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I. Introduction 

This study was o r ig ina l l y  motivated by the divergence problem of the completion 
procedure for term rewriting systems [17,18,11]. The practical interest of a comple- 
tion procedure is limited by the fact that it can generate infinite sets of rewrite 
rules. Moreover the uniqueness of the result of the completion procedure, given a 
fixed ordering for orienting equations, implies that it cannot be expected to find 
another completion strategy for which the completion terminates. 

There are two kinds of divergence: 
@ The first one (in depth) is due for instance to the existence of a rule 1->r that 
can be superposed successively on a rule i ->r , then on the rule 1 ->r deduced from 

i 2 2 
this superposition and so on. Such cases ~ave been studied by Hermann and Privara 
who give in [7] sufficient criterion for detecting a priori this kind of divergence, 
@ The second kind of divergence (in breadth) occurs only in equational completion 
procedures and is due to the existence of infinite complete sets of unifiers modulo a 
set of equations. 

A first approach to deal with the divergence problem has been proposed in [3]. 
Rules generated by the completion process are dynamically splitted into different 
sequences according to some regularity criteria, such as a recurrence relation or a 
same origin. Then lemmas are asked to the user in order to make these pairs con- 
fluent. The problem of finding recurrence relation between terms in a sequence has 

been studied in [12] and [14]. 
The goal of that paper is neither to discover recurrence relations in a set of 

rules generated by completion, nor to predict a priori the divergence of completion, 
but rather to propose a formalism to deal with the problem of divergence, namely the 
definition of mats-rules. This paper is an attempt to give answers for different 
questions: 
l) given an infinite set of rules, the first problem is to find a finite set of 

schemas, here called meta-rules, where some variables, called mats-variables, may 
have infinite sets of possible values. Discovering the schemas and the domains of 
meta-variables is yet a matter of heuristics and we propose a method here. 
2) The main problem is to be able to use mats-rules for deciding the validity or 

satisfiability of an equation in the equational theory defined by the infinite set of 
rules. We determine here precise conditions that have to be checked in order to get a 
sound and complete schematization of the infinite set of rules. Soundness and com- 
pleteness ensure that it is equivalent to use the set of meta-rules and the infinite 
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set of rules. 
5) Of course a preliminary definition of how to use meta-rules must be given. A 

meta-rewriting relation is introduced and appears to be very similar to other 
approaches introducing constrained variables in rewriting. We also explore in which 
cases meta-rewriting coincides with equational rewriting and when a Church-Rosser 
property for meta-rewritlng can be decided. 
4) Hera-rules can be used to solve equations, with a narrowing-like process. A 

meta-narrowing relation is defined and studied. It allows dealing with infinite nar- 
rowing trees and infinite complete sets of solutions. Each meta-solution describes an 
infinite sequence of solutions. 

The next section gives examples of divergence problems in order to support 
intuition for the definition of meta-rules given in section 3. Meta-rewriting is stu- 
died in section 4 and meta-narrowing in section 5. 

2. S£me e,xamples 

Let us consider some simple but significant examples to illustrate which kind of 
infinite rewrite rule system we want to handle. 

Examp, le 1 : Signed binary trees: let us consider the following set of rewrite rules: 
-(-(x)) -> x 
- ( f (x ,y))  -> f ( - (y ) , - (x ) )  
f ( f (y ,x) , -x )  -> y 
f ( -x , f (x ,y) )  -> y 

Starting from these rules, the completion procedure generates two inf in i te families 
of rules: 

{ f ( -x, f (x,y))->y,  

f(f(-x2,xl),f(f(-xl,x2),y))->y, 
{ f ( f ( y , x ) , - x )  -> y, 

f(f(Y,f(-xl,x2)),f(-x2,xl))->y, 

f(f(-x2,-Xl),f(f(xl,x2),Y))->y, 

f(f(x2,-Xl),f(f(xl,-X2),y))->y ...} 

f(f(Y,f(xl,x2)),f(-x2,-Xl))->Y, 

f(f(y,f(xl,-X2)),f(x2,-Xl))->y ...} 

Example 2 : Associativity and idempotency: the equations 
f(f(x,y),z) = f(×,f(y,z)) 
f(x,x) : x 

directed from left to right, generate two families of rules: 

{f(xl,f(x 2 .... ,f(xk,f(xl,...,f(xk,z) .... ) -> f(xl,f(x 2 .... ,f(xk,z)...)} 
and 

{f(xl,f(x 2, .... f(xk,f(xl,...,f(xk_l,x k) .... ) -> f(xl,f(x2,...,f(Xk_l,Xk)...)} 

Example 5 : One rule is enough to generate an infinite family [1,4]. The rule 
f(g(f(x)))->g(f(x)).generates the.infinite family 

{f(gl(f(xl))) -> g1(f(xl))} 

Example 4 : Another type of divergence can be caused by infinite sets of unifiers. 
E : -(-(x)) : x 

