
DESCENDANTS OF REGULAR LANGUAGE IN A CLASS
OF REWRITING SYSTEMS : ALGORITHM AND COMPLEXITY
OF AN AUTOMATA CONSTRUCTION.

M.Benois
LS.D., IM.A.G., Grenoble 1 University,
B.P.68 , 38402 St Martin d'H~res Cedex

Introduction :

Recent works on public key encryption for secure network
communication [7] have brought back the following problem : given a regular
set R on A* ,defined by a non deterministic finite automaton with n states
and a rewriting system T, how can we construct an automaton that
recognizes the set of descendants of R : z~*(R) when this language is regular
[1]. Some algorithms are found by Book and Otto [6] or Sakarovitch and me
[3],in ve~/particular cases of systems and gave complexity in O(n 4) in [6]
and O(n °) in [3]. Here we give a strong extension of these algorithms in a
large class of systems however the complexity of our algorithm does not
depend on the lenght of the words of T and is at most in O(n 6) .

1. Semi Thue systems : definitions and results.

Given a finite subset T of A*xA*, we can consider it either as a
non symetric system and its elements (f,g) as rewriting rules, or as a
symetric system which generates a congruence and which may be Church
Rosser . In this work we study systems as rewriting rules and only in the
conclusion we transform the results in the Church Rosser view point.
Below some definitions and properties of the studied systems are given.

Let A be a finite set, A* is the free monoid generated by A with the
empty word 1 as identity. The lenght of a word f of A* is denoted by Ifl • A
Thue system T is a finite subset of A*xA* ; T defines a regular relation
denoted by "~T, [9] and defined by :

u~ T v iff there exist x and y in A* and (f,g) in T such that u = xfy

and v = xgy.
The transitive (resp. transitive and reflexive) closure of -~T is denoted by

~+T (resp. -* T)" A word v is a descendant of a word u in T when

122

u ~+T v and z~+(u) is the set of all the descendants of u and

A*(u) = A+(u) U {u}. A T-chain u 1,u2,...u n is a sequence of words such that

V i ui-* T ui+ 1 .
Let's recall some well known definitions:

-a wold is irreducible for T if there exists no T-chain beginning
with i t .
-T is noetherian if every T-chain is f inite. This implies that
V u in A* , z~*(u) is finite ,[9].

and give some new ones :

-Two systems T and T' are equivalent if the their generated
relations "**T and -~*T' are equal . Then the sets of descendants

of a word u are equal .
-Two systems T and T' are confluentty equivalent if : whenever
u-~*TU' (resp. u-~*T,U') then 3 v such that u-~* T, v and u'-->* T, v

(resp. u ~ * T v and u'-~* T v).This relation between systems is an

equivalence when the systems are confluent.

It is clear that two equivalent systems are confluently equivalent and
that the contrary is false. The decidability of the equivalence problem is
implied by the decidability of the following particular word problems : given
two words u and v , is one of them, a descendant of the other ,for T and T'.

Propos i t ion 1 . 1 : E T and T' are two equivalent systems ,they are
noetherian at the same time.

Now let us consider the properties of words which describe a system T
and denote by :

- H = { feA*, 3 g ~ A* g~l and (f,g) eT }
- N = { fE A* , 3 g~l and (f,g)E T }.
- C = { ge A* , g~l and (f,g) e T }

in certain cases may be HUN ~ Q.
The properties of our systems will be defined below :

-T is basic if words in C do not overlap properly words in HUN ,that is :
V fe HUN ,VgeC if 3 u,v,w,such that either f=uv and g=vw then w=l

123

or f=vu and g=wv then w=l ;[12] and [13].

-T is semi-reduced if a factor of a word in C is never in HUN .Or every
word in C is irreducible ;[11].

-T is reducible if T is equivalent to a semi-reduced system o

-T is confluently reducible if T is confluently equivalent to a
semi-reduced system.

The following propositions explain the aim of these definitions:

Proposi t ion 1.2 : A basic and semi-reduced system is noetherian .

The proof goes by induction on the difference between the lenght of a
word and the lenght of its factors in HUN. A useful consequence of
proposition 1.2 is that in semi-reduced basic system VueA* , A*(u) is finite

Proposi t ion 1.2- One can decide if a given system T is confluently
reducible.

This implies that if T is noetherian then T is confluently reducible.

2. Properties of sets related to a system T on A .

We omit the T in this part since T is always the same .Notations:

-A 1 (u) = { w A* such that u-~v }.
-Ai(u) = {veA* such that 3 we A i ' l (u) and w-*v }.

