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1 I n t r o d u c t i o n  

In this paper, a genera unificatiou procedure that enumerates a complete set of E-unifiers of two terms 

for any arbitrary set E of equations is presented. It is more efficient than the brute force approach using 

paramodulation, because many redundant E-unifiers arising by rewriting at or below variable occurrences 

are pruned out by our procedure, still retaining a complete set. This procedure can be viewed as a non- 

deterministic implementation of a generAiza~ion of the Maxtelli-Montanari method of transformations on 

systems of terms [13], which has its roots in Herbrand's thesis [7]. Remarkably, only two new transfor- 

mations need to be added to the transformations used for standard unification. This approach differs 

from previous work based on transformations because, rather than sticking rather closely to the Martelli- 

Montanari approach using multi-equations [13] as in Kirchner [10,11], we introduce transformations deaiing 

directly with rewrite rules. 

As an example of the flexibility of this approach, we apply it to the problem of higher-order unifica- 

tion, and find an improved version of Huet's procedure [8]. Our major new result is the presentation and 

justification of a method for enumerating (relatively minimal) complete sets of unifiers modulo arbitrary 

sets of equations. 

2 P r e l i m i n a r i e s  

It is assumed that the remier is familiar with the standard definitions and notations for many-sorted 

languages, tree domains, tree repla~cements, substitutions, and rewrite steps (as found in, e.g., [9] and [5]); 

we will present here on!y those definitions relevant to our approach to E-unification. 

Def in i t ion  2.1 Given a set of equations E, we say that a substitution 0 is an E-unifier of u and v, .iff 
e(u), * ,F e(~), that is 

where the ai are the rewrite addresses, the (l~ ---" r~) axe variants of equations in E t3 E - I ,  and the p~ are 

the matching substitutions used ia each step. We will often find it useful to consider an extension of 

which incorporates all the matching substitutions, i .e ,  0~ = 8 o Pl o . . .  o p,~; note that 8I(u) *----~E* ~(v). 
We will assume that all substitutions are idempotent, i.e., that 8 = ~ o 8. 

The set of all E-unifiers of u and v is denoted UE(u,v). It is well known that the set UE(u,v) is 

only semi-decidable, and that if two terms are unifiable modulo E, there is in general no single mgu, but 

instead a possibly infinite set. 

1 This research was partially supported by the National Science Foundation under Grant No. DCR-86-07156. 
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D e f i n i t i o n  2.2 Two substi tut ions a a~ld 0 are termed equal modulo E over W ,  denoted by a =E  0[W], 

iff Vx E W ,  a(x) ~ * ~E O(x). We say that. a is more general than O over W ,  denoted by a <_E O[W], iff 

there  exists some subst i tut ion ~ such that  0 =E ao~[W], i.e., tha t  Vx E W ,  O(x) ~ * ;E ~(a(x)) .  

Now we generalize the concept of a mgu to E-unifiers; this formulation of a generating set for a set 

of E-unifiers is due to [16]. The following definition is from [3]. 

D e f i n i t i o n  2.3 Let Vat(u)  denote the set of variables occurring in the te rm u. Let D(O) = {x I O(x) # z} 
and I(8) = UxED(~) Var(O(z)). Given a finite set E of  equations, for a~y two terms u, v, let Var(u, v) = 
Vat(u)  U Vat(v) ,  and let W be any finite set of variables such that  (Var(u,v))  N W = 0. A set V of 

substi tut ions is a complete set of E-unifiers -for u and v away f irm W,  for short,  a CSUE of u and v iff 

1. VO E U, 9 (0  t C Var(u,v) ,  and S(0) N (D(~) U W)  = O; 

2. v0 e u, 0(u)< *>E e(v); 
3. YO £ UE(u,v), 3a E V such that  a ~_E fl[Yar(u,v)]. 

We will consider the  E-unification of  pairs and systems, following the  notat ions introduced by [13] 

and [10]. 

D e f i n i t i o n  2.4 A (unordered) pair is simply a multiset of two terms,  and a subst i tut ion 0 is an E-unifier 

of a pair  (u, v) iff 8(u)(  * >E 8(v). A system is a set of pairs, and a subst i tut ion is an E-unifier of a system 

iff it  is an E-unifier of each pair in the system. 

In the  sequel, we will denote constants by a; functions by f ,  g, h, and k; variables by w, x, y, and 

z; terms by l~ r, u, v; and systems by S and R. 

3 E - U n i f i c a t i o n  v i a  T r a n s f o r m a t i o n s  

We now develop the  notion of an E-unification procedure as a series of t ransformations on systems which 

converts a pair of  terms into a solved -form which explicitly represents the E-unifier. 1 A pair (x, t) is in 

solved.form in a system S if t is any term and x is a variable which does not occur anywhere else in S (in 

particular,  x ¢ Var(t)); a system is in solved form if all i ts pairs are in solved form. It should be clear 

tha t  a solved system S = { ( z l , t l )  . . . .  , (x~ , tn )}  has a mgu Os = [ t l l x l , . . .  , tnlxn], and tha t  {05} is a 

CSUE for S. This allows us to effectively ignore any E-unifiers which use rewrite steps between solved 

pairs if  we are just  interested in complete sets of unifiers. 

