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Introduction :

Recent works on public key encryption for secure network
communication [7] have brought back the following problem : given a regular
set R on A* defined by a non deterministic finite automaton with n states
and a rewriting system T, how can we construct an automaton that
recognizes the set of descendants of R : A*(R) when this language is regular
[1]. Some algorithms are found by Book and Otto [6] or Sakarovitch and me
[8],in ver g particular cases of systems and gave complexity in O(n 4) in [6]
and O(n*} in [3] . Here we give a strong exiension of these algorithms ina
large class of systems however the complexity of our algorithm does not
depend on the lenght of the words of T and is at most in O(ns} .

1. Semi Thue systems : definitions and results .

Given afinite subset T of A*xA*, we can consider it either as a
non symetric system and its elements (f,g) as rewriting rules ,oras a
symetric system which generates a congruence and which may be Church
Rosser . In this work we study systems as rewriting rules and only in the
conclusion we transform the results in the Church Rosser view point .
Below some definitions and properties of the studied systems are given .

Let A be a finite set , A* is the free monoid generated by A with the
empty word 1 as identity . The lenght of a word f of A* is denoted by [f| . A
Thue system T is a finite subset of A*xA* ; T defines a regular relation
denoted by -, [9] and defined by :

u>q v iff there exist x and y in A* and (f,g) in T such that u = xfy

and v=xgy.
The transitive ( resp. transitive and reflexive ) closure of = is denoted by

”’+T { resp. ->*-|- Y. Aword v isa descendant ofaword u inTwhen
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u —>"‘T v and AT{u) is the set of all the descendants of u and
A*(u) = AT(u) U {u} . A T-chain Uq,Up,...u, Is a sequence of words such that
ViU Uy -

Let's recall some weli known definitions:

-a word is irreducible for T if there exists no T-chain beginning
with it .

-Tis nostherian if every T-chain is finite . This implies that

Y uin A", A*{u) is finite [9].

and give some new ones :

-Two systems T and T' are equivalent if the their generated
relations »*y and »*- are equal . Then the sets of descendants

of a word u are equal .
-Twe systems T and T' are confluently equivalent if . whenever
u=*pu' (resp. u>"u') then 3 v such that u~*y vand u-> v

{ resp. u—*y v and u'=*y v ).This relation between systems is an
equivalence when the systems are confluent .

it is clear that two equivalent systems are confluently equivalent and
that the contrary is false . The decidability of the equivalence problem is
implied by the decidability of the following particular word problems : given
two words u and v , is one of them , a descendant of the other for Tand T'.

Proposition 1.1 : /f Tand T are two equivalent systems ,they are
noetherian at the same time .

Now let us consider the properties of words which describe a system T
and denote by :

-H={fcA*, 3geA gzl and (f,g} T}
-N={fc A*, Ig=land (fg)e T}
~C={geA",gztand (f0)eT}

in certain cases may be HUN= Q.
The properties of our systems will be defined below :

-Tis basic if words in C do not overlap properly words in HUN thatis :
Ve HUN ,VgeC if 3 u,v,w,such that either f=uv and g=vw then w=1
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or f=vu and g=wv then w=1 ;[12] and [13] .

-T is semi-reduced if a factor of a word in C is never in HUN .Or every
word in C is irreducible ;[11].

-Tis reducible if T is equivalent to a semi-reduced system .

-T is confluently reducible if T is confluently equivalent to a
semi-reduced system .

The following propositions explain the aim of these definitions:
Proposition 1.2 : A basic and semi-reduced system is noetherian .
The proof goes by induction on the difference between the lenght of a

word and the lenght of its factors in HUN . A useful consequence of
proposition 1.2 is that in semi-reduced basic system VueA*, A*(u) is finite

Proposition 1.2 : One can decide if a given system T is confluently
reducible .

This implies that if T is noetherian then T is confluently reducible .

2. Properties of sefs related to a system T on A.
We omit the T in this part since T is always the same .Notations:
-AV(u) = { ve A* such that usv ),

-Al(u) = { veA* such that Iwe AH(u) and wov }.
-Ag(u) = { veA” such that 3n and (f4,91),(f2.92).---(f,.9) €T and

Xq. X0, Xy AT @ND U = X4F4Xofs .. fXp 0 V= X499X000 - OpXnsq b
These definitions are extented to a set of words instead of a word and:

-Al(P) = Uyep A'(U)
-A*(P) = Ujy4A'(P) , A*(P) = Uj5pa'(P) .

We have the following properties :
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If PCP' then A(P)CA(PY) , Ag(P)cay(P) , A*(P)ca*(P) ;

- P cA'(P), a7(8%(P)) = A*(P) , A*(A*(P)= a*(P);

- A(P) cAp(P) € U iemaxju,ueP A'P);

- Ay(P) = A*(P), A*y(P) = A*(P);

-These operators are stable for union and intersection of subsets .

