
A G E N E R A L C O M P L E T E E - U N I F I C A T I O N P R O C E D U R E

J e a n H. Gal l ier a n d W a y n e Sn y d e r 1

D e p a r t m e n t of C o m p u t e r and I n f o r m a t i o n Science

Un ive r s i t y of Pennsy lvan i a

Ph i l ade lph ia , Pa 19104

1 I n t r o d u c t i o n

In this paper, a genera unificatiou procedure that enumerates a complete set of E-unifiers of two terms

for any arbitrary set E of equations is presented. It is more efficient than the brute force approach using

paramodulation, because many redundant E-unifiers arising by rewriting at or below variable occurrences

are pruned out by our procedure, still retaining a complete set. This procedure can be viewed as a non-

deterministic implementation of a generAiza~ion of the Maxtelli-Montanari method of transformations on

systems of terms [13], which has its roots in Herbrand's thesis [7]. Remarkably, only two new transfor-

mations need to be added to the transformations used for standard unification. This approach differs

from previous work based on transformations because, rather than sticking rather closely to the Martelli-

Montanari approach using multi-equations [13] as in Kirchner [10,11], we introduce transformations deaiing

directly with rewrite rules.

As an example of the flexibility of this approach, we apply it to the problem of higher-order unifica-

tion, and find an improved version of Huet's procedure [8]. Our major new result is the presentation and

justification of a method for enumerating (relatively minimal) complete sets of unifiers modulo arbitrary

sets of equations.

2 P r e l i m i n a r i e s

It is assumed that the remier is familiar with the standard definitions and notations for many-sorted

languages, tree domains, tree repla~cements, substitutions, and rewrite steps (as found in, e.g., [9] and [5]);

we will present here on!y those definitions relevant to our approach to E-unification.

Def in i t ion 2.1 Given a set of equations E, we say that a substitution 0 is an E-unifier of u and v, .iff
e(u), * ,F e(~), that is

where the ai are the rewrite addresses, the (l~ ---" r~) axe variants of equations in E t3 E - I , and the p~ are

the matching substitutions used ia each step. We will often find it useful to consider an extension of

which incorporates all the matching substitutions, i .e , 0~ = 8 o Pl o . . . o p,~; note that 8I(u) *----~E* ~(v).
We will assume that all substitutions are idempotent, i.e., that 8 = ~ o 8.

The set of all E-unifiers of u and v is denoted UE(u,v). It is well known that the set UE(u,v) is

only semi-decidable, and that if two terms are unifiable modulo E, there is in general no single mgu, but

instead a possibly infinite set.

1 This research was partially supported by the National Science Foundation under Grant No. DCR-86-07156.

217

D e f i n i t i o n 2.2 Two substi tut ions a a~ld 0 are termed equal modulo E over W , denoted by a =E 0[W],

iff Vx E W , a(x) ~ * ~E O(x). We say that. a is more general than O over W , denoted by a <_E O[W], iff

there exists some subst i tut ion ~ such that 0 =E ao~[W], i.e., tha t Vx E W , O(x) ~ * ;E ~(a(x)) .

Now we generalize the concept of a mgu to E-unifiers; this formulation of a generating set for a set

of E-unifiers is due to [16]. The following definition is from [3].

D e f i n i t i o n 2.3 Let Vat(u) denote the set of variables occurring in the te rm u. Let D(O) = {x I O(x) # z}
and I(8) = UxED(~) Var(O(z)). Given a finite set E of equations, for a~y two terms u, v, let Var(u, v) =
Vat(u) U Vat(v) , and let W be any finite set of variables such that (Var(u,v)) N W = 0. A set V of

substi tut ions is a complete set of E-unifiers -for u and v away f irm W, for short, a CSUE of u and v iff

1. VO E U, 9 (0 t C Var(u,v) , and S(0) N (D(~) U W) = O;

2. v0 e u, 0(u)< *>E e(v);
3. YO £ UE(u,v), 3a E V such that a ~_E fl[Yar(u,v)].

We will consider the E-unification of pairs and systems, following the notat ions introduced by [13]

and [10].

D e f i n i t i o n 2.4 A (unordered) pair is simply a multiset of two terms, and a subst i tut ion 0 is an E-unifier

of a pair (u, v) iff 8(u)(* >E 8(v). A system is a set of pairs, and a subst i tut ion is an E-unifier of a system

iff it is an E-unifier of each pair in the system.

In the sequel, we will denote constants by a; functions by f , g, h, and k; variables by w, x, y, and

z; terms by l~ r, u, v; and systems by S and R.