-A#(u) = {vEA* such that 3 n and (fl,gl),(f2,g2),'"(fn,gn) eT and

x 1 ,x2,...Xn+leA * and u -- X l f lx2f 2 ...fnXn+l , v = X lg lx2g 2 ...gnXn+l }.

These definitions are extented to a set of words instead of a word and:

-Ai(P) = UuE P Ai(u)

-A+(P) = Ui>IAi(P) , A*(P) = Ui_>0Ai(P).

We have the following properties "

124

qf PeP' then A(P)cA(P'), A#(P)cA#(P'), A*(P)cA*(P') ;

- P cA*(P), A+(A+(P)) = A+(P), A*(A+(P))= A+(P);
i - A(P) cA#(P) c U i_<maxlul,ue P A (P) ;

- A # (P) = A + (P) , A * # (P) = A * (P) •

-These operators are stable for union and intersection of subsets.

3. Descendants of regular languages in a semi-reduced basic system T.

The set of semi-reduced basic systems is a large extension of the well
known and studied following systems:

-special systems where H=
-monadic systems where C c A.

They are not all lenght-reducing, however when they are not ,A*(u) remains
finite ,by proposition 1.2.

We refer to Hopcropft and UlIman [10] for the definitions of finite
automata and of regular languages on A and we follow their notations. Given
a regular language R on A accepted by a non deterministic finite state
automaton & = (Q ,A, q0, ~) ' F) ,we want to transform this automaton in

another that recognizes all the descendants of R : A*(R) with respect to a
semi-reduced, basic system T .The algorithm we describe and prove below
is also proof of :

Theorem 1 :The set A*(R) of the descendants in a semi-reduced basic
system of a regular language R is a regular language on A .

The study of the complexity of the algorithm gives the next theorem :

Theorem 2 : Let. T be a finite semi-reduced basic system on A and R be a
regular language on A specified by a non deterministic finite automaton
with n states, one can effectively construct in O(n 6) steps a non
deterministic finite automaton that recognizes A*T(R).

This theorem generalizes the algorithm described in [3] and its
complexity in some particular cases is :

oO(n 4) if H = • .
=O(n 4) if T is monadic (i.e. for every gcC Igl < 1).
-O(n 4) if for every fE HUN Ifl < 2.

125

-O(n 3) if for every feHUN Ill .< 2 and for every geC Igl _<1.

4. The basic principles of computing an automaton that recognizes A*(R).

First we will consider the given automaton ~& = (Q,A,qo,~),F) as a

directed labelled graph G(~) the vertices of which are elements of Q. Its
edges represent the transition function ~ : (q,x,q') is an edge from q to q'
with label x~A iff q'~)(q,x) ; a vertex qo is the initial state and F is a

subset of vertices. A path of G(&) is a sequence of vertices and edges
denoted by (q, u, q') where q is the beginning, q' the end and u is the
concatenation of the labels of the edges. A word u is recognized by ,~ iff
a path (qo,u,q') exists in G(&) with q'~F .

The main idea is : for every f~HUN and every path (q,f,q') in G(&)
we have to add a new path (q,g,q') for every g such that (f,g)cT. This
implies that we add new vertices and,new edges and so create new paths
(q,f,q') and the process may be infinite .We choose a particular way to add
these new vertices and edges ; it is easy to prove that in this way the
process is finite but we have then to prove that the graph we construct
recognizes A*(R).

Initially G o is the graph of ~ that recognizes R ,its vertices will be

called in i t ial vertices . The finiteness of the algorithm comes from the
consideration of a queue ARC which, at the beginning, countains all the
edges of G o labelled by a letter of an f~FUN ; each step of the algorithm

can put new elements is this queue .
For every edge (i,x,j) at the front of the queue and every f~HUN we

look, in the graph constructed at this step, for the paths (q,f,q') which
contain the edge(i,x,j) ,this is part one in the algorithm .Whenever we
found such a path we have two ways in adding new paths :

-if f~H we addjfirst new vertices and new edges related to these
vertices to realise a path (q,g,q') for every g such that (f,g)~T ;
then the first new edge created in the queue ARC. This is part
two of the algorithm.
-if feN we add/first a new edge (i,y,q") every time (j,y,q") is
already an edge in the graph ,then this new edge in the queue ARC.
This is part three of the algorithm.

To remember which paths we have already added, we consider tCl+l
Boolean matrices,one for f~N denoted UNI and the others for g~C denoted
MEM(g) the sizes of which will be defined later.