-(f(x,y)) = f(-(y),-(x)) 
-h(x) = h(-x) 
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R : f ( -x , f (x ,y ) )  -> y 
f ( f ( y ,x ) , - x )  -> y 
r ( f ( x , f ( x , f ( a , y ) ) ) , x )  -> s(x,y) 

Superposition modulo E of the rules 
r ( f ( x , f ( x , f ( a , y ) ) ) , x )  -> s(x,y) and f ( -x , f (x ,y ) )  -> y, 
generates the in f in i te  family of rules: 

{ r ( f (a ,Y) , f ( x l , -X l ) ) ->s ( f (x l , -X l ) ,Y )  , r ( f (a ,y ) ,h ( f (x l , -X l ) ) ) ->s (h ( f (x l , -X l ) ) ,Y) ,  

r(f(a,y),h(h(f(xl,-Xl))))->s(h(h(f(xl,-Xl))),y)...} 

due to the fact that unifying modulo E the two terms f(x,f(x,f(a,y))) and 
f(-x',f(x',y')) results in an infinite complete set of unifiers. The values for the 
variable x in these substitutions are solutions of the equation x=-x: 

[ ( x+ - f (x l , -X l ) ) ,  (x~--h(f(xlp-Xl))), ( x * -h (h ( f ( x l , -X l ) ) ) ) , . . . }  

We now examine some characteristics of these examples. 
-F l rs t  there exlsts a generalization G of the sequence of left-hand sldes i k of the 

rules modulo an equivalence relation denoted ~. That means that for any ik, there 
exists a substitution oE such that oE(G) - i k, 
- Second, i t  is posSibIe to define,-from the substitutions o k , a set of terms that 

can be described either by a structural property, or as a set of solutions of an 
equation. 

Example 5 : (Example 2 con't: associativity and idempotency) 
Let us consider the equivalence ~ generated by the rewrite system: 

R 0 : f(f(x,y),z) -> f(x,f(y,z)) 
The sequence of left-hand sides 1. of the first family of generated rules can be gen- 
eralized modulo ~ by the ter~ G = f(X,f(X,z)), where X can be substituted by any 

value in the set of terms {Xl~ f(xl,x2), f(xl,f(x2,x3)), f(xl,f(x2~f(x3,x4)))...}. 

Example 6 : (Example 3 con't: only one rule) 
is here the syntactic equality and the left-hand sides are generalized by the term 

f(g(X)). The set of substituted values for X is 

{ f ( x l ) ,  g<f(xl)) ,  g ( g ( f ( x l ) ) ) , . . . } .  

Example Z : (Example 4 con't: in f in i te  set of unifiers) The sequence of left-hand 
sldes 1. can be generalized, modulo the equivalence ~ generated by the set of equa- k 
tions E, by the term G=r(f(a~y),X), since for any ik,  there exists a substitution o k 
sot. ok(g) ~ lk, with o k = h~( f (x l , -X l ) ) .  

). Definition of meta-rules 

Notations are consistent with those in [8] for instance. Classically T(F,V) 
denotes the free F-algebra generated by the set of variables V, whose elements are 
called terms. We also need the notlon of recursive set of terms: that means that 
there exists an algorithm allowing to decide whether a term belongs to that set° Of 
course a f in i te  intersection of recurslve sets is a recurslve set. 

Definition I : Let DOM = {DOM: i M ivin I }  an indexed family of recursive subsets of 
T(~,V)~ A set of meta-variables = {MV. I i in I }  is an indexed family of variable 
sets associated with DOM. A function d: ~(X) = DOM. maps each meta-variable X in MV. 
t o  i t s  domain DOM.o z z 

1 
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Note that we could consider variables as meta-variables whose associated domain 
is T(F,V). However it is clearer to distinguish them and we denote in what follows 
variables by lower case letters x,y,z.., and meta-variables by upper case letters 
X,Y,Z, 
On each DON. there is an equivalence relation ~.. For any terms t and t' in T(F,V), 
we define ithe relation t I-I l' iff there exzists i in I such that t,t' are in DON. 

t' Then is the smallest congruence closed by substitutions generated b{ and t ~. . 

In the cases we consider here, it is possible to find a generating set for each DON. 
in the following sense: i 

Definition 2 : DOM. is generated by a set of structures S. included into DOH, iff 
DON. is the set o~ terms t such that there exist a term & in 5. and a substitution o 
of ~(F,V) satisfying t ~i o(s). i 

Definition 3 : A meta-term is an element of the free F,algebra generated by V and HV 
and denoted T(F,VUMV). 
Heta-terms are denoted by upper case letters T,U,G,D... If T is a meta-term, HV(T) 
denotes the set of its variables and meta-variables. Terms can be substituted for 
meta-variables under some condition. 