3 E - U n i f i c a t i o n v i a T r a n s f o r m a t i o n s

We now develop the notion of an E-unification procedure as a series of t ransformations on systems which

converts a pair of terms into a solved -form which explicitly represents the E-unifier. 1 A pair (x, t) is in

solved.form in a system S if t is any term and x is a variable which does not occur anywhere else in S (in

particular, x ¢ Var(t)); a system is in solved form if all i ts pairs are in solved form. It should be clear

tha t a solved system S = { (z l , t l) , (x~ , tn)} has a mgu Os = [t l l x l , . . . , tnlxn], and tha t {05} is a

CSUE for S. This allows us to effectively ignore any E-unifiers which use rewrite steps between solved

pairs if we are just interested in complete sets of unifiers.

We now show how E-unifiers can be obtained using transformations on systems. The relation

on systems is defined as follows:

D e f i n i t i o n 3.1 (Transformation Rules) Let It] denote the depth of a te rm t (e.g., lat = 0 and l'f(~)l = 1).
Let R denote any system (possibly empty), ,f be any function symbol of arity n, and u, v be two termS.
We have the following transformations:

{@,~)} u R ~ n (1)

{<f(ul , . . . , u~), f (vl v~))) U R ==~ {(ul, v l) , . . . , {un, vn)} U R

{(~, v)} u R ~ { (~,v) } u R[vlx],

(2)

(3)

1 It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification algorithm based
on transformations on systems of equations, These transformations are given at the end of the section on property
A, page 148 of Herbrand [7]. Apparently, this algorithm was rediscovered by a number of people, including Huet [8],
Marteli and Montauari [13], and Kozen [12].

218

where x is a variabie, x ~ Var(v), x e Vat(R), an4 R[v/x] is the system obtained by subst i tut ing v for

aJJ occurrences of x in R.

Transformations (1)-(3) are essentiMIy those given by Herbrand [7] aud Martell i-Montanari [13],

except tha t we need not orient the pairs, since they are unordered. We need two more transformations to

deal with equations. Let (u, v} be a pair such that u is not a variable and either v is not a variable or v is

a variable such tha t v e Var(u). Then

{(u,~)} u R ~ {(u J), (r,,,)} u R, (4)

where (1 -~ r) is a variant of an equation in E O E -1 such that Var(l,r) n (Var(R) U Var(u,v)) = 0, and

if l is not a variabl% the~ Root(u) = Root(l). Transformation (4) may not be applied he r eg t e r to the

pair (u,l}. This t ransformation represents a leftmost rewrite step at the root, and prohibits rewriting a

variable occurrence, unless the occur check fails. Finally, if x E V a t (f (vl, . . . , vn)), then

{ (x , f (v l , . . . , v n) } } U R ~ { (x , f (y l , . . . , y =) } , (f (y l , . . . , y ~) , f (v l Vn))}UR (5),

where the Yl, . . - . Yn are new variables, and rule (3) is immediately applied to the pair (x, f (y l , . . . , yn))
and then (2) is appned to the pair (f(Yl, . - - ,y~), f(vl ,vn)).

The motivat ion for rule (5) is in E-unifying a pair of the form (x, f (vl , ... , vn)), where the occur check
fails for x. Although such a pair cannot have a mgu, it is potentia~y E-unifiable by rewriting at the root

(e.g., [a/x] e U{a._f(~)}(x, f (x))) or by rewriting below the root (e.g., [f(a)/x] e U{a-,(f(a))}(x, f(g(x)))).
In the la t ter case, any E-unifier must match the root symbol of the second term, and so be of the

form I f (t1 , . . . ,tn)/x] for some terms t l , . . . , t~. We simulate rewriting below the root by successively

imitat ing the root of v and decomposing, thus distr ibuting the occur check into at least one of the pairs

{yl~vl}, . . , ,(yu, vn}, whereupon we m~y apply (4) or (5) again to that pair. At some point we must find

an application of (4) if we are to eliminate the occur check. 2

Unfortunately, it is possible to create an infinite series of pairs isomorphic up to renaming by re-

peatedly a.pplying (5): {(x, f (x))} =~ {(x, f (x)) , (Yl,f(Yl))} :~ {(x , f (x)) , (Yl,f(Yl)), (Y2, f(Y2)}} In
Lemmas 4.4 - 4.7, we shall prove tliat we can preserve completeness if we restrict the applications of (5)

used in finding an address at which to apply (4) to (the finite number of) addresses along the path from

the root to an occurrence of x in the original term f (vl , ... ; vn). Our choice of (5) was motivated by the

general top-down flavor of our method. A rule combining rules (4) and (5) is also used in [14].