For every new vertex s constructed in part two it is convenient to

126

remember its generating vertices OR(s) and EXT(s) , the suffix RD(s)
which labels the path (s,EXT(s)) and the prefix RG(s) that labels the path
(OR(s) ,s).

!n order to prove ,that we have to consider a finite number of paths
(q,f,q'), we use the chosen properties of the system T and establish the
following:

Lemma 4.1 " In every state of the graph constructed by the algorithm ,the
outdegree of a new vertex is exactly I ,the indegree of a new vertex is 1
except for the successor of an initial vertex but then, every inedge has the
same label.

The proof goes by induction on the creation time of the vertices and
uses the property: T is basic.

Corol lary 4.1 • When a path contains a non initial vertex s created by a
path (q,f,q') the vertices of which a r e s 1 ,s2,...Stgl. 1 ,it contains the

subpath of (q,f,q') ' (s 1 , ,s i) its i is its end , otherwise (s 1 , ,q').

This corollary and the property : T is semi-reduced, prove:

Propos i t ion 4.1 ° Whenever ~q,f,q) is a path of a graph in the algorithm and
fzFUN, q and q' are initial vertices.

4.2 • The algorithm adds at most {CI.n2.maxg~c(Igl-1) vertices to Corol lary

the initial graph.

Therefore we can consider one set W of m = iCl.n2.maxgcc(igi-1)

vertices, the initiai vertices are a subset S ,I Sl=n and m is in O(n 2) . The
algorithm only adds edges. The queue ARC will contain at most IAl.m 2
edges. New terms are put in ARC when new paths (q,f,q') are found and new
coefficients 1 in matrices UNI and MEM(g) the size of which are n , hence the
algorithm has a finite number of steps.

5. Description of the aigorithm.

Data

127

The system T is defined by the sets H, N, C and
-for every fell ,a set PROJ(f) = {g such that (f,g)eT }
-for every xcA ,a set FACT(x) = {feHUN such that x is a letter of f}
-for every fe FACT(x) ,a set of couples of words

DEC(f,x) = { (FG,FD) such that FGxFD = f }
-for every geC an integer l(g) = Igl-1 •

The graphs are defined by a set of vertices {1,2,...m} where S={1,2..n}
and IAI m.m Boolean matrices :

MAT(x)(i,j) = 1 iff (i,x,j) is an edge,
Initially we consider all the edges of G o .The set F of final vertices is

initially the set of final states of ~ .

We have also the auxiliary data :
-a n.n Boolean matrix UN1 ,initially UNl(i,j)= 1 iff i=j.
-for every gcC a n.n Boolean matrix MEM(g) initially O.
-for every s>n two elements of S : OR(s) and EXT(s) ,and two
words RG(s) and RD(s) ,initially they are ~ or 1.
-a counter COMPT : an integer >_n used for the allocation of the
new edges on "new" vertices .Initially COMPT= n.
-a counter ETAP of stages of the algorithm related to a state of
the graph and the order of the appearence of 1 in the matrices UNI
and MEM(g).
-a queue ARC initially contains all the edges of G o .

Part one of the algorithm :The search of paths (q,f,q') that contain a given
edge (i ,aj).

We choose ,for this graph algorithm ,to use a m.k matrix, the lines of
which construct the sucessor of the last line ,and we short our search
whenever a vertices s>n by putting directly its path-successor by
corrollary 4.1 .The result is a set QxQ' of all the couples of extremities of
such a path .We search Q then Q' and have to compute their cartesian
product.Roughly the search of Q' can be describe by :

CHERCHE({ MAT(x),OR(x),EXT(x) } ,f, a, (FG,FD),j)
k= IFDI
S is a m.k Boolean matrix
f[f.~ p=l to m and p¢j do S(0,p)=0;S(0,j);]
f[,f.Qz s=l to p d o

x:=front (FD); deJ.etg (FD);
fffffffff~r=l to n do

128

S(s-t,r)=l ~ f[f_o~ t=l ~ m do if MAT(x)(r,t) =1 ;S(s,t)=l ;]
r=n+1 tO__ m

if S(s- l , r) =1
compare (FD and RD(r));
if RD(r) prefix of FD tb._e._0_ S(s+IRD(r)I-1 ,EXT(r))=I ;]]

We denote part one by : CHERCHE((i,a,j),f,(FG,FD),QxQ').