Definition 4 : An instantiation of meta-variables { is a family of mappings 

{{i : MVi -> DOMi I i in I}. 

Whenever DOH i is generated by a set of structures Si, it is possible to define 
an additional notion of principal instantiation: 

Definition 5 : Let S = {S. I i in I} such that DOH. is generated by S.. A principal 
.-r---~--~---r~-.... - l 1 
instanttation of meta-variables { is a family of mappings [~i : HVi -3 S i I i in I}. 

By hypothesis on the structures, any instantiation of meta-variables can be 
decomposed into a substitution of T(F,V) and a principal instantiation, modulo the 
equivalence ~. This decomposition extends to any instantiation of variables and 
meta-variables. Hore precisely: 

Lemma i : For any meta-term T and any instantiation { of MV(T), there exists a sub- 
stitution y of T(F,V) and a principal instantiation { of meta-variables of T such 
that { - y.~ [HV(T)] (where . is composition of functions). 

Example 8 : (Example 3 con't: only one rule) 
Let us consider the meta-term T = g(g(X,Y),x) and the instantiation 

= (X 4-- f(t.)(Yj 4-- f(t~))(x 4- t3). We have then 

~=(X 4- f(xl)7(Y 4- f(x2~) and y=(x I 4- tl)(X 2 4- t 2 ) ( x  4-  t3). 

The definition and an empiric construction of meta-rules are now given. 

Definition 6 : A meta-rule is a directed pair of meta-terms denoted G->D such that 
HV(G) contains MY(D). A meta-rule G->D is said to be um~constrained iff for any 
meta-variable X in MV(G), d(X)=T(F,V). A set of meta-rules is said unconstrained iff 
all the meta-rules are unconstrained. 

A question obviously arises now: how to find a meta-rule? Unfortunately we are 
only able at this point to propose some heuristics. 
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- The first thing to do is to find together an equivalence relation - and the skele- 
ton of a sequence of rules by generalization modulo ~ of all the elements of the 
sequence. 
- Each variable introduced by generalization is a meta-variable. The set of struc- 

tures associated with that meta-variable is given by the different instances of the 
variable in the sequence° The domain is determined by the set of terms which the 
variables may be instantiated to, in order to apply a rule of the sequence. 
Let us see on our examples what are the meta-rules. 

Exampl_e 9 : (Example i con't) In the signed binary trees theory, the congruence ~ is 
generated by the set of rules 

R 0 : - ( - ( x ) )  -> x 
- ( f ( x , y ) )  -> f ( - ( y ) , - ( x ) )  

There are two unconstra ined meta- ru les :  
f ( - X , f ( X , y ) )  -> y and f(f(y,X),-x) -> y. 

Example I 0  : (Example 2 c o n ' t :  a s s o c i a t i v i t y  and idempotency) 
To each family is associated an unconstrained meta-rule: 

f(X,f(X,z)) -> f(X,z) and f(X,X) -> X. 

E xamp1 e Ii : (Example 3 con't) The family of rules {f(gi(f(xl)))->gi(f(xl))} is 
represented by the meta-rule f(g(X)) -> g(X). 
The domain of X is here the set of terms with top symbol f or g. 

Example 12 : (Example 4 con't: infinite set of unifiers) 
The meta-rule is r(f(a,y),X) -> s(X,y). The domain of X is the set of all the solu- 
tions modulo E of the equation (x=-x). 

But to be sound, the schematization must satisfy some conditions. 

Definition 7 : An infinite rewrite rule system R~ is schematized by a set of meta- 
rules MR iff 
Ca) ~ is included into the congruence <-.->Ro~ generated by R~. 
(b) for any meta-rule G->D of MR, any principal instantiation ~ of its meta- 

variables, ~(G) <-*->R= ~(D). 

Example 1_~3 : An example where this definition is not satisfied is the following one. 
The rules f(x+e) -> f(x) and (x+y)+z -> x+(y+z) generate the set of rules 

[f(x+e) -> fix), f(x+(y+e)) -> fix+y), f(x+(y+(z+e)) -> f(x+(y+z))...}. 
In the sequence of Ieft-hand sides, the subterms at occurrence 1 give a sequence 
{x+e, x+(y+z), x+(y+(z+e)) ...} that can be generalized by the meta-term X+e with DOM 
g~nerated by S = [x, x+y, x+(y+z) ...}. Nevertheless the introduction of (X+e) -> X 
would completely modify the equational theory, which is not the case with the meta- 
rule f(X+e)->f(X). 

