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Accurate Scientific Computations 

Preface 

The theme of the symposium is the "accuracy" of certain kinds of mathematical 
results obtained with the aid of a computing machine. The symposium is 
entitled, "Accurate Scientific Computations", even though, as remarked by 
Stepleman in his introduction to Scientific Computing 1 , "when different 
people use the words scientific computing, it is not only possible but probable 
that each has in mind something different." 

No less than in mathematics, physics, chemistry, or any other branch of 
science, "scientific computing" cannot be defined independently of examples. 
This symposium brings together three quite different kinds of work, concepts 
of accuracy, and notions of scientific computation. A shared aspect of the 
work in the 12 papers presented at the symposium (9 of which are collected 
here), and its panel discussion, is the use of present day computing machines 
to address mathematical problems and questions. We are careful here to avoid 
using the term "numerical questions" so as not to exclude one of the three 
kinds of work represented in these papers; viz., Computer Algebra. 

An alternative title for this symposium might be Applications of Computing 
Machines in Mathematics. Computing machines have come to be widely used 
as instruments of simulation and empiricism in what today is called "Scientific 
Computing". Important and useful as these applications of computers are in 
the various sciences and fields of engineering, they were not the dominant 
theme of this symposium. Rather it was algorithms which deliver precise 
results, both analytic and numerical. To express an indefinite integral of a 
rational function of elementary functions as a similar object, if and when it 

1 North-Holland Publishing Co. (1983) 
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exists, is an example of the former. An algorithm which computes an error 
bound is an example of the latter. Another  example of the latter is an 
algorithm which computes the probability that a real number lies in a pre- 
scribed interval. Some of the papers deal also with the efficiency of the 
implementations of such algorithms. 

Scientific Computing has come to mean more narrowly the construction of 
solutions, or approximations of solutions of systems of differential or algebraic 
equations, or other constructive, finite, algorithmic processes of algebra and 
analysis. If we combine this narrower definition of "Scientific Computing" 
with the quest for mathematical theorems strictly proven, or computation 
automatically validated with the aid of a computing machine we arrive at 
the title of the symposium and a unifying concept for the results presented 
in the papers collected here. They address the idea of Accurate Scientlfie 
Computation in three quite different ways which we can illustrate with the 
important special and pervasive case of a "problem" in "Scientific Computing"; 
viz., "solving" a system of linear equations A x  = B .  

To embrace ai1 three concepts of accuracy in one simpIe and familiar example, 
we must narrow the problem even further and consider the case when the 
coefficient matrix A and the vector B are prescribed rational numbers with 
numerators and denominators of reasonable length. In this case, if the system 
is consistent, there exist rational solutions x = (x 1, . . . ,  x n)  and algorithms to 
compute each and every rational number x t,  i = 1 , 2  . . . .  , n .  If the size of the 
system is not too large, it is a feasible task to compute and display the 
numerator and denominator of each and every x i. A computer  algebra "sys- 
tem" might implement such a display. It is one concept of an "accurate 
scientific computation".  Of course, if the dimension of the system exceeds 
ten or twenty, then, in general, the numerators and denominators in this 
definition and representation of the "solution" may be very large integers 
indeed. The computation may be rather extensive and time consuming even 
on a large computer. But when A and B have small representations and the 
dimension of the linear system is small, there could be useful insight and 
purpose in this sort of accurate scientific computation. In particular, the 
precise integer rank of the matrix A could be determined in this way. 



A second definition of the problem of "solving" the same system of linear 
equations A x  = B is to construct (compute) a floating-point or other approx- 
imation ~" to the rational solution x of the system if it be consistent, and to 
compute an upper bound on some norm of the difference I x -  x ' l ,  and to 
require that this bound on the "error" of ~" be less than some prescribed 
value. This approach is termed validated computation. 

A third definition of the same "problem" is tO compute a floating-point or 
other approximation x to the same system of equations, and to compute 
(exhibit) a lower bound on the probability that the difference I x -  ~1 be 
not greater than some prescribed value. 

Thus we have before us at least three quite different concepts of Accurate 
Scientific Computing, each of which is represented in the lectures and results 
collected here. 

