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Abstract 

It is undecidable in general whether or not a term-rewriting system is confluent on a given 
congruence class. This result is shown to hold even when the term-rewriting systems under con- 
sideration contain unary function symbols only, and all their rules are length-reducing. On the 
other hand, for certain subclasses of these systems confluence on a given congruence class is de- 
cidable. 

1. Introduction 

The word or equivalence problem for a term-rewriting system R on T = T(F;V) is the 

following fundamental decision problem : 

INSTANCE : Two terms t l , t  2 E T. 

QUESTION : Are t 1 and t 2 congruent modulo R (t I ~--~/~ t2)? 

If R is a finite c anon ica l  ( =  Noetherian and confluent) system, then this problem can be 

solved effectively by reducing t 1 and t 2 to their normal forms t ° and t~ ° , respectively, and 

comparing these normal forms. In general it is undecidable whether or not R is Noetherian [7] 

and whether or not R is confluent [1]. However, if R is known to be Noetherian, then 

confluence is decidable by computing all critical pairs and by checking whether or not each of 

them can be resolved [8]. If R is not confluent, then there exist critical pairs that  cannot be 

resolved. By making these pairs into new rules one can try to generate a canonical system R 0 

that is equivalent to R .  This process is called comple t i on  [11]. 

I f  the word problem for R is undecidable, then the process of completion cannot generate a 

finite canonical system equivalent to R .  However, even if the word problem is decidable, this 

process may fail. Actually, there are known examples of finite systems with decidable word 

problem for which no equivalent finite canonical systems exist [9,10]. 

However, in some situations it is not necessary to actually solve the word problem, rather it 

would suffice to solve a restricted version of it. Let t denote a fixed term. Then the word 

problem for R restricted to [t]R is the following decision problem : 
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INST_4~CE : A term t I E T. 

QUESTION : Is t 1 congruent to t modulo R ? 

For example, when the factor algebra T/*-*~ is a group, then the word problem is 

equivalent to its restriction to the class of the identity [e ]R, but there are also other situations 

in which one is only interested in this restricted problem. 

tf the rewriting system R is Noetherian, and if it is confluent on [t JR, then the process of 

rewriting induced by R solves the restricted word problem. Actually, D e h n ' s  a l g o r i t h m  for 

the word problem, which applies to certain small cancellation groups, is of this form [6,13]. The 

investigation of Dehn's algorithm from the standpoint of rewriting systems has been initiated by 

Buecken in his Ph.D. dissertation {5]. Buecken and later LeChenadec [12] proved how certain 

restrictions upon the rules of R translate into a proof that  R is confluent on [e ]R" Their 

proofs are technically rather involved, although they are tuned to the specific situation of group 

presentations at hand. Here we want to consider the problem of deciding whether or not a 

rewriting system is confluent on a given congruence class in a more general setting. However, we 

shall restrict our attention to term-rewriting systems containing unary function symbols only, 

which can be interpreted as string-rewriting systems on a finite alphabet E [7]. So we are 

interested in the following decision problem : 

CONFLUENCE ON A GIVEN CONGRUENCE CLASS (CCC) : 

INSTANCE : A finite rewriting system R on E, and a word w E E * • 

QUESTION : Is R confluent on [w ]R ? 

After establishing nora+ion we shall derive a characterization theorem that  gives necessary 

and sufficient conditions for a Noetherian rewriting system R to be confluent on a given 

congruence class [w ].e (Section 2). tn Section 3 we shall outline a construction that  shows that  

the problem CCC is undecidable in general, even if it  is restricted to systems containing length- 

reducing rules only. Even if the system R or the word w is fixed, this problem remains unde- 

cidable. However, if we consider monadic systems only, then problem CCC can be solved in 

double exponential time (Section 4). 

For many results presented here proofs are only sketched or even omitted. For complete 

details see Otto [19]. 

2./k Characterization Theorem 

Let E be a finite a l p h a b e t .  Then E ~ denotes the se t  o f  w o r d s  over E, where e denotes the 

empty w o r d .  As usual E w t stands for the l eng th  of the word w, and superscripts are used 

to abbreviate words. 