We now show how E-unifiers can be obtained using transformations on systems. The relation 

on systems is defined as follows: 

D e f i n i t i o n  3.1 (Transformation Rules) Let It] denote the depth of a te rm t (e.g., lat = 0 and l'f(~)l = 1). 
Let R denote any system (possibly empty),  ,f be  any function symbol of arity n, and u, v be two termS. 
We have the following transformations:  

{@,~)} u R ~ n  (1) 

{<f(ul , . . . ,  u~), f (vl  . . . . .  v~))) U R ==~ {(ul, v l ) , . . . ,  {un, vn)} U R 

{(~, v)} u R ~ { (~,v) }  u R[vlx], 

(2) 

(3) 

1 It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification algorithm based 
on transformations on systems of equations, These transformations are given at the end of the section on property 
A, page 148 of Herbrand [7]. Apparently, this algorithm was rediscovered by a number of people, including Huet [8], 
Marteli  and Montauari [13], and Kozen [12]. 
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where x is a variabie, x ~ Var(v), x e Vat(R),  an4 R[v/x] is the system obtained by subst i tut ing v for 

aJJ occurrences of x in R. 

Transformations (1)-(3)  are essentiMIy those given by Herbrand [7] aud Martell i-Montanari  [13], 

except tha t  we need not orient the  pairs, since they are unordered. We need two more transformations to 

deal with equations. Let (u, v} be a pair  such that  u is not a variable and either v is not a variable or v is 

a variable such tha t  v e Var(u). Then 

{(u,~)} u R ~ {(u J), (r,,,)} u R, (4) 

where (1 -~ r) is a variant of an equation in E O E -1 such that  Var(l,r) n (Var(R) U Var(u,v))  = 0, and 

if l is not a variabl% the~ Root(u) = Root(l). Transformation (4) may not be applied he r eg t e r  to the 

pair  (u,l}. This t ransformation represents a leftmost rewrite step at the  root,  and prohibits  rewriting a 

variable occurrence, unless the occur check fails. Finally, if x E V a t ( f  (vl, . . .  , vn)), then 

{ ( x , f ( v l , . . .  , v n ) } } U R ~ { ( x , f ( y l , . . . , y = ) } ,  ( f ( y l , . . . , y ~ ) , f ( v l  . . . . .  Vn))}UR (5), 

where the Yl, . . -  . Yn are new variables, and rule (3) is immediately applied to the pair (x, f ( y l ,  . . .  , yn)) 
and then (2) is appned to the  pair (f(Yl,  . - -  ,y~), f(vl  . . . .  ,vn)). 

The motivat ion for rule (5) is in E-unifying a pair of the form (x, f (vl ,  ... , vn)), where the occur check 
fails for x. Although such a pair  cannot have a mgu, it is potentia~y E-unifiable by rewriting at the root 

(e.g., [a/x] e U{a._f(~)}(x, f ( x ) )  ) or by rewriting below the  root (e.g., [f(a)/x] e U{a-,(f(a))}(x, f(g(x))) ). 
In the  la t ter  case, any E-unifier must  match the root symbol of the second term, and so be of the 

form I f ( t1 , . . .  ,tn)/x] for some terms t l ,  . . .  , t~.  We simulate rewriting below the  root by successively 

imitat ing the  root  of v and decomposing, thus distr ibuting the occur check into at least one of the  pairs 

{yl~vl}, . . ,  ,(yu, vn}, whereupon we m~y apply (4) or (5) again to that  pair. At some point we must  find 

an application of (4) if  we are to eliminate the occur check. 2 

Unfortunately,  it  is possible to create an infinite series of pairs isomorphic up to renaming by re- 

peatedly a.pplying (5): {(x, f (x ) )}  =~ {(x, f (x ) ) ,  (Yl,f(Yl))} :~ {(x , f (x)) ,  (Yl,f(Yl)),  (Y2, f(Y2)}} . . . .  In 
Lemmas 4.4 - 4.7, we shall prove tliat we can preserve completeness if we restrict  the applications of (5) 

used in finding an address at which to apply (4) to  (the finite number of) addresses along the path from 

the root to an occurrence of x in the original term f (vl ,  ... ; vn). Our choice of (5) was motivated by the 

general top-down flavor of our method.  A rule combining rules (4) and (5) is also used in [14]. 

Thus, given a set of equations E and a system S to be E-unified, we have the following 

N o n - D e t e r m i n i s t i c  P r o c e d u r e :  Transform the system S into a solved form, if one exists: 

S ~ $1 ==:v . . .  ~ Sn. 

Return mgu( S~ )lw~(.~)2 

E x a m p l e  3.2 Let E = { [1] f (z l )  = g(zl) ,  [2]h(f(z~)) "- k(f(z2)),[3]za - f(g(z3)) }, and S = 

{( f (x ,  h(g(y))), f (g( f (x) ) ,  k(g(y))) }}. The following sequence of t ransformations leads to a system in 

solved form. 