Some sufficient conditions to ensure the condition (b) in the previous defini- 
tion can be given in the case of only one set of meta-variables; 

- if the set of structures contains a variable, (b) is equivalent to: 
(b I) for any meta-rule G->D, G <-.->R~ D. 
- if for any principal instantiation ~ there exists j such that @ = ~, where ~0 is 

a principal instantiation, (b) is equivalent to: 
(b.) for any meta-rule G->D, ~o(G) <-*->R~o(D). 
That results from the stabilit~ of the congruence <-.->R~ by substitutions. 
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- more generally, if for any principal instantiation ~, there exist an integer j and 
context C such that @ = CJ(@O), where @0 is a principal instantiation, (b) is a 

equivalent to: 
(b~) for any meta-rule G->D, ~^(G) <-,->ROO~o(D). 
That results from the stability of the congruence <-.->P~o by context. 
Notice that anyway this condition (b) only involves principal instantiations but not 
any instantiation. 
The reader is invited to check that in all our examples, the conditions of the defin- 
ition of schematization are fulfilled. 

4. Meta-rewritin 9 

Once a schematization has been found, we must be able to use it, that is to 
rewrite with meta-rules. In general, the usual notion of rewriting modulo ~ does not 
work. To illustrate this problem, let us consider the following example. 

Example 14 : (Example) con't) In the meta-rule f(g(X)) -> g(X) of the one rule exam- 
ple, the domain of X is the set of terms with top symbol f or g. Notice that i f  "a" 
is a constant, the terms f(g(a)) and g(a) satisfy f(g(a)) -> g(a) i f  the meta-rule is 
used as an ordinary rewrite rule. However f(g(a)) and g(a) are not equivalent in the 
theory and thus are never Ro~-equivalent. Actually the constraint on the meta-variable 
X has been forgotten when matching f(g(X)) to f(g(a)).  Indeed the value "a" is not 
allowed for X since i t  does not belong to the domain of X. 

This leads to define another rewriting relation, called meta-rewriting, which 
takes into account the domains of the meta-variables. Before defining how to reduce 
meta-terms with meta-rules, we first have to introduce convenient notions of equality 
and matching on meta-terms. The meta-equality is the congruence defined on T(F,VUMV) 
as follows: 

Definition 8 : Two meta-terms T.z and T.z are Beta-equal (denoted T I ~ T2) iff for any 
instantiation ~ of their meta-variables, ~(T l) ~ ~(T2). 

It is clear that the restriction of the meta-equality to terms without meta- 
variables is the congruence ~. In all our examples, it is possible to decide meta- 
equality. First it is possible to restrict the definition of meta-equality to prin- 
cipal instantiations: 

Lemma 2 : Two meta-terms T. and T~ are ~ta-equal (denoted T. ~ T 2) iff for any prin- 
cipal ~nstantiation ~ of t~eir me~a-variables, ~(T I) N @(T2)Z 

Example 1__55 : (Example 1 and 2 con't) In the signed binary trees example and in the 
associativity and idempotency example, since DOM = [T(F,V)}, T 1 ~ T 2 iff T 1 N T 2. 

Example 16 : (Example 3 con't) In the one rule example, an easy structural induction 
proves that meta-equality is syntactic equality: T I ~ T 2 iff T 1 = T 2. 

Example 17 : (Example 4 con't) In the example with an infinite set of unifiers, the 
decision procedure is more complex and is composed of three successive steps: 
- compute the E-normal form of T and T 

I 2 
apply the rule -X -> X on the meta-variables 

- check the syntactic equality of the two resulting terms. 
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Meta-matching is a generalization of matching taking into account the meta- 
equality and the domain of meta-variables. 

Definition 9 : Let T and T' two meta-terms in T(F,VUMV). A meta -ma tch  from T to T ~ 
is a substitution a ~ on T(F,VURV) such that 

- a - ( T )  ~ T '  

- f o r  any m e t a - v a r i a b l e  X i n  t he  domain o f  c ~ such t h a t  d(X)=DOMi,  f o r  any i n s t a n -  
tiation ~, ~(a-(X)) belongs to DOM.. 

1 

Example 18 : (Example 3 can't) In the one rule example, there is no meta-match from 
f(g(X)) to f(g(a)), because of the definition of d(X). But (X~-f(a)) is a meta-match 
from f(g(X)) to f(g(f(a)) and (X~-f(X')) is a meta-match from f(g(X)) to f(g(f(X')). 

Note that whenever DOM={T(F,V)}, any match modulo ~ is a meta-match. 5o there 
may exist in general a meta-match but no match, and there may exist in general 
several meta-matches. Examples 1 and 2 (signed binary trees, associativity and idem- 
potency) illustrate this simplest situation. In the one rule example, meta-matching 
consists of syntactic matching plus a check on the substituted values for meta- 
variables. For the example of an infinite set of unifiers, one can design a matching 
algorithm based on E-matching, the meta-equality decision procedure and the check 
that any value substituted for a meta-variable is a solution of the equation (x=-x). 

We are now able to define meta-rewriting. 