A rewriting system R on E is a subset of E * ×  E~, where d o m ( R )  = {l E E~ 1 
3 r C E" : ( l , r )  E R } and range(R)  = {r E E *  I ~ 1 E E *  : ( l , r )  E R }. R induces the 
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r e d u c t i o n  r e l a t i o n  --*~ on ~*,  which is the reflexive transitive closure of the s ing le - s t ep  

reduction r e l a t i o n  --*R, and the congruence ~/~ on E*, which is the equivalence relation 

generated by -~R- For w E ~*,  [W]R -~- {v E E* I w ~-~I~ v }  is the c o n g r u e n c e  class  of 

w, A~(w)  ~- {v E ~ *  [ w --*~ v} is the se t  o f  d e s c e n d a n t s  of w, and < w •  R = 

{v E ~ *  [ v --*/~ w } is the se t  o f  a n c e s t o r s  of w m o d u l o R .  

In general, the process of reduction is non-deterministic in that  several different rules of R 

may be applicable to a given word. However, this process becomes deterministic if we consider 

left-most reductions. 

For each I E d o m ( R ) , l e t  r ( l ) b e a w o r d s u c h t h a t  ( l , r ( l ) ) E R .  T h e n R  1 : =  { ( l , l ( r ) )  I 

l ~ dora (R) )  is a subsystem of R for which no two different rules have identical left-hand 

sides. Now a reduction u --*R v is called l e f t - m o s t  (with respect to R1) , if 

u ~ xly, v -~- xry,  ( l , r )  E R1, and if u ~ Xl l lYl ,  v 1 ----- x l r l y l ,  ( l u r l )  E R1, then zl is a 

proper prefix of Xll l ,  or xl ----xll I and x is a proper prefix of xl ,  or x ~ x l ,  l ~ - t l ,  and 

hence, v ----vl. We write u -~R,L V if u ~ R  V is lef t -most ,  and w i t h - ~ *  R,L we denote the 

reflexive transitive closure of -*R ,i - 

Obviously, for each reducible word u E~.  *, there is a unique word v such that  

u -'~R,L v. Before we can state the characterization theorem we need one further notion. 

Two (not necessarily distinct) rules ( l l , r l ) ,  (12,r2) E R o v e r l a p  if l I ~ xl2y for some 

x , y  E ~ "  or l l x  ~ yl 2 for some x , y  E ~*,  0 ~ I Y i ~ t I l l  . The word I l ~- xI2y or 

l l x  -~- yl 2 can then be reduced by (/1,rl)  and by (12,r2) , thus giving the c r i t i ca l  p a i r  ( r l , xr2y)  

or ( r l z , y r : )  , respectively. We say that  a critical pair ( u , v )  can be r e so lved  if 

A~(u  ) N A~(v  ) ~ 0, otherwise it is called u n r e s o l v e d .  

It is well-known that  the rewriting system R is locally confluent if and only if all its critical 

pairs can be resolved, and if R is Noetherian, then this is also equivalent to R being confluent. 

Since the decision problem CCC is of interest only for systems that  are non-confluent, the sys- 

tems we shall be dealing with will usually have some unresolved critical pairs. For a rewriting 

system R ,  let U C P ( R )  ~ { ( u , v )  ] ( u , v )  is a critical pair of R ,  A/~(u )N A/~(v)~-~ 0} 

denote the set  o f  u n r e s o l v e d  c r i t i ca l  pa i r s .  Notice that  for a given finite Noetherian rewrit- 

ing system R this set can be computed effectively. 

Finally, if R is Noetherian, then for two given words u ,w E ~*,  Lu (w) denotes the set 

L ~ ( w )  = ( x # y  I x , y  E I R R ( R  ), xuy ~ * R,L wl} .  Here w 1 E I R R ( R )  such that  w -"~R,L Wl, 

where IRR ( R )  denotes the se t  o f  i r r e d u c i b l e  words~ and # ~ ~ is a new letter. Since the 

process of left-most reduction is deterministic, w 1 is uniquely determined by w. Now we can 

state the characterization theorem. 