{(/(x,h(9(y))),/(g(f(x)),k(g(y))))} 
~{(x,g(f(x))),(h(g(y)),k(g(y)))} by (2) 

C.L transformation (5) with the use of the functional reflexivity axioms in put,modulation. 
3 This denotes the restriction of the substitution to the set Var(S). 
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:=:* {(x,g(yl)),  (g(yl),g(f(x))),  (h(g(y)), k(g(y)))} by (5) 
{(x, g(Yl)), (g(yi), g(f(g(yl)))), (h(g(y)), k(g(y)))} by (3) 

==V {(x,g(yl)),  (Yl,f(g(Yl))), (h(g(y)),k(g(y)))} by (2) 
=:~ {(x,g(yl)) ,( f(g(yl)) , f (g(za))) ,(za,y,) , (h(g(y)) ,k(g(y)))}  by (4), eq.[3] 

{("~',.q(~/l)), (f(g(Yl)), f(g(Yl))), (Z3, Yl), (h(g(y)), [~(g(y)))} by (3) 
{(x,g(yl)),  (2:3, YX), (h(g(y)), k(g(y)))} by (1) 

==~ {(x,g(yl)),(za,Yl),(h(g(y)),h(f(z2))),(k(f(z2)),k(g(y)))} by (4), eq.[2] 
= ~  {{x,g(yl )), (za, Yl), (g(Y), f(z~))} by (2) 
=:ez {(x,g(yl)),  (z3, Yl ), <g(y),g(zl)), <f(zl),/(z2))} by (4), eq.[1] 
=:~ {(X,g(Yl )), <Z3, Yl),/Y' Zl)' (Zl' Z2)) by (2) 

{(x, g(Yl)), (z3, Yl), (Y, z2), (zi, z2)} by (3) 

Hence, [g(yl)/x, z~/y] is an E-unifier of S. The substi tut ion [g(yl)/x, Yl/z3, z2/y, z2/zl] is the extended 
E-unifier of E. In the fourth line from the bo t tom note that ,  since pairs are unordered and the system is 

a set, two pairs have collapsed into one. 

4 S o u n d n e s s  a n d  C o m p l e t e n e s s  

It is a tes tament  to  the  power and elegance of the technique of unification by transforming systems of 
terms tha t  it can be adapted to E-unification by adding only two additional transformations,  and that  

this method,  as we prove in this section, can non-deterministically find a CSUE of u and v for arbitrary 
theories E .  

The obvious strategy for proving completeness is to take some "proof" of the  fact tha t  0(u) ~ ! ~ E  0(v), 

and let its s t ructure determine the  sequence of transformations; we then show tha t  the subst i tut ion a 

found by the  procedure is such tha t  a <_E O[Var(u,v)]. However, in arbitrary theories we cannot assume 

(as in [14]) that  subst i tut ions are reduced, and furthermore it is not clear what  is decreasing in the 

rewrite proof as t ransformations are applied. Finding the appropriate measure for the induction turned 

out to be non-trivial. 4 Two essential issues in proving completeness were (A) finding a variable pure 
representat ion for rewrite proofs in which transformation (3) does not increase the  number of rewrite 

steps in the representat ion and does not allow variables introduced by rewrites to interfere with each 

other, and (B) removing the potential  for infinite recursion on (5) in a t tempt ing  to eliminate the occur 

check. We shall present our soundness result after explaining the proof representation we have developed, 
and finish the section with our completeness theorem. 

Given a system S = {(ul,  v l ) , . . . ,  (un, v~/} and a subst i tut ion 0, we will represent the "proof" that  

E UE(E) as a certain kind of DAG (Directed Acyclic Graph).  The nodes of these proof DAGs are labeled 

with two terms connected by one of the  symmetric relations ~ or ~ .  

D e f i n i t i o n  4.1 Given an idempotent  substi tut ion 8, the set of proof DAGs associated with 8 is defined 
inductively as follows. 

(i) (Axioms) For every te rm u, the one node tree labeled with u ~ u is a proof DAG associated with 0. 

For every variable x and term v such that  x ~ Vat(v) and O(x) = 0(v), the one node tree labeled 
with x ~ v is a proof DAG associated with 0. 

4 For example, (4) and (5) decrease the number of rewrite rules in the rewrite proof and increase the number of unsolved 
variables; (3) eliminates unsolved variables in the rewrite proof but potentially increases the number of rewrites. 
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(ii) (Term decomposit ion) Given a pair (u,v)  such that  u and v are compound terms whose roots axe 

labeled with the  same symbol f ,  let ~(u) = f(@(ul ) , . . .~  O(uk)) and ~(v) = f ( # ( v l ) , . . . ,  8(v~:)), where 

ui = u / i  (resp. v~ = v/i) .  Given any k proof b A G s  T 1 , . . . , T k  associated with 8, where each Ti is a 

proof  DAG whose root  is labeled with u~ ~ v~ (or ui ,,, v~), the  b A G  T whose root  is labeled with 

u ,,~ v and such tha t  T / i  = Ti, 1 <_ i < k, is a proof  b A G  associated with 8. 