3. Descendants of regular ianguages in a semi-reduced basic system T .

The set of semi-reduced basic systems is a large extension of the well

known and studied following systems:

-special systems where H= @

-monadic systems where Cc A.
They are not all lenght-reducing , however when they are not ,A*(u) remains
finite ,by proposition 1.2..

We refer t¢ Hopcropft and Ullman [10] for the definitions of finite
automata and of regular languages on A and we follow their notations . Given
a regular language R on A accepted by a non deterministic finite state
automaton & = (Q A, dg 9, F) ,we want to fransform this automaton in

another that recognizes all the descendants of R : A*(R) with respect to a
semi-reduced ; basic system T .The algorithm we describe and prove below
is also proof of :

Theorem 1 :The set A*(R) of the descendants in a semi-reduced basic
system of a regular language R is a regular language on A .

The study of the complexity of the algorithm gives the next theorem :

Theorem 2 : Let. T be a finite semi-reduced basic system on A and R be a
regular language on A specified by a non deterministic finite automaton
with n siates , one can effectively construct in O(ns) steps a non
deterministic finite automaton that recognizes A*(R) .

This theorem generalizes the algorithm described in [3} and its
complexity in some particular casesis :

oY if H=0.
-O(n® if T is monadic (i.e. for every geC jg/<1).
-O(n%) if for every fe HUN [f{<2.
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-O(n3) if for every feHUN |fl <2 and for every geC [g] <1 .

4. The basic principles of computing an automaton that recognizes A*(R) .

First we will consider the given automaton & = ( Q,A.q,,0,F) asa

directed labelled graph G(#) the vertices of which are elements of Q. Its
edges represent the transition function d: (g,x,q} is an edge fromqio g
with label xeA iff g'ed(qg,x) ; a vertex q is the initial state and Fis a

subset of vertices . A path of G() is a sequence of vertices and edges
denoted by (g, u,q) where qis the beginning , g' the end and u is the
concatenation of the labels of the edges . Aword u is recognized by & iff
apath (g,u.q’) exists in G(&) with g'eF .

The main idea is : for every feHUN and every path (g,f.q) in G(&)
we have to add a new path (g,9,9") forevery g such that (f,g}eT . This
implies that we add new vertices andnew edges and so create new paths
{(q.f,9") and the process may be infinite .We choose a particular way to add
these new vertices and edges ; it is easy to prove that in this way the
process is finite but we have then to prove that the graph we construct
recognizes A*(R) .

Initially G, is the graph of & that recognizes R its vertices will be

called initial vertices . The finiteness of the algorithm comes from the
consideration of a queue ARC which , at the beginning , countains all the
edges of G, labelled by aletter of an feFUN ; each step of the algorithm

can put new elements is this queue .

For every edge (i,x,j) at the front of the queue and every feHUN we
look, in the graph constructed at this step , for the paths (g,f,q") which
contain the edge(i,x,j) ,this is part one in the algorithm .Whenever we
found such a path we have two ways in adding new paths :

-if feH we add first new vertices and new edges related to these
vertices to realise a path (q,9,q') for every g such that (f,g)eT ;

then the first new edge created in the queue ARC. This is part

two of the algorithm.

-if feN we add,first a new edge (i,y,q") every time (j,y,q") is

already an edge in the graph ,then this new edge in the queue ARC .
This is part three of the algorithm .

To remember which paths we have already added , we consider |{C{+1
Boolean matrices,one for feN denoted UNI and the others for geC denoted
MEM(g) the sizes of which will be defined later .

For every new vertex s constructed in part two it is convenient to
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remember its generating vertices OR(s) and EXT(s) , the suffix RD(s)
which labels the path (s,EXT(s)) and the prefix RG(s) that labels the path
(OR(s) ,s) -

In order to prove ,that we have o consider a finite number of paths
(a.£,q) , we use the chosen properties of the system T and establish the
following:

Lemma 4.1 : In every slaie of the graph constructed by the algorithm ,the
ouldegree of a new vertex is exactly 1 ,the indegree of a new vertex is 1
except for the successor of an initial vertex but then , svery inedge has the
same label .

The proof goes by induction on the creation time of the vertices and
uses the property: T is basic .

Corollary 4.1 ; When a path contains a non initial vertex s created by a
path (a,1,q) the vertices of which are s, S:-+-S|g]-1 it contains the

subpath of (q.£,q) : (s4, ,si) ifsi is its end , otherwise (sq, Q).

This corollary and the property : T is semi-reduced , prove:

Proposition 4.1 : Whenever (q,f,q) is a path of a graph in the aigorithm and
feFUN,gand o areinitial vertices .

Corollary 4.2 : The algorithm adds at most §Cl.n2.maxg <c(lgl-1) vertices fo
the initial graph .