Theorem 1. Let R be a finite Noetherian string-rewriting system on ~, and let w E E ' .  Then 

the following two statements are equivalent : 

(i) The system R is confluent on [W]R. 

(ii) V ( u , v )  E UCP (R ) : L~ (w ) : L~ (w ). 
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P r o o f .  Wi thou t  loss of generality we may assume that  w E IRR (R), i.e., L~ (w) = {x#y  ! 

x ,y ~ IRR (R) ,  ~ v  --~I,L w }. 

(i) ~ (ii) : If R is confluent on [w JR, then for aH.,  E ~ '  , if z ~ w , then z -*R*,L w . Let 

( u , v )  C UCP(R). Then u ~ v .  If z#y  C L~(w), then x ,y  E IRR(R)  and xuy ~I{,L w. 

ttence, w ~ xuy ~ xvy implying xvy -+R,L w, i.e., x#y C L,(w).  Thus,  

L u {w ) C  L~ (w), and by symmetry this gives L~ (w) ---- L v (w). 

(ii) ==> (i) : Assume that  R is not  confluent on [w ]~. 

C l a i m  1. There exists a word z E E" such that  A i ( z  ) N IBR (R) ~_# {w }. 

P r o o f .  Since R is not confluent on [w ]R, there exists a word v C IRR (R) such that  v ~A w, 

hut  v *-,~ w. Hence, there exist an integer m > 0 and words Wo, Wl, - • " w m E E* such that  

w ~WO'~-*RWl+-~R " "  "*'~RWm -~-V. Since w~v E I R R ( R ) ,  we have m >--2, wl--~Rw o 

and w m_l -+R Wm " 

Let k : =  ma x( /  I w ~ . ~ i w } ,  if k = m - l ,  then A/~(w k ) N I R R ( R )  D/. {w}. If k < 

m - l ,  then wk--*l~ w, and wk-*RWk+l, whereas Wk+lT~ ~ w. Since A/~(wk+1) N IRR(R)  VA O, 

we thus have AI~(wk) ,~IRR(R ) ~ {w} U(AI(wk+I) AIRR(R))~_# {w}. This proves 

Claim 1. D 

Since R is Noetherian, the ordering > on E* defined by u > v if and only if u --*/~ v is 

well-founded. Let z be a minimal  word with respect to this ordering such that  

A ~ ( z ) N I R R ( R ) D ~  {w}. Then  for each word z j  such that  z > zl ,  either 

~Xi(z~) n IRR ( R ) =  {~} or ~ ~ Z~(z~). 

C l a i m  2. For all factorizations z = Xllly 1 : x212y 2, where xl l ly  1 ~Rx l r l y l -~1~  w and 

x21:Y2 -*R x2r2Y2 ~t~ wo, wo E IRR (R )  - {w }, the occurrences of 11 and 12 in z overlap, and 

their overlap yields an unresolved critical pair (u ,v) ~ UCP (R). 

• Z P r o o f .  Since AR( ) ~ IRR (R) ~ {w }, z has factorizations of the form given above. Assume 

that  the distinguished occurrences of I t  and 12 in z do not overlap, i.e., z : xll~sl2y 2 or z : 

x2t2sliy v Without  loss of generality we may assume the former. Then  we have the following 

si tuation : 

x l r  tsi2Y2 

I* 
,4, 
w 

z = XlllSl2y 2 

Xlttsr2Y2 

x 1 r 18r2Y2 * 

w 0 

Since z --~RxirlM2Y2, xlrlsl2Y2 <: z. Hence, w C Al~(xlrlst2y2) implies tha t  

A~(xlrlsl2Y2) A IRR (R )  = {w } due to the minhnal i ty  of z.  Hence, xlrlsr2y 2 ---'i~ w, which 

in turn gives tha t  At~(x~llsr2y2) A IRR (R )  .~  {w }, a contradiction. Thus,  the distinguished 
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occurrences of 11 and 12 overlap. If the critical pair resulting from th~s overlap resolves, then we 

get the same contradiction as before. Hence, the resulting critical pair does n..~t resolve. []  