Thus, given a set of equations E and a system S to be E-unified, we have the following

N o n - D e t e r m i n i s t i c P r o c e d u r e : Transform the system S into a solved form, if one exists:

S ~ $1 ==:v . . . ~ Sn.

Return mgu(S~)lw~(.~)2

E x a m p l e 3.2 Let E = { [1] f (z l) = g(zl) , [2]h(f(z~)) "- k(f(z2)),[3]za - f(g(z3)) }, and S =

{(f (x , h(g(y))), f (g(f (x)) , k(g(y))) }}. The following sequence of t ransformations leads to a system in

solved form.

{(/(x,h(9(y))),/(g(f(x)),k(g(y))))}
~{(x,g(f(x))),(h(g(y)),k(g(y)))} by (2)

C.L transformation (5) with the use of the functional reflexivity axioms in put,modulation.
3 This denotes the restriction of the substitution to the set Var(S).

219

:=:* {(x,g(yl)), (g(yl),g(f(x))), (h(g(y)), k(g(y)))} by (5)
{(x, g(Yl)), (g(yi), g(f(g(yl)))), (h(g(y)), k(g(y)))} by (3)

==V {(x,g(yl)), (Yl,f(g(Yl))), (h(g(y)),k(g(y)))} by (2)
=:~ {(x,g(yl)) ,(f(g(yl)) , f (g(za))) ,(za,y,) , (h(g(y)) ,k(g(y)))} by (4), eq.[3]

{("~',.q(~/l)), (f(g(Yl)), f(g(Yl))), (Z3, Yl), (h(g(y)), [~(g(y)))} by (3)
{(x,g(yl)), (2:3, YX), (h(g(y)), k(g(y)))} by (1)

==~ {(x,g(yl)),(za,Yl),(h(g(y)),h(f(z2))),(k(f(z2)),k(g(y)))} by (4), eq.[2]
= ~ {{x,g(yl)), (za, Yl), (g(Y), f(z~))} by (2)
=:ez {(x,g(yl)), (z3, Yl), <g(y),g(zl)), <f(zl),/(z2))} by (4), eq.[1]
=:~ {(X,g(Yl)), <Z3, Yl),/Y' Zl)' (Zl' Z2)) by (2)

{(x, g(Yl)), (z3, Yl), (Y, z2), (zi, z2)} by (3)

Hence, [g(yl)/x, z~/y] is an E-unifier of S. The substi tut ion [g(yl)/x, Yl/z3, z2/y, z2/zl] is the extended
E-unifier of E. In the fourth line from the bo t tom note that , since pairs are unordered and the system is

a set, two pairs have collapsed into one.

4 S o u n d n e s s a n d C o m p l e t e n e s s

It is a tes tament to the power and elegance of the technique of unification by transforming systems of
terms tha t it can be adapted to E-unification by adding only two additional transformations, and that

this method, as we prove in this section, can non-deterministically find a CSUE of u and v for arbitrary
theories E .

The obvious strategy for proving completeness is to take some "proof" of the fact tha t 0(u) ~ ! ~ E 0(v),

and let its s t ructure determine the sequence of transformations; we then show tha t the subst i tut ion a

found by the procedure is such tha t a <_E O[Var(u,v)]. However, in arbitrary theories we cannot assume

(as in [14]) that subst i tut ions are reduced, and furthermore it is not clear what is decreasing in the

rewrite proof as t ransformations are applied. Finding the appropriate measure for the induction turned

out to be non-trivial. 4 Two essential issues in proving completeness were (A) finding a variable pure
representat ion for rewrite proofs in which transformation (3) does not increase the number of rewrite

steps in the representat ion and does not allow variables introduced by rewrites to interfere with each

other, and (B) removing the potential for infinite recursion on (5) in a t tempt ing to eliminate the occur

check. We shall present our soundness result after explaining the proof representation we have developed,
and finish the section with our completeness theorem.

Given a system S = {(ul, v l) , . . . , (un, v~/} and a subst i tut ion 0, we will represent the "proof" that

E UE(E) as a certain kind of DAG (Directed Acyclic Graph). The nodes of these proof DAGs are labeled

with two terms connected by one of the symmetric relations ~ or ~ .

D e f i n i t i o n 4.1 Given an idempotent substi tut ion 8, the set of proof DAGs associated with 8 is defined
inductively as follows.

(i) (Axioms) For every te rm u, the one node tree labeled with u ~ u is a proof DAG associated with 0.

For every variable x and term v such that x ~ Vat(v) and O(x) = 0(v), the one node tree labeled
with x ~ v is a proof DAG associated with 0.