(iii) (Rewrite rule insertion) Given a pair  (u,v) of terms,  given any m variants (ll - r i ) ,  1 _< i _ m; of 

equations from E U E - I ,  given any m + 1 proof b A G s  T 1 , . . . ,  Tm+l associated with 8, where T1 is 

either an axiom labeled with u ~ I1, or a proof DAG whose root is labeled with u ,,, 11, for e~ch i, 

2 < i < m,  Ti is either an axiom labeled with ri-1 g li, or a proof b A G  whose root is labeled with 

r i -1 "~ Ii, and Tm+l is either an axiom labeled with rm ~ v, or a proof DAG whose root is labeled 

with rm ~ v, the b A G  T whose root is labeled with u ~ v and such that  T / i  = T~, 1 < i < m + 1, 
is a proof DAG associated with ~. 

A proof D A G  for a pair  (~, u ~ v) or <6, u ,,~ v) is a DAG obtained by merging identical nodes in 

any proof  DAG associated with 0 and whose root is labeled with u ~ v or u ,,~ v. s (We wiI1 omit ~ when 

available from context.  Note tha t ,  since these relations axe symmetric ,  u ~ v is the  same node as v ~ u.) 

A proof DAG for a pair  (~  S),  where g is a subst i tut ion and S is a system, is the  DAG obtained by 

merging identical nodes in any proof DAGs for the pairs in S. A proof DAG T for a system S is variable 
pure iff the  sets of variables occurring in the  equations used in the rewrite steps implicit in T are pairwise 

disjoint, and these variables are also disjoint from Vat (S ) .  

Note that  in case (ii) and case (iii), (u' ,,~ v'), as contrasted with (u' ~ v'),  indicates that  no rewrite 

step is applied at the root of any DAG in the sequence O(u ~) ~-*--~E O(v'). We omit here the forma~ 

proofs of the  soundness and completeness of  this representation,  since this should be intuitively obvious. 

A minor technical detail  of the la t ter  is that  O(u) ~ - + E  ~(v) implies tha t  there exists a vaxiable pure DAG 

associated with a~ extended ~?~ incorporat ing all the  rewrite subst i tut ions in ~2_~/~. 

For example,  the DAG associated with the subst i tut ion [g(yl)/x,  y~/z~, z : / y ,  z~/z~] found in Example 

3.2 is as follows, 

f(~, h(g(y))) v/(g(/(~)), k(g(y))) 

yl 

} 
y ~ zl Zl ~ z2 

We need one ]emma before we state  our soundness result. 

L e m m a  4.2 Let E be a set of equations, D2 be any system of b A G s  with x E Vat (D2) ,  and let D1 be 

a DAG whose root is labeled with (x ~ v) and such that  x ~_ Vat(v) .  Then {DI U D2} is a variable pure 

b A G  System associated with t? iff {D~ U D2[v/x]) is a variable pure b A G  system associated with 8. 

Proof. This result assures us (A) that  t ransformation (3) produces equivalent systems, and (B) that  

this process will not  increase the number  of rewrite s teps implicit in the proof. The proof  depends on the 

5 Th i s  s t ruc tu re  sha r ing  is not  jus t  a way of reducing the size of the  b A G s ;  it is used to prevent  the number  of rewrite 
s teps implici t  in the  b A G  from increasing in t ransformat ion  (3). 
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(recursive) definition of subst i tut ion in a DAG, where D2 Iv~x] is the DAG system obtained by substi tut ing 

v for x in interior positions in the nodes and sharing the structure of the DAG D1 elsewhere (the details 

are tedious and involve the examination of nine cases on the s tructure of the nodes in D1 and D~). [] 

The following lemma shows that  our procedure is sound. 

T h e o r e m  4.3 (Soundness) If S ~ Sn, with Sn in solved form, then mgu(Sn)]Var(S) E UE(S). 

Proof. We show that  if S ~ S'  using transformation (1) or (3), then UE(S) = UE(S') ; ax, d if S ~ S'  

using one of  (2), (4), or (5), then UE(S') C [,rE(S ) . The only difficulty might arise in transformation (3); 

we use Lemma 4.2. The soundness of the method follows by a trivial induction. [] 

We now discuss the bound on the number of applications of (5) in eliminating the occur check. The 

following lemma,  based on a simpler result of Kozen, 6 is the key to the elimination of the  variable x in 

the case of a pair (x, v), where lvl > 1 and x E Vat(v).  

L e m m a  4.4  Given a set E of equations, given any term v containing some occurrence of a variable 

x, and such that  Ivl > 1, if there is a te rm t with no occurrence of x such tha t  v[t/x] ~-L+ E t, then 

there is some subterm r of t such that  r ~Z-~E t, v[r/x] ~Z~ E r, and~ in the sequence of rewrite steps 

v[r/x] ( * )E r, for every occurrence a of the variable x E dom(v), some rewrite rule is applied to a proper 

ancestor fl of a .  

~Ve omit the  proof,  which proceeds by induction on (k, ltl), where k is the  number  of occurrences of 

x in v (using the lexicographic ordering). 

The condition on the application of rewrite rules given by lemma 4.4 implies the next lemma. The 
following definition will be helpful. 

D e f i n i t i o n  4.5 Given a tree u, given any two sequences of independent  addresses A = (Zl , . . . ,Z ,~)  and 

B = ( a l , . . . ,  ak) of addresses in dora(u), where n < k, A is a proper cover of B iff for every Z E B, there 

exists some a E A such that  a is a proper prefix of Z. (That  is, every pa th  from the root to some Z 
contains a a # Z.) 