Now define z 1 and z 2 as follows. Let Zl E IRR (R )  such that  

z ~- Xll ly  1--*R,L Xlr lY l - -**  R,L zl, and let z 2 E I R R ( R )  be chosen as follows : If z 1 ~ w, 

then z 2 :---~ w, otherwise let z 2 E (A~(z )  M IRR (R))  - {w }. Then we have the fol;owing situa- 

tion : 

z ~ Xl l ly  I -'*R,L Xlr lYl  --** R,L Zl E IRR (R),  and 

z : z212y 2 -+R z2r2Y2 --'t~ z2 E IRR (R),  

where z 1 ~ z 2 and w E {zl,z2}. 

By Claim 2 the occurrences of 11 and 12 in z overlap giving an unresolved critical pair 

(u , v )  E UCP(R) ,  i.e., 

Z ~-x8y "~R~L x~y -'~ * R,L Z l E IRR (R),  and 

z = xsy "~R :rvy --~1~ z2 E IRR (R),  

where z 1 ~ z 2 and w E {zl,z2}. Note that by Claim 2, x ,y  E I R R ( R ) .  

(i) Assume that  z 1 ----- w. Then x~y  EL~(w). However, w ~ A ~ ( x v y )  implying that  

z-#y ~ n , ( w ) .  

(ii) Assume that  z 1~ w, i.e., z 2 -~ w. Since xvy < z,  this means that  A~(xvy)  M IRR (R )  

{w }, and hence zvy --~R,L z2----w, i.e., x#y  E L, (w). However, w ~ A~(xuy)  implying 

that  x#y  ~ L~ (w). 

In any case Lu (w) ~ L~ (w), thus completing the proof of Theorem 1. [ ]  

3. U n d e c l d a b i l i t y  R e s u l t s  

We want to show that confluence on a given congruence class is undecidable even if only finite 

length-reducing systems are being considered. Here a rewriting system R is called l eng th -  

r e d u c i n g  if 1 I I ~> I r I for each rule ( I , r )  E R .  Actually, we shall derive the following result. 

T h e o r e m  2. There exists a finite length-reducing rewriting system R on ~ such that  the fol- 

lowing problem is undecidable : 

INSTANCE : A word w C ~*.  

QUESTION : Is R confluent on [w ]R ? 

The proof of this theorem is based on a construction taken from O'Dunlaing's PhD disserta- 

tion ([16], see also [17], Theorem 4.1.1) that  has also been used in [14,15,18] for proving various 

undecidability results. From a single-tape Turing machine M ~-- (E,Q,qo,5) accepting a 

language L C E* this construction yields a finite length-reducing rewriting system R ( M )  on 

alphabet F ~_ ~ such that R (M) is confluent, and two regular subsets 

CONFIG,HALTING _ F*.  The elements of the set CONFIG are descriptions of possible 

configurations, and the elements of the set HALTING are descriptions of possible halting 
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configurations of the Taring machine M,  while the reduction sequences induced by R ( M )  

correspond to reversed computations of M. The iraportant property obtained is the following : 

For all x E E  *, M halts on input x if and only if there is aword  w E H A L T I N G  such 

that w -+I~(M) $SoX3Z" Here s o is a special symbol corresponding to the initial state q0 of M,  

and $ and & are special symbols from F-E used as markers. 

Thus, x E L if and only if ,~$sox&~>R(M) N HALTING ~A ~. Now additional rules can 

be introduced that are applicable only to descriptions of halting configurations, i.e., to elements 

of HALTING.  These rules ensure that each element w E HALTING has more than one 

irreducible descendant. Since these rules do not apply- to descriptions of non-halting 

configurations, and since <:$60x ~ > R  (M) C CONFIG for all x E E*, this gives the following : 

R (M ) is confluent on [$SoX &]R (M ) if and only if <$sox & > R(M) ,Q HALTING ~ 0 if and 

only i fx  ~ L .  