4 For example, (4) and (5) decrease the number of rewrite rules in the rewrite proof and increase the number of unsolved
variables; (3) eliminates unsolved variables in the rewrite proof but potentially increases the number of rewrites.

220

(ii) (Term decomposit ion) Given a pair (u,v) such that u and v are compound terms whose roots axe

labeled with the same symbol f , let ~(u) = f(@(ul) , . . .~ O(uk)) and ~(v) = f (# (v l) , . . . , 8(v~:)), where

ui = u / i (resp. v~ = v/i) . Given any k proof b A G s T 1 , . . . , T k associated with 8, where each Ti is a

proof DAG whose root is labeled with u~ ~ v~ (or ui ,,, v~), the b A G T whose root is labeled with

u ,,~ v and such tha t T / i = Ti, 1 <_ i < k, is a proof b A G associated with 8.

(iii) (Rewrite rule insertion) Given a pair (u,v) of terms, given any m variants (ll - r i) , 1 _< i _ m; of

equations from E U E - I , given any m + 1 proof b A G s T 1 , . . . , Tm+l associated with 8, where T1 is

either an axiom labeled with u ~ I1, or a proof DAG whose root is labeled with u ,,, 11, for e~ch i,

2 < i < m, Ti is either an axiom labeled with ri-1 g li, or a proof b A G whose root is labeled with

r i -1 "~ Ii, and Tm+l is either an axiom labeled with rm ~ v, or a proof DAG whose root is labeled

with rm ~ v, the b A G T whose root is labeled with u ~ v and such that T / i = T~, 1 < i < m + 1,
is a proof DAG associated with ~.

A proof D A G for a pair (~, u ~ v) or <6, u ,,~ v) is a DAG obtained by merging identical nodes in

any proof DAG associated with 0 and whose root is labeled with u ~ v or u ,,~ v. s (We wiI1 omit ~ when

available from context. Note tha t , since these relations axe symmetric , u ~ v is the same node as v ~ u.)

A proof DAG for a pair (~ S), where g is a subst i tut ion and S is a system, is the DAG obtained by

merging identical nodes in any proof DAGs for the pairs in S. A proof DAG T for a system S is variable
pure iff the sets of variables occurring in the equations used in the rewrite steps implicit in T are pairwise

disjoint, and these variables are also disjoint from Vat (S) .

Note that in case (ii) and case (iii), (u' ,,~ v'), as contrasted with (u' ~ v'), indicates that no rewrite

step is applied at the root of any DAG in the sequence O(u ~) ~-*--~E O(v'). We omit here the forma~

proofs of the soundness and completeness of this representation, since this should be intuitively obvious.

A minor technical detail of the la t ter is that O(u) ~ - + E ~(v) implies tha t there exists a vaxiable pure DAG

associated with a~ extended ~?~ incorporat ing all the rewrite subst i tut ions in ~2_~/~.

For example, the DAG associated with the subst i tut ion [g(yl)/x, y~/z~, z : / y , z~/z~] found in Example

3.2 is as follows,

f(~, h(g(y))) v/(g(/(~)), k(g(y)))

yl

}
y ~ zl Zl ~ z2

We need one]emma before we state our soundness result.

L e m m a 4.2 Let E be a set of equations, D2 be any system of b A G s with x E Vat (D2) , and let D1 be

a DAG whose root is labeled with (x ~ v) and such that x ~_ Vat(v) . Then {DI U D2} is a variable pure

b A G System associated with t? iff {D~ U D2[v/x]) is a variable pure b A G system associated with 8.

Proof. This result assures us (A) that t ransformation (3) produces equivalent systems, and (B) that

this process will not increase the number of rewrite s teps implicit in the proof. The proof depends on the

5 Th i s s t ruc tu re sha r ing is not jus t a way of reducing the size of the b A G s ; it is used to prevent the number of rewrite
s teps implici t in the b A G from increasing in t ransformat ion (3).

221

(recursive) definition of subst i tut ion in a DAG, where D2 Iv~x] is the DAG system obtained by substi tut ing

v for x in interior positions in the nodes and sharing the structure of the DAG D1 elsewhere (the details

are tedious and involve the examination of nine cases on the s tructure of the nodes in D1 and D~). []

The following lemma shows that our procedure is sound.

T h e o r e m 4.3 (Soundness) If S ~ Sn, with Sn in solved form, then mgu(Sn)]Var(S) E UE(S).

