of abstraction mechanism.
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Space limitations prevent us from giving a thorough account of the
proofs contructed in this effort. Instead we focus on the proof of one of
the more important lemmas. This lemma, whose statement appears in the
preceding section, is the one which states that any two relatively prime
positive integers have a linear combination equal to one, and its proof is
somewhat representative of the other proofs in the library. The first step
in the proof is to assert a form of the lemma which will give a stronger
induction hypothesis. This step gives two subgoals; the nontrivial one is to
prove that the new form of the lemma is true. This subgoal, along with the
rule applied to it, is shown in figure 2. What is shown is part of a snapshot
of the screen of a Nuprl session; window borders have been removed, but
otherwise the contents of the figure are what a Nuprl user would see. The
first line contains the status of the proof (“*” means that the proof is
complete) and an address of the current node within the proof tree. The
four major components below the first line are, from top to bottom, the
goal of the node, the rule applied to it, and two subgoals generated by the
rule application. The numbered vertical lists of formulas in the subgoals
are the hypotheses lists. The rule used here was actually a refinement tactic
corresponding to the informal step “do induction on k”. THENW was used to
chain together a tactic which stripped off one universal quantifier and made
a corresponding new hypothesis, and a tactic which performed induction
with a specified base case (the arguments “1 1 *j‘” are, respectively, the
hypothesis number of the variable (k here) induction is being done on, the
base of the induction, and a new identifier). This simple looking refinement
step actually hides 58 primitive refinements. An interesting point that
this snapshot illustrates is that although we are proving that there is a
program that performs a certain task, we are not (explicitly) reasoning
about computational objects but instead are dealing with something more
like conventional mathematics.

To convey what the rest of the proof of the relative primes lemma is
like, we give an informal description of some of the other proof steps. The
entire proof of the lemma required 44 refinement steps. The main step is
the induction step just described. The first step in the proof of its second
subgoal (the inductive case) corresponds to the informal step “suppose
a and b are such that ...”, and generates one subgoal, with conclusion
(the part of the sequent after the >>) the existential statement from the

13



snapshot. The next step, resulting in three subgoals, is to do a case analysis
on whether a<b, a=b, or b<a. The first step in the proof of the first case is
to apply the inductive hypothesis (numbered 4 in the snapshot) to a and
b-a; this step generates three subgoals. The first of the three is to show
that b-a is positive; this is done in one further step. The second is to show
that a and b-a satisfied the where clause of the induction hypothesis; this
is done in seven additional steps. The third is to show that supposing there
is a linear combination of a and b-a equal to 1, one for a and b can be
found. This requires two extra steps. The rest of the proof of the lemma is
at about the same level, except for several trivial steps where lemmas about
the monotonicity of less-than with respect to addition had to be explicitly
applied.

We end this section with a word about the extracted program. As
we mentioned earlier, each Nuprl proof implicitly defines a correct program
whose specification is the statement of the theorem. The program extracted
from the existence part of the fundamental theorem of arithmetic takes as
input a number greater than one, and returns its factorization into primes.
The program is not hopelessly inefficient; using a fairly naive interpreter
and no preprocessing, it took about ten seconds (on a Symbolics 3670) to
factor 100!, (a number with 158 digits).

5 Conclusions, Directions For Further Work

We have written a collection of tactics and used it within the framework
of the Nuprl proof development system to construct a highly readable and
mathematically comprehensible formalization of a substantial theorem of
number theory. The average size of a refinement step was rather low in the
resulting proofs, however. More powerful tactics will be required (and are
under construction) for the more ambitious projects in formalized mathe-
matics that we believe are possible using Nuprl. One such project is the
current work of the author, to formally prove a major theorem of construc-
tive analysis.

A significant problem we have encountered concerns the speed of refine-
ment. There are certain gross inefficiencies present in the current system
which seriously hamper theorem-proving activity. These inefficiencies can,
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* top 1
> V k:{2..}. V a,b: N+
where a+b<k & V d:{2..}. —(dla&dlb).
3 m,n:Int. m*a + n¥b =1

¢ ¢

BY -- Intro THENW NonNegInductionUsing 1 1 °j
1* 1. k:{2..}
2. j:int
3. j=1 in int
> V a,b: N+
where a+b<j & V d:{2..}. —(dla&d|b).
Jd m,n:Int. m*a + n¥b = 1

k:{2..}
j:int
1<j
V a,b: N+
where a+b<j-1 & V d:{2..}. —(dla&d|b).
3 m,n:Int. m*a + n*¥b = 1
> V a,b: N+
where a+b<j & V d:{2..}. —~(dla&d|b).
3 m,n:Int. mxa + n¥b =1

> W -

Figure 2: A snapshot of the main induction step of the relative primes
lemma.
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for the most part, be corrected, but there is a more fundamental problem.
As in LCF, tactics work by applying primitive inference rules, and so de-
rived rules of inference that are encapsulated as tactics must be rejustified
at each application. This is a significant obstacle to increasing tactic power;
for example, term rewriting tactics are prohibitively slow if required to use
the substitution rule for each individual application of a rewrite rule. A
solution for this problem is to use a reflection technique, using the data
types of the theory to represent classes of Nuprl terms, writing in Nuprl
the desired term-rewriting programs, and providing a tactic which applies
‘the results of these programs to the Nuprl terms being reasoned about.
The approach to rewriting of Paulson [15] will be useful in this context.
Also, the higher-order nature of the Nuprl logic allows kinds of abstraction
which will greatly aid this approach. See [10] for more on this scheme. Also
relevant here is [11], in which is described a technique for using Nuprl to
reason about tactics in order to avoid, in many common cases, having to
run them. Another problem we are currently addressing concerns the struc-
ture and use of developed theories. At the present, the collection of facts
in a Nuprl library has little structure, and the user must invoke explicitly
many of the lemmas that are required in a proof.
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