If M is a Taring machine accepting a non-recursive language, then the above considerations 

show that the resulting rewriting system R (M) meets the requirements of Theorem 2. Thus, the 

decision problem CCC is undecidable in general, even when it is restricted to a single length- 

reducing rewriting system. 

Instead of dealing with a single system, we can restrict the word w to always be the empty 

word, therewith considering the following decision problem: 

CONFLUENCE ON CLASS OF THE EMPTY WORD (CCEW) : 

INSTANCE : A finite Noetherian rewriting system R on E. 

QUESTION : Is R confluent on [e ]R ? 

For proving this problem to be undecidable, consider a non-recursive language L ___ E*. 

Let M be a single-tape Taring machine accepting L ,  and let R (M) denote the finite length- 

reducing system constructed from M as before. Now for x E E*, let R (x) denote the system 

R (M) U {($s 0 x &,e )}. Then for each x E E*, R (x) is a finite length-reducing system that can 

easily be obtained from z .  Further, since the rule $SoX& --~ e does not introduce any new crit- 

ical pairs, R (x) is confluent on [e ]R(~) if and only if R (M) is confluent o n  [$SoX&]R(M), which 

is undecidable in general due to the choice of R (M). This shows the following result. 

T h e o r e m  3. The decision problem CCEW remains undecidable even when it is restricted to 

finite length-reducing rewriting systems. 

In particular, this implies that the arguments Buecken and LeChenadec [5,12] give for show- 

ing that certain rewriting systems associated with small cancellation groups are confluent on [e ] 

cannot be generalized to yield an algorithm for this decision problem. 
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4. D e c i d a b i l i t y  Resu l t s  

If the rewriting system R is finite and length-reducing, then for each pair of words 

u ,w E IRR (R) ,  the set L~ (w) ~-- {x#y I x ,y E IRR (R) ,  xuy --~ * w } is a context-sensitive R,L 
language. Thus, it is not surprising that  it is undecidable in general whether or not 

L ~ ( w ) = L ~ ( w )  holds for all ( u , v ) E  UCP(R) .  If, however, the system R is finite and 

monadic, then each set of the form L u (w) is a context-free language, ttere, a rewriting system 

R is culled m o n a d i c  if R is length-reducing and range (R)  _ E U { e }. Since the equivalence 

problem for context-free languages is also undecidable, this observation does not seem to help 

much. However, as we shall see L~ (w) is a very restricted kind of context-free language in this 

situation. 

Let u , w  C I R R ( R ) ,  and let x#y  E L ~ ( w ) .  Then x ,y  E I R R ( R ) ,  and xuy --~R,L w.  

This reduction sequence consists of two parts : first, xu--*R,L X~ C I R R ( R ) ,  and then 

xk Y -*/~,i w. Since x and u,  respectively x k and y,  are irreducible, each step of the above 

left-most reduction sequences takes place at the border between x and u,  respectively z~ and 

y. Formally, this fact can be expressed as follows. 

L e m m a  1. Let R be a finite monadic rewriting system on E, let x , y  E I R R ( R ) ,  and let 

w , w l  E E* such that  xy - - ~  w -*R wl" Then there exist words z , t  E E* and a rule 

(l ,r ) E R such that  the following conditions are satisfied : 

(i) w = ztt,  

(ii) wl---- zrt ,  

(iii) z is a proper prefix of x,  and 

(iv) t is a proper suffix of y.  

In particular, z and t are irreducible. 

Thus, a reduction sequence xy = w 0 '~R w l  -~R " " " -*R wk, where x ,y E IRR (R ) and 

R is monadic, can be written as xy -~ zoloto--* R zorot o ~ Zllltl---+R z l r l t  1 -~ 

z212t2-+R " " "--~R Zk-lrk-ltk-I --- wk, where (l i , r  i ) E R ,  z i is a prefix of zz. 1, and t i is a 

suffix of ti_ 1. Hence, a pushdown automaton A (u ,w)  for recognizing the language Lu (w) may 

work as follows. 