Proof. We show that if S ~ S' using transformation (1) or (3), then UE(S) = UE(S') ; ax, d if S ~ S'

using one of (2), (4), or (5), then UE(S') C [,rE(S) . The only difficulty might arise in transformation (3);

we use Lemma 4.2. The soundness of the method follows by a trivial induction. []

We now discuss the bound on the number of applications of (5) in eliminating the occur check. The

following lemma, based on a simpler result of Kozen, 6 is the key to the elimination of the variable x in

the case of a pair (x, v), where lvl > 1 and x E Vat(v).

L e m m a 4.4 Given a set E of equations, given any term v containing some occurrence of a variable

x, and such that Ivl > 1, if there is a te rm t with no occurrence of x such tha t v[t/x] ~-L+ E t, then

there is some subterm r of t such that r ~Z-~E t, v[r/x] ~Z~ E r, and~ in the sequence of rewrite steps

v[r/x] (*)E r, for every occurrence a of the variable x E dom(v), some rewrite rule is applied to a proper

ancestor fl of a .

~Ve omit the proof, which proceeds by induction on (k, ltl), where k is the number of occurrences of

x in v (using the lexicographic ordering).

The condition on the application of rewrite rules given by lemma 4.4 implies the next lemma. The
following definition will be helpful.

D e f i n i t i o n 4.5 Given a tree u, given any two sequences of independent addresses A = (Zl , . . . ,Z ,~) and

B = (a l , . . . , ak) of addresses in dora(u), where n < k, A is a proper cover of B iff for every Z E B, there

exists some a E A such that a is a proper prefix of Z. (That is, every pa th from the root to some Z
contains a a # Z.)

L e m m a 4.6 Let E be a set of equations, ix ,v) be a pair, where Iv[>_ 1 and x E Vat(v) , and let

(a l , . . . , crk) be the sequence of all occurrences of x in v. The following properties are equivalent.

(1) {(x ..~ v)} U D is a variable pure DAG ~soc ia ted with t~.

(2) There is some substi tut ion or, some sequence of addresses (Z l , . . . ,Zn) that is a proper cover of

(al ,ak), and some sequence (ll - r l) (ln - rn) of variants of equations from E U E -1 renamed

away from Vat(v) U Var(D), such that cr =E ~[Var(v) U Vat(D)], and c~ is the subst i tut ion associated
with the DAG system

{ (x ~ v [Z , ~- r~ Z,, '-- r .]) } U { ' (v/Z: , ~ l~) ,(V/Zn ~ 1,~/} U D ' ,

where v [~ ~ r l , . . . ,Z~ ~ r~] denotes the result of replacing each subtree at Zi in v by r~, and D r is
obtained by altering the s tructure of the corresponding DAGs in D.

Proof. We use lemma 4.4 to show that there is always a substi tut ion a small enough so that there is a

sequence of rewrite steps between a(v) and c~(x) such that for every occurrence a of x in v, some rewrite

rule is applied to a proper ancestor Z of a . The technical difficulties have to do with showing that a
variable pure proof DAG can be obtained, without using new variants of equations. []

The next l emma shows that rules (3), (4) and (5) are sufficient to eliminate a variable causing the
occur check condition.

In [12], lemma 7. His result is sufficient only for the case of ground equations.

222

L e m m a 4.7 If ¢r is an F~-unifier of the system

then, let t ing v ~ = v[,~l ~ Yl,...,~6n ~- Yn], where { Yl , . . . , Yn} is a set of new variables, using a finite num-

ber of applications of the transformations (3), (4), and (5), one can obtain a system_ S' and a substi tution

cr ~ extending ~r, such tha t # is an E-unifier of

S' = {(x, v ')} U R' U { ((v l~,) { , / Ix] , h), (r~, Y,.) ((v l ~) [¢ / x } , In), (r~, y~.)} U R.

(R t is a system in solved form involving some new variables.) The variables Yl , . . . ,Yn can now be elimi-

nated using rule (3).

Finally, we are ready to s tate the major result of the paper. The completeness of our method is

shown in the following theorem.

T h e o r e m 4.8 (Completeness) For every 0 E UE(S), there exists a series of t ransformations S =% ,~

such tha t S is in solved form, and mgu(S)lv~(s) <-E 0[Vat(S)].