L e m m a  4.6 Let E be a set of equations, ix ,v)  be a pair, where Iv[ >_ 1 and x E Vat(v) ,  and let 

( a l , . . . ,  crk) be the sequence of all occurrences of x in v. The following properties are equivalent. 

(1) {(x ..~ v)} U D is a variable pure DAG ~soc ia ted  with t~. 

(2) There  is some substi tut ion or, some sequence of addresses ( Z l , . . .  ,Zn) that  is a proper cover of 

(al . . . .  ,ak), and some sequence (ll - r l )  . . . . .  (ln - rn) of variants of equations from E U E -1 renamed 

away from Vat(v)  U Var(D),  such that  cr =E  ~[Var(v) U Vat(D)], and c~ is the subst i tut ion associated 
with the DAG system 

{ ( x  ~ v [Z ,  ~-  r~ . . . . .  Z,, '-- r . ] ) }  U { ' (v/Z: ,  ~ l~) . . . .  ,(V/Zn ~ 1,~/} U D ' ,  

where v [ ~  ~ r l , . . .  ,Z~ ~ r~] denotes the result of replacing each subtree at Zi in v by r~, and D r is 
obtained by altering the  s tructure of the corresponding DAGs in D. 

Proof. We use lemma 4.4 to show that  there is always a substi tut ion a small enough so that  there is a 

sequence of rewrite steps between a(v) and c~(x) such that  for every occurrence a of x in v, some rewrite 

rule is applied to a proper  ancestor Z of a .  The technical difficulties have to do with showing that  a 
variable pure proof DAG can be obtained, without using new variants of equations. [] 

The next l emma shows that  rules (3), (4) and (5) are sufficient to eliminate a variable causing the 
occur check condition. 

In [12], lemma 7. His result is sufficient only for the case of ground equations. 
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L e m m a  4.7  If ¢r is an F~-unifier of the system 

then, let t ing v ~ = v[,~l ~ Yl,...,~6n ~- Yn], where { Yl , . . . ,  Yn} is a set of new variables, using a finite num- 

ber of applications of the transformations (3), (4), and (5), one can obtain a system_ S' and a substi tution 

cr ~ extending ~r, such tha t  # is an E-unifier of 

S' = {(x, v ')}  U R' U { ( (v l~, ) { , / Ix ] ,  h),  (r~, Y,.) . . . . .  ( ( v l ~ ) [ ¢ / x } ,  In), (r~, y~.)} U R. 

(R t is a system in solved form involving some new variables.) The variables Yl , . . . ,Yn  can now be elimi- 

nated using rule (3). 

Finally, we are ready to s tate  the major  result of the paper.  The completeness of our method is 

shown in the following theorem. 

T h e o r e m  4.8 (Completeness)  For every 0 E UE(S), there exists a series of t ransformations S =% ,~ 

such tha t  S is in solved form, and mgu(S)lv~(s)  <-E 0[Vat(S)]. 

Proof. Given 0 E UE(S), first we extend the subst i tut ion 0, and then construct  a variable pure proof DAG 

D for {0, S). We use S to dictate the sequence of t ransformations in generating S. We assign a measure 

of complexity # (D,  S, 0) to triples of the form (D,  S, 0), where # (D,  S, 0) is an element of a well-founded 

set (with ordering -<), and we show tha t  ff S is not  in solved form, it is possibie to construct  a triple 

( D ' , S ' , 0 ' )  such that ,  S =% S', #(D',S' ,O') -4 #(D,S,O), and 0' extends 0. The well founded set is the 

set of quintuples (M, n t ,  n2, n3, n4), where M is a multiset of natural  numbers measuring the complexity 

of 0, nl  the total  number  of variables in S, n2 the totM number of equations in D, n3 the size of the terms 

occurring in the pairs labeling root nodes of D, and n4 the number of pairs (u,u) in S. The ordering 

-~ is the  lexicographic ordering on quintuples, where the ordering on the first component  is the multiset 

ordering, and the  ordering on the other  components  is the  ordering on the  natural  numbers.  There is a 

subtlety regarding the measure M associated with a subst i tut ior/0:  M is the multiset of depths  of trees of 

the form 0(x), for every variable x in the  domain of 0 that  does not belong to a pair (x, v) which is already 

solved in the system S. Similarly, nl  only takes into account variables that  do not belong to solved pairs 

i n S .  [] 

Combining theorem 4.3 and theorem 4.8, we obtain the fact that  our method  yields complete sets of 

E-unifiers. 

T h e o r e m  4.9 The  set (mgu(,~)lv~(s) ! s = ~  ~, and S is in solved form} is a CSUE for any system 

S. 