First, we choose a subsystem R 1 of R such that  dora(R1) ~ dora(R),  and no two 

different rules of R 1 have identical left-hand sides. In the following we shall only be dealing with 

this subsystem. Since R is finite, dora(R)  ~ dom(R1)  is finite, and so the set 

[RR ( R ) { # } I R R  ( R )  is a regular language. Given R one can easily construct a deterministic 

finite state aceeptor (dfsa) B accepting this language. Running the pushdown automaton 

A (u ,w ) and the dfsa B in parallel, we can determine whether or not the input for A (u ,w ) is 

of the form x # y  with x ,y  E I R R ( R ) .  So let x # y ,  x ,y  E I R R ( R ) ,  be the given input for 

A ( u , w ) .  
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- W  3 

- W  4 

bol. 

Let/2 = max{ l l  i f I E d o m ( R ) U { w } } ,  and let k = /2 + I u I .  As i n p u t  a l p h a b e t  

and as s t a c k  a l p h a b e t  we take ~0 :---= ~ t2 {~}, where # also serves as the s t a r t  s y m b o l  

marking the bottom of the pushdown store. A ( u , w )  can store two words Wl,W ~ C ~"  of 

length I wl I ~ X, I w2 I _ P in its finite control. Thus, at each time the actual configuration of 

A (u ,w) can be described by a 5-tuple (q ,w l ,w2 ,ws ,w4)  , where 

- q is from a finite set Q of p r o p e r  s t a t e s ,  

- w 1 E ~* such that  # w  1 is the contents of the pushdown store, 

- w 2 C ~*,  I w21 ~ X, is the word stored in the left part  of the finite control, 

E ~*,  t w3 t <: /2, is the word stored in the right part  of the finite control, and 

E ~0" is the remaining part  of the input, the initial letter of w 4 being the actual input sym- 

The i n i t i a l  c o n f i g u r a t i o n  on input x~y  is described by (qo, e ,u ,e ,x # y  ). A ( u , w )  has 

three stages : READ, REDUCE LEFT, REDUCE RIGHT, which are executed one after another 

in the given order. 

R E A D  : The initial part  x of the input is read letter by letter and copied onto the pushdown 

store, giving the configuration (q 1,x ,u ,e , # y  ). 

R E D U C E  L E F T  ~ The word zu is reduced to some irreducible word z I by computing a left- 

most reduction zu -.~ w c - ' ~ R , L  W l  - " ~ R , L  " " ° " - ~ R , L  Wk ~--- X l  using the rules of the subsystem 

R 1. At  step i of this reduction sequence ( i=0 ,1 , . . . , k -1 )  the suffix of length k of the word we is 

stored in the left part  of the finite control, if I w; J > X, otherwise, all of w i is stored there. By 

the remarks on reduction sequences in finite monadic systems stated before each reduction step 

is actually performed on the word stored in the left part  of the finite control. Thus, an upper 

portion of the contents of the pushdown store is read while this reduction sequence is being com- 

puted, but no letter is written onto the pushdown store. Thus, the configuration obtained is of 

the form (q2,wl~w2,e , # y ) ,  where w l w  2 -~- z l ,  and t w2 t < k implies w I -= e . 

R E D U C E  R I G H T  : The input letter # is deleted. Then the word z t y  is reduced to some 

irreducible word x~ by computing a left-most reduction x l y  = v o -~R,L v l  ~ R , L  " " " ~ R , L  Vt 

= X 2. This reduction sequence is computed as follows. A (u ,w)  reads the input y letter by 

letter. Assume that  (q ,w l ,w2 ,y l ,ay2)  is the actual configuration at a certain time, where ! w21 

_~ k, ] w 2 [ <: k implying w 1 = e ,  I Yl [ <~ /2, WlW2Yl  E I R R ( R ) ,  and a E ~. 

Case  1. { Yl i < P, and w 2 y l a  C I R R ( R ) .  Then the letter a is appended to the word Yl, i.e., 

we obtain the configuration ( q..,w l ,w 2,Y 1 a ,Y2). 