Proof. Given 0 E UE(S), first we extend the subst i tut ion 0, and then construct a variable pure proof DAG

D for {0, S). We use S to dictate the sequence of t ransformations in generating S. We assign a measure

of complexity # (D, S, 0) to triples of the form (D, S, 0), where # (D, S, 0) is an element of a well-founded

set (with ordering -<), and we show tha t ff S is not in solved form, it is possibie to construct a triple

(D ' , S ' , 0 ') such that , S =% S', #(D',S' ,O') -4 #(D,S,O), and 0' extends 0. The well founded set is the

set of quintuples (M, n t , n2, n3, n4), where M is a multiset of natural numbers measuring the complexity

of 0, nl the total number of variables in S, n2 the totM number of equations in D, n3 the size of the terms

occurring in the pairs labeling root nodes of D, and n4 the number of pairs (u,u) in S. The ordering

-~ is the lexicographic ordering on quintuples, where the ordering on the first component is the multiset

ordering, and the ordering on the other components is the ordering on the natural numbers. There is a

subtlety regarding the measure M associated with a subst i tut ior/0: M is the multiset of depths of trees of

the form 0(x), for every variable x in the domain of 0 that does not belong to a pair (x, v) which is already

solved in the system S. Similarly, nl only takes into account variables that do not belong to solved pairs

i n S . []

Combining theorem 4.3 and theorem 4.8, we obtain the fact that our method yields complete sets of

E-unifiers.

T h e o r e m 4.9 The set (mgu(,~)lv~(s) ! s = ~ ~, and S is in solved form} is a CSUE for any system

S.

5 I m p l e m e n t a t i o n o f a D e t e r m i n i s t i c P r o c e d u r e

In this section, we design ~ determinist ic procedure by emphasizing a distinction implicit in our transfor-

mations, viz., whether a rewrite takes place at the root (t ransformation (4)) or not (the other transforma-

tions). Specifically, if u and v are E-unifiable, then V0 E UF~(u,v) there exists a sequence 0(u) = u0 - -+E

ul ---~z . . . ---~E un = 0(v). Each such 0 can be classified into at least one, and possibly both, of the

following two cases. (Case 1 is fur ther divided into five mutually exclusive cases based on the stueture of

the terms.)

i. No rewrite rule is applied at the root of any u~.

(a) Both u and v are compound terms~ e.g., u = f (u l , . . . , u n) and v = f (v t , . . . , v n) . Thus

e(u~) + ~ + ~ e(v~) for 1 < i < n.

223

(b) E i the r u or v is a variable; a s s u m e u is a variable.

i. v is a c o n s t a n t or a v a r i a b l e . ' ~

ii. v is a c o m p o u n d t e r m . / ~ - { T h e n [v/u] = mgu(u, v) <_E O}

A. u ¢ ~zar(v).
B. u e Vat (v) . T h u s , if v : f (v l ,v~) t h e n O(u) = f (t l , t n) for s o m e t e r m s

t l , . . , , tn.
(C) B o t h u a n d v are c o n s t a n t s , i.e., u = v.

2. So me rewr i t e ru le is app l i ed a t t h e roo t of some ui. T h u s

o(u) ~ : ~ p(5 ~---~s p(r) ~ E O(v),

where (l - r) is a va r i an t of a n e q u a t i o n in E U E - 1 , p is t he m a t c h i n g s u b s t i t u t i o n used in the

r ewr i t e s t ep , a n d no rewr i te a t t he roo t takes p lace be tween O(u) a nd p(1).

T h e fol lowing P s e u d o - P a s c a l p r o c e d u r e recurs ive ly appl ies th is c lass i f icat ion to two t e r m s , a nd it m a y be

seen t h a t it is b o t h an i m p l e m e n t a t i o n of t he set of t r a n s t b r m a t i o n s g iven earl ier a n d a n e x t e ns ion of

R o b i n s o n ' s or ig ina l a l g o r i t h m for s t a n d a r d uni f ica t ion [17] to t he case of E -un i f i ca t i on .

g l o b a l v a r i a b l e s
currDepth, ma x Dep th : integer; E : eqSet;

p r o c e d u r e E-Unifiers(u, v : t e rm);
b e g i n

fo r ma x De p th := 1 t o oo do
b e g i n

cur rDepth := 0;.
o u t p u t (E-Unifs(u, v, false, false))

e n d
e n d ;

f u n c t i o n E-Unifs(u, v : term; occur, noRootP~W : boolean) : unifSet;
v a t

unifs l , unifs2, subUnifs : unifSet; i, n : integer; 0, cr : unifier;
f : funcSymbol; y l , - . . ,Y~ : variables;

b e g i n
cur rDepth := currDepth + 1;
i f cur rDepth > maxDep th

t h e n r e t u r n (0) ; { Terminate this call and return 0 }

{ Case 1: Find unifiers ofu and v which don't involve rewriting root and collect in unifsl }

t h e n unifs l := {Id} { This includes Case 1.(c) }
e l se if]u[> 0 a n d Iv] :> 0 a n d (Root (u)=Root(v)) { Case l.(a) }

t h e n b e g i n
uni fs l := E-Units(u / l , v / l , false, false);
fo r i := 2 to Arity(P~oot(u)) do

b e g i n
subUnifs := 0;
fo r e a c h 8 E nni fs l do

subUnifs := subVnifs 12 0 o E-Unifs(O(u/i), 6(v/i), false, false);
uni fs l := subUnifs

e n d
e n d

e l se if Variable(u) o r Variable(v)
t h e n b e g i n

i f n o t Variable(u)
t h e n Swap(u, v);

i f Iv[= 0 o r (Iv[> 0 a n d (u ~ Vats(v)))
t h e n b e g i n { Cases 1.(b).i to 1.(b).ii.B }