Definit ion i0 : The meta-rewriting relat ion with a set MR of meta-rules,denoted ==>, 
is defined on T(F,VL~V) by: T ==>[u,a-,G->D] T' 
i f f  - G->D belongs to MR, 

- a ~ is a meta-match from G to T1ul 
- T' = T [u '~ ' - o - (D ) ]  

(T' is obtained by replacing the subterm of T at occurrence u by a-(D)). 

Let ==>> be the relat ion defined on meta-terms by T ==>> T' i f f  there exists 
T. such that T ==> T I ~ T'. 
L~t <<=.=>> be the ref lex ive,  symmetric and t ransi t ive closure of ==>>. 

Assume that MR is a schematization of an i n f i n i t e  set of rules R~. We get then 
by Lemma 1 and Definition 8: 

Proposition ! : Let T and T' be two meta-terms and MR a schematization of P~. 
Then T <<=,=>> T ~ implies that for any principal instantiation @ of T and T', 
@(T) <-.->R= ~(T'). 

An easy corol lary of this proposition is that for two terms without meta- 
variables t and t ' ,  i f  t <<=.=>> t '  then t <-.->Root'. This property ensures the 
soundness of the schematization. But we usually want more, since we want that the 
set of meta-rules allows deciding the equality in the theory. That leads to the 
notion of completeness of the schematization. 

Definit ion i i  : The schematization of R~ with MR is complete i f f  <-.->R~ coincides 
with the restr ic t ion of <<=.=>> to terms without meta-variables, denoted <<-.->>. 

With regard to the problem of divergence of the completion procedure, we already 
know [9,11] that, given an or ig inal  set of equations A, the congruence generated by A 
coincides with <-*->R=. We can thus characterize a complete schematization: 
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Proposition 2 : The schematization of P~ is complete iff for any equation g=d of A, 
g <<-.->> d. 

The reader is invited to check that the given examples satisfy this condition. 
One can find in [16] another characterization of complete schematization, independent 
from the notion of instantiation, and based on the Church-Rosser property of ==>>, 
defined below. 

In order to effectively use meta-rewriting for checking Ro~-equality on terms, it 
is important to have a Church-Rosser property for ==>>. Then <<-*->> will be easily 
decidable if ==>> satisfies the following definition. 

Definition 12 : A set of meta-rules MR is convergent iff the relation ==>> is noeth- 
erian and satisfies the Church-Resser property: 
for any meta-terms T and T' such that T <<=.=>> T', there exists a meta-term T" such 
that T =.=>> T" and T' =.=>> T". 

For an unconstrained set of meta-ru!es, remind that the relation ==> coincides 
with equational rewriting modulo ~. In that case, an equational completion procedure 
allows proving the Church-Rosser property. 

Example i_99 : (Example 1 con't) In the signed binary trees theory, the meta-rules are 
unconstrained and the equational completion procedure modulo R 0 allows proving the 
Church-Rosser property of that system, although equivalence classes modulo R 0 are not 
finite [14]. 

Example 20 : (Example 2 con't: associativity and idempotency) 
The in f in i te  set of generated rules has been schematized by a set of two uncon- 
strained meta-rules: 

f(X,F(X,z)) -> f(X,z) and f(X,X) -> X. 
We can thus use an equational completion procedure modulo the associativity axiom for 
f. The first rule can be reduced modulo associativity by the second one and thus the 
set of meta-rules allowing to decide equality in this theory is reduced to the unique 
meta-rule f(X,X) -> X. Note that in this particular case, we have been able to com- 
plete the system without using associative unification for which infinite complete 
sets of unifiers can appear. 

Exam,ple 21 : (Example 3 con't) The system of meta-rules reduced to the only meta-rule 
f(g(X)) -> g(X) can be proved convergent. 

Example 22 : (Example 4 con't: infinite set of unifiers) A completion process can be 
designed that generates first the meta-rule r(f(a,y),X)) -> s(X,y) as already seen, 
then by superposition of the first rule in this meta-rule at occurrence i, another 
meta-rule r(z,X) -> s(X,f(-a,z)). The previous meta-rule then disappears and we get 
so a convergent system of meta-rules. 

5. Meta-narrowin 9 

In this section we define the meta-narrowing relation and a meta-narrowing pro- 
cess that allows solving equations when the usual narrowing process [6,10,19] 
diverges. Actually we will be able to handle two kinds of problems: 
@ Assume that we want to solve equations in an equational theory for which an infin- 
ite convergent term rewriting system is known. The usual process of narrowing is 
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sound and complete, but in practice very inefficient. Moreover special strategies 
must be adopted in that case to avoid infinite narrowing derivations. But whenever 
it is possible to find a set of meta-rules that is a complete schematization for this 
infinite term rewriting system, a complete set of solutions for an equation in this 
theory can be found, as shown hereafter. 
@ The second kind of problems is again the divergence of the narrowing procedure. As 
for the completion procedure, the process can diverge either in depth or in breadth 
for equational narrowing. Then the process generates an infinite set of goal rules 
[19] that can be splitted into sequences for which a meta-rule can be found. The 
same notion of schematization may be applied, but it must be noticed that now fami- 
lies of goal rules are schematized. 
The two previous kinds of problems are actually handled in a uniform framework of 
mete-terms, which allows both a set of meta-rules for defining the equational theory 
and goal rules described by meta-terms. A meta-narrowing process applied to meta- 
terms allows finding a set of mete-solutions, from which a complete set of solutions 
of the initial equation to solve is deduced, by instantiation of meta-variables. So 
assume from now on that the equational theory described by the set of axioms R~ is 
schematized by a set of meta-rules MR. 