Case  2. i Yl t -~-/2, and w 2 y l a  E I R R ( R ) .  Then A ( u , w )  enters its failure state ql , since in 

this situation x 2 = w l w 2 Y i a Y  2 E I R R ( R  ), but x 2 ~ w . 

Case  3. w 2 y l a  is reducible. Then w 2 y l a  = zl for some word z ~ E * ,  [ z ] < I wel  , and 

some rule ( / , r )  E R1 such that  w~y la  = zl ~ R , L  zr .  A ( u , w )  performs this reduction step 

thus yielding the configuration (q. ,w I z ,r ,y2).  Now the left part  of the finite control is refilled 
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by reading letters from the pushdown store, i.e., we obtain the configuration (q..,w3,w4z,r,y2), 

where w 1 ~ w~w4, I w4z I ~ k, and I w4z I < X implies that w~ ~ e. 

If w4zr is reducible, then another left-most reduction step is applied. This process is 

repeated until a configuration (q..,ws,ws,rl,y2) is reached such that I wa [ _ X, [ w 6 [ < X 

implies w 5 ~ e, r I E range(R1), and w6r 1 E: I R R ( R ) .  

A (u ,w ) accepts if and only if after reading all of its input A (u ,w ) is in a configuration of 

the form (q..,e ,wl,w2,e ), where wlw 2 = w . 

Obviously, A (u ,w ) is a deterministic pushdown automaton, a formal definition of which is 

effectively computable from R 1 and the words u and w. While A (u ,w)  is executing stage 

READ, the length of the contents of the pushdown store is strictly increasing; later on it is non- 

increasing. Thus, A (u ,w ) is a determinist ic  one-turn pushdown a u t o m a t o n  (dlpda). As 

can be checked easily by using the properties of reduction sequences in monadic rewriting sys- 

tems pointed out earlier, A (u ,w ) accepts the language L u (w). Thus, L u (w) is a determinis-  

tic one- turn context-free  language.  

Let R be a finite monadic rewriting system on ~, and let w E ~*. From R we can 

effectively compute a finite subsystem R 1 such that dora (R)  ---- dom (R 1) and no two different 

rules of R 1 have the same left-hand side, the finite set UCP(R ) of unresolved critical pairs of 

R ,  and an irreducible descendant w 1 of w such that w--* * R,L W l" For each pair 

( u , v ) E  UCP(R) ,  dlpdas A ( u , w l )  and A ( v , w l )  can be determined effectively such that 

A (u ,w 1) recognizes the language L~ (w), while A (v ,w 1) recognizes the language L v (w). Since 

the equivalence problem for deterministic finite-turn pdas is decidable [20], this gives the follow- 

ing result. 

T h e o r e m  4. The problem CCC is decidable when it is restricted to finite monadic rewriting 

systems. 

From R the set UCP (R)  can be constructed in polynomial time, as can the subsystem R l- 

Given w the word wl C I R R ( R )  such that w -** R,L w 1 can also be determined in polynomial 

time [3]. However, for constructing the dlpda A ( u , w l )  from u, Wl, and R1, in general 

exponential time will be needed, since A (u ,w l) may be of exponential size. It takes double 

exponential time to decide the equivalence of two deterministic finite-turn pdas [2]. However, 

due to their specific form the" equivalence of A (u ,wl) and A (v ,wl) is decidable in exponential 

time (cf. the proof of Theorem 5.2 of [2]). Thus, our solution for the decision problem CCC res- 

tricted to monadic systems takes double exponential time. 

For versions of the problem CCC that are even further restricted algorithms with lower 

time bounds have been obtained. If the rewriting systems considered are finite and special,  i.e., 

length-reducing with range (R) ----- {e }, then the problem CCEW is decidable in polynomial 

time, due to the fact that for this particular problem a simplified version of the characterization 

theorem exists. When restricted to a fixed finite special rewriting system the problem CCC 

becomes decidable in exponential time. Finally, we would like to mention the following 
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interesting result. 