5 I m p l e m e n t a t i o n  o f  a D e t e r m i n i s t i c  P r o c e d u r e  

In this section, we design ~ determinist ic procedure by emphasizing a distinction implicit in our transfor- 

mations,  viz., whether  a rewrite takes place at the  root ( t ransformation (4)) or not (the other  transforma- 

tions). Specifically, if u and v are E-unifiable, then V0 E UF~(u,v) there exists a sequence 0(u) = u0 - -+E 

ul ---~z . . .  ---~E un = 0(v). Each such 0 can be classified into at least one, and possibly both,  of the 

following two cases. (Case 1 is fur ther  divided into five mutually exclusive cases based on the stueture of 

the terms.)  

i. No rewrite rule is applied at the root of any u~. 

(a) Both u and v are compound terms~ e.g., u = f ( u l , . . . , u n )  and v = f ( v t , . . . , v n ) .  Thus 

e(u~) + ~ + ~  e(v~) for 1 < i < n. 
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(b)  E i the r  u or  v is a variable;  a s s u m e  u is a variable.  

i. v is a c o n s t a n t  or a v a r i a b l e . ' ~  

ii. v is a c o m p o u n d  t e r m .  / ~ - {  T h e n  [v/u] = mgu(u,  v) <_E O} 

A. u ¢ ~zar(v). 
B. u e Vat (v ) .  T h u s ,  if v : f ( v l  . . . .  ,v~)  t h e n  O(u) = f ( t l  . . . .  , t n )  for s o m e  t e r m s  

t l ,  . . ,  , tn. 
(C) B o t h  u a n d  v are  c o n s t a n t s ,  i.e., u = v. 

2. So me  rewr i t e  ru le  is app l i ed  a t  t h e  roo t  of  some  ui. T h u s  

o(u) ~ : ~  p(5 ~---~s p(r) ~ E  O(v), 

where  (l - r )  is a va r i an t  of  a n  e q u a t i o n  in E U E - 1 ,  p is t he  m a t c h i n g  s u b s t i t u t i o n  used  in the  

r ewr i t e  s t ep ,  a n d  no  rewr i te  a t  t he  roo t  takes  p lace  be tween  O(u) a nd  p(1). 

T h e  fol lowing P s e u d o - P a s c a l  p r o c e d u r e  recurs ive ly  appl ies  th is  c lass i f icat ion to  two t e r m s ,  a nd  it m a y  be  

seen t h a t  it  is b o t h  an  i m p l e m e n t a t i o n  of t he  set  of  t r a n s t b r m a t i o n s  g iven  earl ier  a n d  a n  e x t e ns ion  of 

R o b i n s o n ' s  or ig ina l  a l g o r i t h m  for  s t a n d a r d  uni f ica t ion  [17] to  t he  case  of E -un i f i ca t i on .  

g l o b a l  v a r i a b l e s  
currDepth,  ma x Dep th  : integer; E : eqSet; 

p r o c e d u r e  E-Unifiers( u, v : t e rm ); 
b e g i n  

fo r  ma x De p th  :=  1 t o  oo do  
b e g i n  

cur rDepth  := 0;. 
o u t p u t (  E-Unifs(u,  v, false, false ) ) 

e n d  
e n d ;  

f u n c t i o n  E-Unifs(  u, v : term; occur, noRootP~W : boolean ) : unifSet; 
v a t  

unifs l ,  unifs2, subUnifs  : unifSet; i, n : integer; 0, cr : unifier; 
f : funcSymbol;  y l , - . .  ,Y~ : variables; 

b e g i n  
cur rDepth  :=  currDepth  + 1; 
i f  cur rDepth  > maxDep th  

t h e n  r e t u r n ( 0 ) ;  { Terminate this call and return 0 } 

{ Case 1: Find unifiers ofu and v which don't involve rewriting root and collect in unifsl } 

t h e n  unifs l  := {Id} { This includes Case 1.(c) } 
e l se  if  ]u[ > 0 a n d  Iv] :> 0 a n d  (Root (u)=Root(v) )  { Case l.(a) } 

t h e n  b e g i n  
uni fs l  :=  E-Units(  u / l ,  v / l ,  false, false ); 
fo r  i :=  2 to  Arity(P~oot(u)) do  

b e g i n  
subUnifs  := 0; 
fo r  e a c h  8 E nni fs l  do  

subUnifs  :=  subVnifs  12 0 o E-Unifs(O(u/i), 6(v/i),  false, false); 
uni fs l  := subUnifs  

e n d  
e n d  

e l se  if  Variable(u) o r  Variable(v) 
t h e n  b e g i n  

i f  n o t  Variable(u) 
t h e n  Swap(u, v); 

i f  Iv[ = 0 o r  (Iv[ > 0 a n d  (u ~ Vats(v))) 
t h e n  b e g i n  { Cases 1.(b).i to 1.(b).ii.B } 
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~nifsl := {i~/~]}; 
nol~ootRW := t r u e  

e n d  
else beg in  { Case !.(b).ii.B } 

i f  n o t  occur { start  of new occur check case found } 
t h e n  Mark all addresses a E Dora(v) where v(a) = u ; 

i f  Marked( v ) 
t h e n  b e g i n  

unifsl := O; 
noRootRW := t r u e  

e n d  
else  b e g i n  

f := l~ot(v);  
n := Arity(f);  

:= [ f (Yl , . . - ,  yn)/u]; { where the y, are new variables ) 
unifsl := 0 o E-Unifs(O(u), 0(v), true, true); 

e n d  
e n d  {else} 

e n d  { then}  
else  unifsl := O; 