224

~nifsl := {i~/~]};
nol~ootRW := t r u e

e n d
else beg in { Case !.(b).ii.B }

i f n o t occur { start of new occur check case found }
t h e n Mark all addresses a E Dora(v) where v(a) = u ;

i f Marked(v)
t h e n b e g i n

unifsl := O;
noRootRW := t r u e

e n d
else b e g i n

f := l~ot(v);
n := Arity(f);

:= [f (Yl , . . - , yn)/u]; { where the y, are new variables)
unifsl := 0 o E-Unifs(O(u), 0(v), true, true);

e n d
e n d {else}

e n d { then}
else unifsl := O;

{ Case 2: Find unifiers which involve rewriting u and v a¢ the roo¢ and collect in unifs2 }

ff Id E unifsl o r noRootRW
t h e n unifs2 := @
else b e g i n

i f Variable(u)
t h e n Swap(u, v);

unifs2 := @;
for e ach (1 -~ r) E EtA E -1 where I is a variable or Root(u) = Root(l) do

for e ach 0 ~ E-Uuifs(u, t, false, true) do
unifs2 := unifs2 U ~ o E-Cnifs(~(r), 0(v), false, false);

end ;

currDepth : - - cu r rDep th - I;
r e t u r n (unifsl tA unifs2)

end ; { E-Unii~ }

The procedure works roughly as follows. MaxDepth controls the m a x i m u m recursion depth in each

loop i terat ion and currDepth contains the dep th of the current call; th is a m o u n t s to a breadth-f irs t traversal

of the search space of all E-unifiers. The procedure will generate an infinite chain U~ C U2 _c U3 _c . . . of

sets of E-unif iers indexed by maxDepth. T he flag occur indicates t ha t the current cM1 is par t of a (finitely

recursing) occur check case; the ma rk i ng of addresses serves to prevent recursion pas t the occurrence of

a variable which caused an occur check: as shown in l emmas 4.4 - 4.7, we can guaran tee tha t no new

E-unifiers will be found after this imi ta t ion reaches the occur check variable.

Note tha t the flag noRootRW is set to t r u e in the recursive call in case 2 to force a lef tmost root

rewrite, and is Mso used to e l iminate a t t e m p t s to rewrite if I d is found in case I (c.f. t rans format ion (1))

or if ei ther case 1.b.i or 1.b.ii.A has occurred (c.f. t ransformat ion (3)), since in fact this is unnecessary for

completeness. T h e code contains o ther efficiency heurist ics. For example , in case 1.(a), we successively

apply the subs t i tu t ions found for the previous sub te rms to la ter ones, possibly reducing the set subUnifs

each t ime. In case 2 we a t t e m p t to rewrite non-variables to variables (ra ther t h a n the reverse) whenever

possible, and m a n y useless rewrite sequences are therefore el iminated. These measures reduce considerably

the r u n n i n g t ime of the procedure for the various levels of the search space, and allow us to find E-unifiers

for non-tr ivial problems.

225

6 Higher-Order Unification via Transformations

Anothe r t e s t amen t to the power of this representat ion for unification problems is t ha t Higher Order

Unification m a y be described in t e rms of t ransformat ions , and t ha t our resul ts concerning the el iminat ion

of the occur check suggest a means of e l iminat ing useless pa ths in the search for unifiers in a novel manner .

H~gher Order Unification is a m e t h o d for unifying t e rms in the Simple Theory of Types [2], t ha t is, given

two typed l a m b d a t e rms el and e2, f inding a subs t i tu t ion cr for the free variables of the two te rms such

t ha t or(el) = a(e2), m o d u l o a-conversion (renaming of hound variables). In this section, we ex tend our

m e t h o d to higher order unification.

We follow [8] and a s sume the s tandard definition of te rms, bound and free variables, subs t i tu t ions ,

reduct ions, normM forms, and the simple types. 7 We consider here only unification a s suming ~-equivalence,
i.e., Ax(ex) = e if x ¢ FreeVar(e). All t e rms are assumed to be expanded into 7l-normalform; for example,

a t e rm Axl . . . x~. @(el, . . . , e~) will be of some type a l , . . . , a~ -~/3, wi th /3 a base type.