Basic to scientific computation is the evaluation of the elementary functions. 
In separate lectures by S. GaI and by F. Gustavson (abstract only) methods 
are described for computing very accurate values of the elementary scalar 
functions (sin, cos, log, square root, etc.) which, at the same time, are very 
fast. The speed and efficiency of the new algorithms exploit the architectural 
changes in computing machines which have occurred in the last two decades 
since the pioneering work of Kuki on this problem. Moreover, the new 
algorithms bound the relative error of the computed value of the function 
for all values of the argument. The bound guarantees the accuracy or signif- 
icance of all but the last digit in the function value, and even the last for 
more than 99.9% of the arguments. 

A review of concepts and results of a new and systematic theory of computer 
arithmetic is presented by U. Kulisch. The new arithmetic broadens the 
arithmetical base of numerical analysis considerably. In addition to the usual 
floating-point operations, the new arithmetic provides the arithmetic operations 
in the linear spaces and their interval correspondents, which are most com- 
monly used in computation, with maximum accuracy on computers directly. 
This changes the interplay between computation and numerical analysis in a 
qualitative way. Floating-point arithmetic is defined concisely and axiomati- 
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cally. The subsequent lectures by S. Rump,  W. Ames, W. I,. Miranker, and 
F. Stummel show aspects of this. 

New computational methods to deal with the limitations inherent in floating- 
point arithmetic are presented by S. Rump. The mathematical basis is an 
inclusion theory, the assumptions of which can be verified by a digital 
computation. For this verification the new well-defined computer arithmetic 
is used. The algorithms based on the inclusion theory have the following 
properties: 

• results are automatically verified to be correct, or when a rare exception 
occurs, an error message is delivered. 

• the results are of high ~tccuracy; the error of every component of the result 
is of the magnitude of the relative rounding error unit. 

• the solution of the given problem is imputed to exist and to be unique 
within the computed error bounds. 

• the computing time is of the same order as a comparable (purely) float- 
ing-point algorithm which does not provide these features. 

The approach has thus far been developed for some standard problems of 
numerical analysis such as systems of linear and non-linear equations, 
eigenproblems, zeros of polynomials, and linear and convex programming. 
When data of a given problem is specified with tolerances, every problem 
included within the tolerances is solved and an inclusion of its solution is 
computed. The key property of the algorithms is that the error is controlled 
automatically. These concepts and this "validation" approach to scientific 
computation are collected in a subroutine library called ACRITH.  The pre- 
sentations of W. Ames and of W. Miranker develop other possibilities for the 
exploitation of ACRITH. In the latter presentation, methods for directly 
exploiting the new computer arithmetic are given as well. 

W. Ames describes software for solving the finite difference equations cor- 
responding to boundary value problems of elliptic partial differential equations. 
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The routines, programmed in VS Fortran, employ the ACRITH Subroutine 
Library, and provide the user a choice of any one of eleven classical algorithms 
for solving a system of linear equations. Each algorithm can be executed 
with traditional computer arithmetic, or with ACRITH. This permits the user 
to observe the advantages of using ACRITH. Illustrative data is presented. 

W. Miranker shows that good arithmetic can improve algorithmic performance. 
Compared to results obtained with conventional floating-point arithmetic, the 
computations are either more accurate or, for a given accuracy, the algorithms 
converge in fewer steps to within the specified error tolerance. Two approaches 
are presented. First: the high performance linear system solver of ACRITH 
is used in the areas of regularization (harmonic continuation) and stiff 
ordinary differential equations. Second: the routine use of a highly accurate 
inner product (a basic constituent of the new floating-point arithmetic) is 
shown to result in acceleration of eigenelement calculations (QR-algorithm), 
the conjugate gradient algorithm and a separating hyperplane algorithm (pat- 
tern recognition). Not all algorithms are susceptable of improvment by such 
means and some speculations are offered. 

Schauer and Toupin present a method for computing a bound on the error 
of an approximation to the solution of a restricted class of systems of linear 
equations. These systems include those arising from discretization of certain 
boundary-value problems of elliptic partial differential equations. They also 
present empirical evidence for the existence of a critical precision P(A) of 
floating-point arithmetic used in the conjugate gradient algorithm for con- 
structing an approximation to the solution of a system (A) of linear equations. 
The critical precision P(A) depends on the system. If the precision of the 
floating-point arithmetic is less that P(A), then the residual fails to diminish 
monotonically as it would were the precision infinite. If the precision of the 
arithmetic exceeds P(A), they observe that the approximate residual diminishes 
montonically to zero in a number of "steps" of the algorithm not greater 
that the dimension of the system (were the precision infinite, the number of 
"steps" would be the number of distinct eigenvalues of the matrix (A)). 
Moreover, for each digit of precision in excess of P(A), one more significant 
digit in the approximate solution is obtained. For the large sparse systems 
investigated, the number of steps is a small fraction of the dimension if the 
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precision is greater than P(A). The critical precision P(A) is an emprically 
determined "condition number" for a system of linear equations. It may be 
less than or greater than any of the precisions provided by the floating-point 
arithmetic units of a particular machine. 