{ Case 2: Find unifiers which involve rewriting u and v a¢ the roo¢ and collect in unifs2 } 

ff  Id  E unifsl o r  noRootRW 
t h e n  unifs2 := @ 
else  b e g i n  

i f  Variable(u) 
t h e n  Swap(u, v); 

unifs2 := @; 
for  e ach  (1 -~ r) E EtA E -1 where I is a variable or Root(u) = Root(l) do 

for  e ach  0 ~ E-Uuifs(u, t, false, true ) do 
unifs2 := unifs2 U ~ o E-Cnifs(~(r), 0(v), false, false ); 

end ;  

currDepth : - - cu r rDep th -  I; 
r e t u r n (  unifsl tA unifs2 ) 

end ;  { E-Unii~ } 

The  procedure  works roughly  as follows. MaxDepth controls the  m a x i m u m  recursion depth  in each 

loop i terat ion and  currDepth contains the  dep th  of the  current  call; th is  a m o u n t s  to a breadth-f irs t  traversal  

of the  search space of all E-unifiers.  The  procedure will generate  an  infinite chain U~ C U2 _c U3 _c . . .  of 

sets  of  E-unif iers  indexed by maxDepth. T he  flag occur indicates t ha t  the  current  cM1 is par t  of a (finitely 

recursing)  occur  check case; the  ma rk i ng  of addresses  serves to prevent  recursion pas t  the  occurrence of 

a variable which caused an occur check: as shown in l emmas  4.4 - 4.7, we can guaran tee  tha t  no new 

E-unifiers will be  found after  this  imi ta t ion  reaches the  occur check variable. 

Note tha t  the  flag noRootRW is set to t r u e  in the  recursive call in case 2 to force a lef tmost  root 

rewrite, and  is Mso used to e l iminate  a t t e m p t s  to rewrite if I d  is found in case I (c.f. t rans format ion  (1)) 

or if ei ther case 1.b.i or 1.b.ii.A has  occurred (c.f. t ransformat ion  (3)), since in fact this  is unnecessary  for 

completeness.  T h e  code contains  o ther  efficiency heurist ics.  For example ,  in case 1.(a), we successively 

apply the  subs t i tu t ions  found for the  previous sub te rms  to la ter  ones,  possibly reducing the  set subUnifs 

each t ime.  In case 2 we a t t e m p t  to rewrite non-variables to variables ( ra ther  t h a n  the  reverse) whenever 

possible,  and  m a n y  useless rewrite sequences are therefore el iminated.  These  measures  reduce considerably 

the  r u n n i n g  t ime  of  the  procedure  for the  various levels of the  search space,  and  allow us to find E-unifiers  

for non-tr ivial  problems.  



225 

6 Higher-Order Unification via Transformations 

Anothe r  t e s t amen t  to  the  power of this  representat ion for unification problems is t ha t  Higher Order 

Unification m a y  be  described in t e rms  of t ransformat ions ,  and  t ha t  our resul ts  concerning the  el iminat ion 

of the  occur  check suggest  a means  of e l iminat ing useless pa ths  in the  search for unifiers in a novel manner .  

H~gher Order  Unification is a m e t h o d  for unifying t e rms  in the  Simple Theory  of  Types  [2], t ha t  is, given 

two typed  l a m b d a  t e rms  el and e2, f inding a subs t i tu t ion  cr for the  free variables of the  two te rms  such 

t ha t  or(el) = a(e2),  m o d u l o  a-conversion ( renaming of hound  variables). In this  section, we ex tend  our 

m e t h o d  to higher  order unification. 

We follow [8] and  a s sume  the  s tandard  definition of te rms,  bound  and  free variables, subs t i tu t ions ,  

reduct ions,  normM forms,  and  the  simple types.  7 We consider here only unification a s suming  ~-equivalence, 
i.e., Ax(ex) = e if x ¢ FreeVar(e).  All t e rms  are assumed to be expanded  into 7l-normalform; for example,  

a t e rm Axl . . .  x~. @(el, . . .  , e~ )  will be of some type  a l ,  . . .  , a~  -~/3,  wi th /3  a base type. 

D e f i n i t i o n  6.1 We now present  Hue t ' s  procedure cast in the  form of t rans format ions  on a sys tem S of 

pairs of A-terms. (Assume  tha t  the  type  of the  pair ment ioned  in each t rans format ion  is (~1, . . .  , an  --*/3.) 