The definition of a mete-narrowing relation on mete-terms first needs to define 
the notion of meta-unification. 

Definition 13 : Let T and T' two meta-terms in T(F,VUMV). A mete-unifier of T and T' 
is a substitution a- on T(F,YL~V) such that 

- a-(T) ~ ~'(T') 

- for any mete-variable X in the domain of a- such that d(X)=OOMi, for any instan- 
tiation ~, #(a-(X)) belongs to DON.. 

l 

Whenever DON = {T(F,V)}, a mete-unifier is an unifier modulo ~. There are in 
general several unifiers and we can define as usual a generating subset of the set of 
mete-unifiers. 

Definition 14 ~ A c~lete set of mete-unifiers of two meta-terms T and T' is a set 
denoted Meta-Unif(T,T') of substitutions of T(F,VL~V) satisfying: 
(I) for any a ~ in Meta-Unif(T,T'), for any X in the domain of a-, the variables and 

meta-variables of a-(X) can be chosen distinct from those in MV(T)UMV(T'). 
(2) any substitution in Meta-Unif(T,T') is a meta-unifier of T and T'. 
(3) for any meta-unifier a" of T and T', there exists a ~ in Heta-Unif(T,T') such 

that ~- ~ a ~ [MV(T)L~4V(T')] (which means that there exists ~- such that for any X in 
MV(T)UMV(T'), p~(a'(X)) ~ a-(X)). 

Again there is not in general a unique element in a complete set of meta- 
unifiers. Beyond the case where meta-unification coincides with unification modulo 
~, let us note that Drosten describes in [5] a particular meta-unification algorithm 
for the special case where the domains of meta-variables are T(Fo~V) with F 0 subset 
of F. 
Meta-unifiability of two meta-terms implies unifiability modulo ~ of their instan- 
tiations, as a consequence of the following lemma: 

Lemma ] : Let T and T ~ be two meta-terms and a- a mete-unifier of T and T'. For any 
principal instantiation ~' of o~(T) and a-(T'), there exists a principal instantia- 
tion ~ of T and T' and a substitution a such that o.~ ~ ~'.a" [MY(T) U MV(T')]. 
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Note also that if t and t' are terms without any meta-variable and if a ~ 
belongs to Meta-Unif(t,t'), then @.~- is a unifier modulo ~ of t and t', for any 

instantiation ~ of all the meta-variables of v-(t) and o-(t'). 
Now we want to unify meta-terms in the theory described by MR. 

Definition 15 : A substitution o ~ of T(F,VUMV) is a MR-~ta-unifier of T and T' (or a 
MR-meta-solution of the equation T==T') iff 

- a-(T) <<=*=>> ~-(T')  
- fo r  any meta-var iab le  X in D(o ~) such tha t  d(X)=DOMi, fo r  any i n s t a n t i a t i o n  ~, 

$.o-(X)  belongs to DOM.. 
1 

Again i f  t and t '  are terms wi thout  meta-var iab les and i f  o~ is  a MR-meta- 
u n i f i e r ,  for  any i n s t a n t i a t i o A  ~ of  a l l  the meta-var iab les of  ~~( t )  and o ~ ( t ' ) ,  ~.~~ 
is  an Ro~-unifier of  t and t ' .  That resu l t s  from: 

Lemma 4 : I f  o- is a MR-meta-unifier of T and T', for any pr incipal  instant iat ion @, 
@.a-(T) <-*->R~ ~ .o~(T ' ) .  

The meta-narrowing relation and meta-narrowing process are extensions of equa- 
tional narrowing. 

Definit ion 16 : The meta-narr~ing re lat ion with a set 
=%>, is defined on T(F,VUMV) by: T =^=>[u,a-,G->D] T' 
i f f  - G->D belongs to MR 

- a- belongs to Meta-Unif(G'TIu)l 
- T' = T[u<-o'(D)]. 

of meta-rules MR, denoted 

As usual, to solve an equation (t==t'), where t and t' are terms in T(F,V), the 
meta-narrowing process consists of generating all the possible meta-narrowing deriva- 
tions issued from this equation, until finding an equation on meta-terms for which a 
meta-unifier exists. From that derivation tree, a complete set of solutions of the 
equation (t=t') can be found as proved in [16]. More formally: 

Theorem 1 : Let S be the set of substitutions ~~ of T(F,VL~V) such that there exists 
a meta-narrowing derivation from (t==t') 

t==t '  =%>[~1 ] Ti==T' I =^=> . . . .  ^=>[On] Tn==T, n 

with T n and T'n meta-unifiables, a- in Meta-Unif(Tn==T'n) , and a- = a ' .a  n . . . .  . a I .  