F. Stummel presents a new method for the derivation of exact representations 
of errors and residuals of the computed solutions of linear algebraic systems 
under data perturbations and rounding errors of floating-point arithmetic. 
These representations yield both strict and first-order optimal componentwise 
a posteriori error and residual bounds which can be computed numerically 
together with the solutions of the linear systems. Numerical examples of 
large linear systems arising in difference approximations of elliptic boundary 
value problems, in finite element and boundary integral methods show that 
the bounds so obtained constitute realistic measures of the possible maximal 
errors and residuals. 

Some problems of algebra and analysis, such as obtaining explicit formulas 
for the derivative or integral of special classes of functions are finite com- 
putational tasks. One objective of "computer" algebra is to discover and 
implement such algorithms. Approximations to real numbers, such as provided 
by floating-point arithmetic, runs counter to the spirit of this work in com- 
puter algebra or "symbol manipulation". On the other hand, the results 
delivered by these algorithms, though finite, may be bewilderingly long. 
Taking integration as an example, J. Davenport shows how results of such 
computer algebra systems might be combined with numerical integration 
schemes to speed and enhance the accuracy of the latter. 

The two lectures of B. Trager and G. E. Collins (abstracts only) also concern 
finite computational tasks in algebra for which no approximations to real 
numbers are invoked. 

The problem of computing a bound on the error of an approximate solution 
of a system of linear equations, the value of an elementary function, or the 
root of a polynomial using only finite approximations to real numbers is not 
a trivial one, as placed in evidence by several of the papers presented at the 
symposium. What can one hope to do with the same question if applied to 



IX 

the floating-point approximations to solutions of large systems of non-linear 
equations in many variables such as those computed daily by the national 
and international weather bureaus? Indeed, it would seem a hopeless task if 
approached in the same spirit and with the same ideas that have been found 
effective for the elementary and fundamental sub-tasks of such large and 
complex cbmputations involving billions of round-off errors. R. Alt and J. 
Vignes present an alternative question and means to address it. They replace 
the problem of computing error bounds on approximations by the problem 
of computing probabilistic estimates of the error of an approximation. In 
practice, their approach resembles the familiar scheme of computing two 
approximations with a large and complicated program; one using floating- 
point arithmetic with double the precision of the other. One gains some 
confidence, in this way, with the significance of common high-order digits 
in the two approximations. Alt and Vignes propose that one perturb the 
program and intermediate floating-point results in such large and complex 
computations in a systematic way, and infer the probability that the common 
leading digits of a small sample of approximations computed in this way are 
significant. 

These lectures and the exchange of views of the panelists and participants 
during the panel discussion point to a continuing evolution and broadening 
of the concepts, objectives, and methods of Scientific Computation. The 
papers collected here provide evidence of the interplay between the discovery 
of algorithms for new and old mathematical tasks and the evolution of 
computer architectures. The theme of the work presented in these papers is 
"accuracy"; different concepts and definitions of it, ways to achieve it effi- 
ciently, and algorithms to prove or "validate" it. We foresee a gradual 
evolution of the objectives of Scientific Computing wherein the quest for 
"accuracy" competes in a more balanced way with the quest for "speed". 
We believe that the concepts, results, and methods described in the papers 
of this symposium will seed and influence such an evolution of the subject. 
In summary, these are: 

• Efficient algorithms for evaluation of elementary functions having specified 
and guaranteed accuracy based on the non-standard Accurate Tables Method. 
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• Axioms for "computer arithmetic", including directed roundings (interval 
arithmetic). 

• The theory of and techniques for computing inclusions. 

• Computer architectures which implement essential primitives for achieving 
accuracy and proving it, such as high precision inner products, and variable 
precision floating-point arithmetic. 

• Probabilisticalgorithms for estimating the accuracy of complex and extensive 
floating-point computations. 

• A synergism of the concepts and methods of "computer" algebra (exact) 
computations, and those which invoke approximations to real numbers and 
functions of them. 

Yorktown Heights, N Y  IV. L. Miranker 

Heidelberg, FRG R. A. Toupin 
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