We have the  following rules: 

{(@, @)} U S = ~  S (1) 

where el is rigid and  e2 is flexible; 

{{  ~'xl . . . . . . . . . . .  " X'~" @l(e~ elPl) ' '~yl Yn'@2( ¢'2 e2p2 ) ~'1~ u s : = = : : # ; J  

U { ( , ~ x , . . . , , , . ~ , ~ , y , . . . y , , . ~ f ) }  u s, (3) 
l<:i~pl 

' ' . . . y , , . ~ ( ~ . . . ~ , , : ) )  ~ s,  where Q where ~ = ((~,x, . . .= , , .  ¢,) y , . . .  y,,). ~f (~,x, . . .  ~,,. F(~,  . . .  ~ , , ) ,  ,~y, 
is a rigid head,  

S ~ { (F, /~z I ,, .Zp~.~(Gl(Z 1 , , ,  Zp , ) . . . ap2 (Z l . . .Zp l ) ) } }  u S, (4) 

where the  Gi axe new variables of  the  appropriate  type, and rule (6) is immedia te ly  applied to the  new pair. 
2 If (Axl " " x ~ ' F ( e l  "'" elpl), Ayl ...yn.@(e~ ...ep2)) e S, where @ is a rigid head and  for some sub te rm 

,~ ,  ~(~1) = ~ 1 . . .  ~ _~ 8 ,  

s ==~ { (F ,  z~, . . .  ~,,,, ~ ( H l ( Z ,  . . .  z , , , ) . . .  H ,~ (~ I . . .  ~,,,))) } u s,  (5) 

where the  Hi are new variables of  the  appropria te  type.  Apply rule (6) to the  new pair.  Finally, we have 

{ ( x ,e ) }  u s = ~  { (x ,e ) }  u s{ef~], (6) 

where x is a variable not  in FreeVar(e). (We as sume  tha t  f l-reduction is performed as par t  of the  subst i tu-  

t ion process.)  Since Hue t ' s  procedure  uses  ordered pairs,  we have included rule (2). Rule (4) corresponds 

to Imi ta t ion ,  and  (5) to Projection.  

Note t ha t  the  left te rm in the  new pairs in t roduced by 4 and 5 is not  in ~/-normal form; since these 

are immedia te ly  t ransformed into solved forms,  this should cause no confusion. A pair is in solved form 

7 Our notation will differ from [8] in that we will denote constants of functional type by f and variables ranging over 
functions by F and G. Following Huet, lambda expressions will be represented by e, @ will denote either a constant 
or a variable, and r(e) will denote the type of the term e. A term whose head @ is a free variable is termed flexible; 
if @ is a constant or a bound vaxiable it is termed rigid. 
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if it is flexible-flexible or if it is of the form Ix, e} for some variable x (functional or otherwise) not in 
FreeVar(e). 

The procedure based on these transformations must of course account for fl-reduction, and trivial 

unifiers must be extracted from flexible-flexible pairs in solved forms; the details are omitted. The in- 
teresting issue here is tha t  the pruning of the search space in the occur check case carries over to the 

higher-order case. It is possible to generate pairs isomorphic (up to renaming) to previous pairs by a 

series of transformations by (4) or by (5), since if applied to a flexible-rigid pair (el,  e2), where the head 

of e 1 occurs in e2, the occur check situation will be distributed into the subterms in a manner similar to 

E-unification. An implementation which marks addresses of occur check variables to stop useless recursion 
caused by this phenomenon would be an improvement on t tuet 's  original formuiation, and appears to be 

new. 

7 C o n c l u s i o n  

We have developed a general approach to E-unification based on transformations on systems and designed 

a complete E-unification procedure which implements the search for a system in solved form° It can be 

viewed as a top-down recursive procedure generalizing Robinson's recursive algorithm [17]. 

Much work has gone into the design of unification procedures for specialized theories [18], and into 

procedures based on narrowing [4], which depends on a completion procedure. Both [10,11] and [14] have 

developed procedures based on transformations on systems, but  both of these depend on a completion 

procedure as a preprocessing phase. We have designed a complete procedure for the general case which 
improves the brute-force method of enumerating all rewrite sequences in the belief that  such an approach 

might reveal fundamental insights into the problem of E-unification, and that  current procedures might be 

able to be embedded in such a framework. For example, the syntactic theories described in [10,11], such as 

commutativity, are easily handled in our procedure by allowing at most one rewrite at each address; other 

special purpose algorithms are currently being studied. We have shown how higher-order unification can 

be implemented, and we are examining the extension of our procedure to higher-order unification using 

combinators. 

We have also designed a version of the procedure taking advantage of confluence, but due to the lack 

of space, we cannot discuss it here. Our procedure "guesses" the confluence point and alternately tries 

to make progress from the left and the right; it reduces the search space considerably, since only oriented 

equations need to be tried (as opposed to all equations in E U E -1 in the general case). 

We are also examining a generalization of Paterson and Wegman's unification closure algorithm [15], 

which amounts to using structure sharing [1] to avoid explicitly applying substitutions and which maintains 

the solved systems in a triangular form; since backtracking may occur, a trace stack (as in Prolog) must 

be stored. (An implementation using this technique is being written.) 

In ~ d i t i o n  to defining more closely the relationship of our method to previous procedures, we axe 

currently examining a fundamentally new form of E-unification, termed Rigid E-unification, which has 

come up in the study of equational rantings [6]. This method assumes that  once equations are used, 

they axe "frozen" with their substitutions, and can not be used again with another substitution (and are 

essentially ground thereafter). We conjecture tha t  rigid unification is decidable, and are studying the 

application of the methods of this paper to its solution. Several decidable subcases have been isolated and 

are being studied using the implementation described in this paper. 

Acknowledgment: We wish to thank Stun Raatz for much helpful discussion concerning both the 

general content of this paper and its presentation. 
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