Then ~(S) = {@.a- for any a- in S and any pr incipal  instant iat ion @ of meta- 
variables introduced by a~} is a complete set o f  Ro~-unifiers of t and t ' .  

The meta-narrowing technique has been used successfully for solving equations in 
the signed trees theory and an adequate meta-unification algorithm has been proposed 
in [14]. A last example is aimed to illustrate the method. 

Example 23 : Let us consider the theory defined by the following axioms: 
(x*z)+(a*z)  = (x+a)*z 
(x*y ) *z  = x* (y*z )  

where "a"  i s  a constant.  Directed from l e f t  to r i g h t ,  these equations generate by 
complet ion an i n f i n i t e  rewr i t e  ru le  system, due to the superpos i t ion of  a s s o c i a t i v i t y  
i n to  the d i s t r i b u t i v i t y  ru le .  The f i r s t  generated ru les  are: 
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( x * z )+ (a . z )  -> (x+a) .z  
( x ~ ( y * z ) ) + ( a * z )  -> ( ( x * y )+a ) * z  
( × , ( y , ( y ' , z ) ) ) + ( a , z )  -> ( ( x , ( y , y ' ) ) + a ) ~ z  ~o. 

This set  can ae schematized by choosing fo r  - the equiva lence modulo a s s o c i a t i v i t y .  
w i th  the unconstra ined meta- ru le  (X , z )+ (a . z )  -> (X+a)*z.  Assume now tha t  we want to  
so lve  the equat ion ( y+ (x ,a )  == (a+a)*x)  in  t h i s  theory .  The m e t a - u n i f i c a t i o n  co in -  
c ides here w i th  u n i f i c a t i o n  modulo a s s o c i a t i v i t y ,  which g ives  fo r  the terms y+ (x .a )  
and ( X , z ) + ( a , z ) .  an i n f i n i t e  complete set  o f  me ta -un i f i e r s :  

= { ( x + - a ) ( y * - × , a ) ( z ~ - a ) .  
( x m - a , a ) ( y e - X . ( a . a ) ) ( z 4 - a , a ) .  
(x~-a.(a.a))(y~--X.(a.(a.a)))(ze-a.(a.a)) . . .  } .  

A new set of meta-variables MY is then introduced, whose domain is the set of solu- 
tions of the equation (x*a == a.x) modulo associativity. The corresponding set of 
s t r uc tu res  is S = {a .  a ,a .  a . ( a , a ) ,  a . ( a , ( a * a ) )  . . . .  } .  
The meta-narrowing r e l a t i o n  app l i ed  to  (y+(x*a)  == (a+a) ,x )  g ives then the equat ion 
((X+a)*Y == (a+a) ,Y)  w i th  the s u b s t i t u t i o n  (x~ -Y) (ye -X*Y) (z+-Y) .  The s u b s t i t u t i o n  
(X+-a) is  a m e t a - u n i f i e r  o f  the two par ts  o f  t h i s  equat ion .  We thus get the meta- 
s o l u t i o n  (y~--a,Y)(x+-Y) .  t ha t  generates by p r i n c i p a l  i n s t a n t i a t i o n s  of  Y. the so lu-  
t i ons  [ ( y e - a . a ) ( x 4 - - a ) .  (y~- -a , (a ,a ) ) (x~- -a*a) .  ( y + - a * ( a * ( a * a ) ) ) ( x e - a * ( a * a ) )  . . . .  ] .  

6, Conclusion 

We propose here notions of meta-terms, meta-rewriting and meta-narrowing well- 
adapted to the kind of problems we wanted to deal with, namely divergence of comple- 
tion and completion-like processes, such as narrowing. This formalism was originally 
introduced in [16] and has already been widely applied in [2]. 

However some problems are yet unsolved, such as how to discover meta-rules. We 
proposed here a technique based on the generalization modulo an equivalence relation 

of an infinite sequence of terms, but this technique itself is to be studied. 
Another point is to find general procedures for meta-equality, meta-matching and 
meta-unification, problems that are handled here only in the particular cases of 
examples. It would be interesting to develop an approach similar to the one used in 
[15] for equational unification. 