Therefore we can considerone set W of m= §C{.n2.maxgec(igi-1)

vertices, the initial vertices are a subset 8 | Si=nand misin O(nz) . The
algorithm only adds edges . The queue ARC will contain at most ;A].m2
edges . New terms are put in ARC when new paths (q,f,q") are found and new
coefficients 1 in matrices UNI and MEM(g) the size of which are n, hence the
algorithm has a finite number of steps.

5. Description of the algorithm.

Data :
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The system T is defined by the sets H, N, C and
-for every feH ,a set PROJ(f) = {g such that (f,g)eT }
-for every xcA ,a set FACT(x) = {feHUN such that x is a letter of f}
-for every fe FACT(x) ,a set of couples of words
DEC(f,x) = { (FG,FD) such that FGxFD =f}
-for every geC an integer l{g) = |g|-1 .

The graphs are defined by a set of vertices {1,2,...m} where S={1,2..n}
and JA| m.m Boolean matrices :
MAT{X)(i,j) = 1 iff (i,x,)) is an edge .
Initially we consider all the edges of G, .The set F of final vertices is

initially the set of final states of &t .

We have also the auxillary data :
-a n.n Boolean matrix UNI initially UNI(ij) =1 iff i=].
-for every geC a n.n Boolean matrix MEM(g) initially O.
-for every s>n two elements of S : OR(s) and EXT(s) ,and two
words RG(s) and RD(s} ,initially they are Dor 1.
-a counter COMPT : an integer =n used for the allocation of the
new edges on "new" vertices .Initially COMPT=n.
-a counter ETAP of stages of the algorithm related to a state of
the graph and the order of the appearence of 1 in the matrices UNI
and MEM(g).
-a queue ARC initially contains all the edges of G .

Part one of the algorithm :The search of paths {q,f,q") that contain a given
edge (i,.a,j) .

We choose for this graph algorithm 1o use a m.k matrix , the lines of
which construct the sucessor of the last line ,and we short our search
whenever a vertices s>n by putting directly its path-successor by
corrollary 4.1 .The result is a set QxQ' of all the couples of extremities of
such a path .We search Q then Q' and have o compute their cartesian
product.Roughly the search of Q' can be describe by :

CHERCHE( { MAT{x),OR{x),EXT(x) } ., a, (FG,FD).j)
k= |[FD|
S is a m.k Boolean matrix
[for p=1 to m and p=j do 5(0,p)=0:5(0,j)}]
ffors=110 p do
x:=front (FD); delete (FD);
[forr=11i0 n do



128

#8{s-1,1)=1 then[fort=1 to mdo if MATX)(r1) =1;5(s,t)=1 ]
Hor r=n+1 fo.m do
j.f S(s-!,r) =1 ih_9ﬂ
compare (FD and RD(r) };
if RD(r) prefix of FD then S(s+|RD{r)|-1,EXT(r))=1]]

We denote part one by : CHERCHE((i,a,)),f.(FG,FD},QxQ’) .

Part two of the algorithm : The adjunction of a path (g.g.q") whenever a path
{q.1,q") is found by part one with feH; and the adjunction of one edge in ARC .
We choose to put the extremities of new edges with respect to the
order of the numbers that represent the vertices n+1, n+2 ,.. ,m by the mean
of the counter COMPT . We denote this part by :
ADJ((0.9),0.I{MAT(x),OR(x) ,EXT{x),RG(x),RD(x) ,ARC)
and describe it roughly :

g is represented by a queue (LIST)
x:=front(LIST); delete (LIST);
z.=COMPT;
5:=COMPT +1 ;
MAT(x){q,s) := 1; enter (ARC,{q,x,s));
COMPT.=COMPT+1; OR(s):=q; EXT(s):=q'; RD(s):= LIST; RG(s):=x;
repeat until COMPT=l(g)+2
x:=front (LIST);delete (LIST) ;
MAT(x)(s,5+1) :=1;
s:=5+1; OR(s):=qg ; EXT{(s):= ¢'; RD(s):= LIST; RG(s) :=RG(s-1)x;
COMPT=COMPT+1;
X:=front{LIST); delete (LIST); MAT(X)}(s,.0) =1

Part three of the algorithm :The adjunction of edges (q,x,r) , whenever a path
(a.f.9") is found in part one with feN and (¢, x,r) is already an edge of the
graph ; these edges are added both in the grah and in ARC .