Part two of the atgodthm : The adjunction of a path (q,g,q') whenever a path
(q,f,q') is found by part one with fell; and the adjunctien of one edge in ARC.

We choose to put the extremities of new edges with respect to the
order of the numbers that represent the vertices n+l, n+2 m by the mean
of the counter COMPT. We denote this part by :

ADJ((q,q'),g,{MAT(x),OR(x) ,EXT(x),RG(x),RD(x) ,ARC)
and describe it roughly :

g is represented by a queue (LIST)
x:=fr_L0_0_t(LtST); delete (LIST);
z:=COMPT;
s:=COMPT +1 ;
MAT(x)(q,s) := 1; enter (ARC,(q,x,s));
COMPT:=COMPT+I; OR(s):=q; EXT(s):=q'; RD(s):= LIST; RG(s):=x;
r e E ~ C O M P T = l (g) + z

x:=fro~ (L!ST);delete (LIST) ;
MAT(x)(s,s+l) :=!;
s:=s+l ; OR(s):=q ; EXT(s):= q'; RD(s):= LIST; RG(s) :=RG(s-l)x;
COMPT:=COMPT+I ;

X:=fr~(L1ST); delete (LIST); MAT(x)(s,q') := 1 ;

Part three of the algorithm :The adjunction of edges (q,x,r), whenever a path
(q,f,q') is found in part one with feN and (q',x,r) is already an edge of the
graph ; these edges are added both in the grah and in ARC.

We denote this part by CLOT((q,q'),x, MAT(x), ARC):

fizz s=l ~ m .d__o.
if MAT(x)(q',s) =t ~ MAT(x)(q,s) = 0 ~hgn

MAT(x)(q,s) := 1;
n#.&t_ez (ARC,(q,x,s));]

129

The whole algorithm can be now simply describe •

ETAP:=I
BC: if empty (ARC) then halt ;

(i,a,j):=fr_.g_0.t ARC; delete (ARC);
[for all feFACT(a) do

[for all (FG,FD)eDEC(f,a) do
CHERCHE((i,a,j),f,(FG,FD),QxQ');
[for all (q,q')e QxQ' do

if fe N and UNl(q,q')=0 then
ETAP:=ETAP+I;
UNl(q,q'):--1;
if q'eF then F:=FU{q'} ;
[for all xeA do CLOT ((q,q'),x,MAT(x),ARC);]

else if fcH then
[for all gePROJ(f) do

if MEM(g)=0 th~.n
ETAP:=ETAP+I ;
MEM(g)(q,q') := t;
ADJ((q,q') ,g ,{MAT(x),OR(x), EXT(x), RG (x), RD(x)} ,ARC);]]]]

ao to BC;

6. The running time of this algorithm.

We evaluate each part of the algorithm:
-the lenght of the queue ARC is already in O(n 4) but we can give a
smaller bound : initially there are n 2 edges in ARC the new ones
have their invertices in S so the size of ARC is in

O(n2)+O(n,m) = O(n3).
-generally ,part one countains n.m executions of instruction in O(1)
and m-n also in O(1) ; its running time is O(n.m)+O(m-n) = O(n3). If
H=O then n=m and it becomes O(n2); if the lenght of words in FUN
is smaller than 2, O(n). This part is called every time a new edge
is put in front of ARC, at most O(n 3) times.
-part two ADJ has a running time O(1) and is called every time a
new 1 appears in MEM(g) , at most ICl.n 2 = O(n 2) times.
-in part three each instruction costs O(1) and is called m times, the
running time is O(n 2) .This part is called when a new 1 appears in

130

UNI ,at most n 2 times.
Then the running time of the whole algorithm is:
-in general O(n3)O(n 3) + O(1)O(n 2) + O(n2)O(n 2) = O(n 6)
-when H=~ O(n2)O(n 2) + O(n)O(n 2) = O(n 4)
-if maxlgl -<l(monadic)O(n2)O(n 2) +O(1)O(n 2) + O(n)O(n 2) = O(n 4)
-if maxtfl<2 ,fEFUN O(n)O(n 3) + O(1)O(n 2) + On2)O(n 2) = O(n 4)
-if maxlgl_<l and max tfl<_2 ,feHUN O(n)O(n 2) + O(1)O(n2)+O(n)O(n2)=O(n 3)

7.The automaton represented by the last state G t of the algorithm graph

recognizes A*(R).