We have already mentioned that the notions presented here are very close to the 
corresponding notions used for example for handling exceptions with constrained vari- 
ables as described in [5]. A main difference is that we give more general conditions 
for defining the domain of meta-variables, especially because we allow an equivalence 
relation - on the domain of meta-variables. A second difference is that we have a 
notion of principal instantiation, which is not needed for defining in general meta- 
rewriting and meta-narrowing, but which is very useful when we are concerned with the 
problem of schematization of an infinite set of rules by a finite set of meta-rules. 

References 

I. M.A. Ardis~ '~Data Abstraction Transformations, ~' Technical Report TR-925, Univer- 
sity of Maryland, Maryland (USA), 1980. 

2. F. Bellegarde, "Utilisation des Syst@mes de R@@criture d'Expressions Fonction- 
nelles comma outils de Transformation de Programmes It@ratifs," Th@se de doc- 

torat d'Etat, Universit@ de Nancy I, 1985. 
3. 3.Y. Cras, "Conception d'un syst@me modulaire traitant le cas de non-convergence 

de l'algorithme de Knuth-Bendix/' Rapport de stage~Ecole Centrale des Arts et 
Manufactures, Chatenay-Malabry, 1985. 



191 

4. N. Dershowitz and L. Marcus, "Existence And Construction of Rewrite Systems," 
Research Report, University of Illinois, USA, 1982. 

5. K. Drosten, "Term Rewriting Systems with Restricted Variables," Bericht Mr.85- 
11, Institut fur Informatik, Braunschweig, 1985. 

6. M. Fay, "First-Order Unification in an Equational Theory," Proceedings of the 
4th Workshop on Automated Deduction, pp. 161-167, Austin, Texas, 1979. 

7. M. Hermann and I. Privara, "On nontermination of Knuth-Bendix algorithm," 
Research Report YUSEI-AR-OPS-3/85, Institute of Socio-Economic Information and 
Automation, C5-842 21 Bratislava (Czechoslovakia), 1985. 

8. Go Huet, "Confluent reductions: abstract properties and applications to term 
rewriting systems," J. of ACM, vol. 27, no, 4, pp. 797-821, Oct. 1980. 

9. G. Huet, "A complete proof of correctness of the Knuth-Bendix completion algo- 
rithm," 2" C°mp ' Sys. S c., vol. 23, no. l, pp. ll-21, Aug. 1981. 

lO. J.M. Hullot, "Canonical Forms And Uinification," in Proceedings of the Fifth 
Conference on Automated Deduction, Lecture Notes in Computer Science, vol. 87, 
pp. 318-334, Springer-Verlag, Les Arcs, France, July 1980. 

ll. 3.3ouannaud and H.Kirchner, "Completion of a set of rules modulo a set of equa- 
tions," SIAM J. of Computing, vol. 15(4), 1986. 

12. J.P. Jouannaud and Y. Kodratoff, "Program Synthesis From Example of Behaviour," 
Proc. of the Internat ional  Wor~isho P on Program Construction. Chateau De 
Bones. Ed. Biermann And Guiho. Reidel Publish, 1981. 

13. J. P. Jouannaud, C. Kirchner, and H. Kirchner, "Incremental Construction of 
Unif icat ion Algorithms in Equational Theories," in Proceedings of the Interna- 
t iona l  Conference On Automata, Lan{uagesj and Programming, Lecture Notes in Com- 
puter Science, vol. 154, pp. 361-373, Springer-Verlag, Barcelona Spain, 1983. 

14. C. Kirchner and H. Kirchner, "Contribution ~ la r@solution d'~quations dens les 
alg@bres l ibres et les vari@t@s @quationnelles d'alg@bres," Th~se de 3@me cycle, 
Universit@ de Nancy I ,  1982. 

15. C. Kirchner, "M@thodes et ou t i l s  de conception syst~matique d'algorithmes 
d 'un i f i ca t ion  dans les th@ories @quationnelles," Th@se de doctorat d'Etat,  
Universit~ de Nancy I ,  1985. 

16. H. Kirchner, "Preuves par compl@tion dens les vari@t@s d'alg@bres," Th@se de 
doctorat d'Etat, Universit@ de Nancy I, 1985. 

17. D. Knuth and P. Bendix, "Simple Word Problems in Universal Algebras," Computa- 
t iona l  Problems in Abstract Algebra Ed. Leech J., Pergamon Press, pp. 263-297, 
1970, 

18. G. Peterson and M. Stickel,  "Complete sets of reduction for equational theories 
with complete un i f icat ion algorithms," 3. of ACM, vol. 28, no. 2, pp. 233-264, 
1981. 

19. P. Rety, C. Kirchner, H. Kirchner, and P. Lescanne, "NARROWER: A new Algorithm 
for Uni f icat ion and i t s  appl icat ion to Logic Programming," in Proc. l r s t  Conf. 
on Rewriting Techniques and Applications, Lecture Notes in Computer Science, 
vol. 202, pp. 141-157, Springer-Verlag, Dijon (France), 1985. 