We denote this part by CLOT((a,q'}.x, MAT(x}, ARC):

fors=1tomdo
fMAT{x)(q',s) =1 and MAT(x)(q,s) = 0 then
MAT{x)(a,s) := 1;
enter ( ARC,(g.x,s))]
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The whole algorithm can be now simply describe :

ETAP:=1
BC: if empty (ARC) then halt ;
(i,a,j):=front ARC; delete (ARC);
[for all feFACT(a) do
[forall (FG,FD)eDEC(f,a) do
CHERCHE((i,a,)).f,(FG,FD),QxQ);

[for all (9,9’ QxQ' do

if feN and UNI(q,q) =0 then
ETAP:=ETAP+1;
UNKa,q):=1;
if geF then F:=FU{q};
fforall xeA do CLOT ((q,9"),x,MAT(x),ARC);]
else if feH then
[forall gePROJ(f) do
if MEM(g) =0 then
ETAP:=ETAP+1 ;
MEM(g)(a.q) =1,

ADJ((a.9).9.{MAT(x),0R(x), EXT(x),RG(x),RD(x)},, ARC);]Ii]

go to BC;

6. The running time of this algorithm .

We evaluate each part of the algorithm:
-the lenght of the queue ARC is already in O(n4) but we can give a
smaller bound : initially there are n? edges in ARC the new ones
have their invertices in S so the size of ARC is in

0(n?)+0(n.m) = O(n3).

-generally ,part one countains n.m executions of instruction in O(1)
and m-n also in O(1) ; its running time is O(n.m)+O{m-n) = O(n3). if
H=0 then n=m and it becomes O(nz); if the lenght of words in FUN
is smaller than 2, O(n) . This part is called every time a new edge
is put in front of ARC , at most O(nS) fimes .
-parttwo ADJ has a running time O(1) and is called every time a
new 1 appears in MEM(g) , at most |C|.n"2 = O(n2) times .
-in part three each instruction costs O(1) and is called m times , the
running time is O(n2) .This part is called when a new 1 appears in
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UNI ,at most n? times .
Then the running time of the whole algorithm is:
-in general 0303 + O(1)O(N?) + O(NA0(N2) = OM®)
-when H=0 O(n)0(n?) + oMOm?) = om¥
-if maxjg} <1{monadic)O(n=)0(n }+O{1)O(n2)+0(n)0(n2) = O(n4)
Af max|fi<2 feFUN  O(MO(n3) + O(1)0(n3) +0nd0(M3) = O
-if max|gl<1 and max [f|<2 feHUN O(n)O(n2) + O(1)0(n2)+0(n)0(n)=0(n%)

7.The automaton represented by the last state G; of the algorithm graph
recognizes A*(R) .

Let G, denotes the state of the graph just before the value of ETAP
is i+1, R; is the language recognized by the automaton &; the graph of
which is G; .Eventually G, =G, 1 = Gy when the consideration of the

last element of the queue does not create either new value 1 in the
matrices UN! and MEM(g) or new edges by ADJ or CLOT .ltis easy to prove

Proposition7.1: R, c A*(R}.

The proof uses , properties of Ay , Ay" and A* seen in 1 and the
following lemma :

Lemma7.1: R; cRj 4 Uag(R; 4).

The proof goes by induction on k defined by : given a path (g, u, q)
in Gi , k is the the number of its edges which are not in Gj_4 and the proof
uses Corollary 4.1 .

To prove that A*(R) ¢ R, we have to establish further resulis on the
paths of Gy.

Lemma 7.2 : Every path in Gy ending in S is factorized in subpaths ending
in S ,the first edges of which (its caracteristic edge) are in ARC .
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Lemma?7.2:/f (ifj)isapathin Giwith iand jin S then :

-if fe N then UNI(i,j) =1.
-if feH , Vge PROJ(f) MEM(g)(ij) = 1 and a path (i,9,]) exists
in Gi.

t

The proof uses Lemma7.2 and the last caracteristic edge to be put in
front of ARC .

Lemma7.3: /f ijkeS feN, he At and (if]) and (jhk) are paths in Gy

where all the vertices of (j,h,k) ,exceptits ends ,arenotin S, then a
path (i,hk) exsistsin G;.

The proof goes by induction on the value of ETAP when the
caracteristic edge of (j,h,k) is created .

Then it is easy to prove that Al (Ry) ¢ R; then A*(Ry c Ryand
A*(R) c A*(Rpc Ry.

8.Applications

If we consider the congruence generated by a basic ,semi-reduced,
Church-Rosser system, each congruence class is defined by its minimal
element and our results imply :

-Monoids finitly presented by such systems have the cross-section
property [14] and [8].
-The two problems :
-Do two regular languages have a non zero intersection with a
congruence class ?
-Does a regular language have a non zero intersection with the set
of descendants of another regular language ?
are decidable for a basic ,semi-reduced ,Church-Rosser system .

In conclusion ,we think that ,this class of system is the largest one in
which Theorems 1 and 2 are true ,since Church-Rosser , semi-reduced
systems exist which are not basic and in which ,sets of descendants of
regular sets are not regular [2] .
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