T h e o r e m  5. Let R == {{/,e )} be a special one-rule rewriting system on C. Then the following 

statements are equivalent : 

(i) R is confluent. 

(ii) g is confluent on [w]R for some word w E C ' .  

(iii) The root p(t) of the word I has no overlap. 

The equivalence of statements (i) and (iii) is a result of Book [4]. The new aspect is that if 

a special one-rule system is confluent on any congruence class, then it already is a confluent sys- 

tem. 

So far we have only been dealing with certain restricted classes of string-rewriting systems, 

i.e., term-rewriting systems containing unary function symbols only. For future research it 

might be promising to look for other types of tempi-rewriting systems for which the problem 

CCC becomes decidable. 

Acknowledgement .  The author wants to thank Ron Book for bringing this problem to his 

attention, and for many fruitful discussions regarding the various results presented in this paper. 

References  

t. G. Bauer, F. Otto; Finite complete rewriting systems and the complexity of the word prob- 
lem; Acta Informatica 21 (1984), 521-540. 

2. C. Beeri; An improvement on Valiant's decision procedure for equivalence of deterministic 
finite turn pushdown machines; Theoret. Comput. Sci. 3 (t976), 305-320. 

3. R.V. Book; Confluent and other types of Thue systems; Journal ACM 29 (1982), 171-182. 
4. R.V. Book; A note on special Thue systems with a single defining relation; Math. Systems 

Theory 16 (1983), 57-60. 
5. H. Buecken; Anwendung yon Reduktionssystemen auf das Wortproblem in der Grup- 

pentheorie; dissertation, Aachen, 1979. 
6. B. Domanski, M. Anshel; The complexity of Dehn's algorithm for word problems in groups; 

Journal Algorithms 6 (1985), 543-549. 
7. G. Huet, D.S. Lankford; On the uniform halting problem for term rewriting systems ; Lab. 

Rep. No.283, INRIA, Le Chesnay, France, 1978. 
8. G. Huet; Confluent reductions : Abstract properties and applications to term rewriting sys- 

tems; Journal ACM 27 (1980), 797-821. 
9. M. ]antzen; A note on a special one-rule semi-Thue system; Inform. Proc. Letters 21 (1985), 

135-140. 
I0. D. Kapur, P. Narendran; A finite Thue system with decidable word problem and without 

equivalent finite canonical system; Theoret. Comput. Sci. 35 (1985}, 337-344. 
11. D. Knuth, P. Bendix; Simple word problems in universal algebras; in: ].Leech (ed.), Compu- 

tational Problems in Abstract Algebra, Pergamon Press, 1970, 263-297. 
12. P. LeChenadec; Canonical Forms in Finitely Presented Algebras , Pitman Publ. Limited, 

John Wiley & Sons, New York, 1986. 
13. R.E. Lyndon, P.E. Schupp; Combinatorial Group Theory, Springer, 1977. 
14. P. Narendran, C. O'Dunlaing; Cancellativity in finitely presented semigroups; Journal Sym- 

bolic Computation, to appear. 
15. P. Narendran, C. O'Dunlaing, H. Rolletschek; Complexity of certain decision problems about 



155 

congruential languages; Journal Comp. System Sciences, 30 (1985), 343-358. 
16. C. O'Dunlaing; Finite and infinite regular Thue systems , PhD dissertation, Dept. of Math., 

University of California, Santa Barbara, 1981. 
17. C. O'Dunlaing; Infinite regular Thue systems; Theoret. Comput. Sci. 25 (1983), 171-192. 
18. F. Otto; Some undecidability results for non-monadic Church-Rosser Thue systems; Theoret. 

Comput. Sci. 33 (1984), 261-278. 
19. F. Otto; On deciding the confluence of a finite string-rewriting system on a given congruence 

class; Technical Report 159/86, Fachbereich Informatik, Universitaet Kaiserslautern, 
1986; also submitted for publication. 

20. L.G. Valiant; The equivalence problem for deterministic finite-turn pushdown automata; Inf. 
and Control 25 (1974), 123-133. 