Let G i denotes the state of the graph just before the value of ETAP

is i+t, R i is the language recognized by the automaton Ai the graph of

which is G i .Eventually G t = G t+l = Gt+k when the consideration of the

last element of the queue does not create either new value 1 in the
matrices UNI and MEM(g) or new edges by ADJ or CLOT Jt is easy to prove

Proposition 7.1 : R t c A*(R).

The proof uses, properties of z~#, z~#* and z~* seen in 1 and the

following lemma :

Lemma7.1 : R i cRi. 1 Uz~#(Ri_l).

The proof goes by induction on k defined by : given a path (qo, u, q)

in G i , k is the the number of its edges which are not in Gi. 1 and the proof

uses Corollary 4.t .

To prove that A*(R) c R t we have to establish further results on the

paths of G t.

Lemma 7.2 : Every path in G t ending in S is factorized in subpaths ending

in S ,the first edges of which (its caracteristic edge) are in ARC.

131

Lemma 7.2 :/f

-/f fEN
-/f fell
in G t.

(i,f,j) is a path in G t with i and j in S then :

then UNI (i,j) =1.
, Mge PROJ(f) MEM(g)(i,j) = 1 andapath (i,g,j) exists

The proof uses Lemma7.2 and the last caracteristic edge to be put in
front of ARC.

LemmaT.3 - If i,j,keS ,fe N, hc A + and (i,f,j) and (j,h,k) are paths in G t

where all the vertices of (j,h,k) ,except its ends ,are not in S, then a
path (i,h,k) exsists in G t .

The proof goes by induction on the value of ETAP when the
caracteristic edge of (j,h,k) is created.

Then it is easy to prove that /,,l(Rt) c R t then z~*(Rt) c R t and

A*(R) c A*(Rt)c R t .

8.Applications

If we consider the congruence generated by a basic ,semi-reduced,
Church-Rosser system, each congruence class is defined by its minimal
element and our results imply :

-Monoids finitly presented by such systems have the cross-section
property [14] and [8].
-The two problems :

-Do two regular languages have a non zero intersection with a
congruence class ?
-Does a regular language have a non zero intersection with the set
of descendants of another regular language ?

are decidable for a basic ,semi-reduced ,Church-Rosser system.
In conclusion ,we think that ,this class of system is the largest one in

which Theorems 1 and 2 are true ,since Church-Rosser, semi-reduced
systems exist which are not basic and in which ,sets of descendants of
regular sets are not regular [2].

132

References :

[1] M.Benois: Parties rationnelles du groupe iibre,_C.R.Acad.Sci.Pa_&~.
ser. A 269,1969,1188-1190.

[2] M.Benois et P.Butzbach :Langages alg6briques d6terministes et
transversale rationnelle ,_Rapport de recherche n ° 446, L.S.D. IMAG
1984.

[3] M.Benois et J.Sakarovitch :On the complexity of some extended word
problems defined by cancellation rules ,Information Processing Letters
& parai"tre.

[4] J.Berstel : ~ u c t i Q . 0 ~ and context fre~_langages .Teubner 1979.
[5] R.Book, M.Jantzen and C.Wrathall , Monadic Thue Systems, _Theoret.

CompuJL._S_.c~ 19 (1982) 231-251.
[6] R.V.Book and F.Otto : Cancellatio rules and extended word problems,

l n f _ _ _ o r m a ~ t t e . r ~ 20,1985,5-11.
[7] D.Dolev and A.Yao : On the security of public key protocols ,I.E.E.E,

.Trans.lnform&tion Th.eory IT 29,1983, 198-208.
[8] S.Eilenberg :_&.ut0mata ...Languages. and Machines Vol A ,Academic

Press, 1974.
[9] G.Huet • Confluent reductions: Abstract properties and applications

to term rewriting systems, J. Assoc. Comp. Mach. 27, 1980 797-821.
[10] J.Hopcroff and J.Ullman :...!n~roduction to Automata Theory. Langages

and C o m ~ A d d i s o n - W e s l e y , t979.
[11] P.Narendran: Church -Rosser and related Thue systems.Report n °

~A_C_RD~7_.6_,General E_ectr c Corporate Research and Develooment.
Schenectady, N.Y. ,1984.

[12] M.Nivat (et M.Benois) :Congruences parfaites et quasi parfaites,
S6minaire D_~b.E.~J_,25 ° ann6e ,1971-72,7-01-09 .

[13] J.Sakarovitch :Description des mono'ides de type fini ,RaDDort n °
80-36 LITP ,t980.

[!4] J.Sakarovitch • Syntaxe des langages de Chomsky Th6se Paris7
1979.