D e f i n i t i o n 6.1 We now present Hue t ' s procedure cast in the form of t rans format ions on a sys tem S of

pairs of A-terms. (Assume tha t the type of the pair ment ioned in each t rans format ion is (~1, . . . , an --*/3.)

We have the following rules:

{(@, @)} U S = ~ S (1)

where el is rigid and e2 is flexible;

{{ ~'xl " X'~" @l(e~ elPl) ' '~yl Yn'@2(¢'2 e2p2) ~'1~ u s : = = : : # ; J

U { (, ~ x , . . . , , , . ~ , ~ , y , . . . y , , . ~ f) } u s, (3)
l<:i~pl

' ' . . . y , , . ~ (~ . . . ~ , , :)) ~ s, where Q where ~ = ((~,x, . . .= , , . ¢,) y , . . . y,,). ~f (~,x, . . . ~,,. F(~, . . . ~ , ,) , ,~y,
is a rigid head,

S ~ { (F, /~z I ,, .Zp~.~(Gl(Z 1 , , , Zp ,) . . . ap2 (Z l . . .Zp l)) } } u S, (4)

where the Gi axe new variables of the appropriate type, and rule (6) is immedia te ly applied to the new pair.
2 If (Axl " " x ~ ' F (e l "'" elpl), Ayl ...yn.@(e~ ...ep2)) e S, where @ is a rigid head and for some sub te rm

,~ , ~(~1) = ~ 1 . . . ~ _~ 8 ,

s ==~ { (F , z~, . . . ~,,,, ~ (H l (Z , . . . z , , ,) . . . H ,~ (~ I . . . ~,,,))) } u s, (5)

where the Hi are new variables of the appropria te type. Apply rule (6) to the new pair. Finally, we have

{ (x ,e) } u s = ~ { (x ,e) } u s{ef~], (6)

where x is a variable not in FreeVar(e). (We as sume tha t f l-reduction is performed as par t of the subst i tu-

t ion process.) Since Hue t ' s procedure uses ordered pairs, we have included rule (2). Rule (4) corresponds

to Imi ta t ion , and (5) to Projection.

Note t ha t the left te rm in the new pairs in t roduced by 4 and 5 is not in ~/-normal form; since these

are immedia te ly t ransformed into solved forms, this should cause no confusion. A pair is in solved form

7 Our notation will differ from [8] in that we will denote constants of functional type by f and variables ranging over
functions by F and G. Following Huet, lambda expressions will be represented by e, @ will denote either a constant
or a variable, and r(e) will denote the type of the term e. A term whose head @ is a free variable is termed flexible;
if @ is a constant or a bound vaxiable it is termed rigid.

226

if it is flexible-flexible or if it is of the form Ix, e} for some variable x (functional or otherwise) not in
FreeVar(e).

The procedure based on these transformations must of course account for fl-reduction, and trivial

unifiers must be extracted from flexible-flexible pairs in solved forms; the details are omitted. The in-
teresting issue here is tha t the pruning of the search space in the occur check case carries over to the

higher-order case. It is possible to generate pairs isomorphic (up to renaming) to previous pairs by a

series of transformations by (4) or by (5), since if applied to a flexible-rigid pair (el, e2), where the head

of e 1 occurs in e2, the occur check situation will be distributed into the subterms in a manner similar to

E-unification. An implementation which marks addresses of occur check variables to stop useless recursion
caused by this phenomenon would be an improvement on t tuet 's original formuiation, and appears to be

new.

7 C o n c l u s i o n

We have developed a general approach to E-unification based on transformations on systems and designed

a complete E-unification procedure which implements the search for a system in solved form° It can be

viewed as a top-down recursive procedure generalizing Robinson's recursive algorithm [17].

Much work has gone into the design of unification procedures for specialized theories [18], and into

procedures based on narrowing [4], which depends on a completion procedure. Both [10,11] and [14] have

developed procedures based on transformations on systems, but both of these depend on a completion

procedure as a preprocessing phase. We have designed a complete procedure for the general case which
improves the brute-force method of enumerating all rewrite sequences in the belief that such an approach

might reveal fundamental insights into the problem of E-unification, and that current procedures might be

able to be embedded in such a framework. For example, the syntactic theories described in [10,11], such as

commutativity, are easily handled in our procedure by allowing at most one rewrite at each address; other

special purpose algorithms are currently being studied. We have shown how higher-order unification can

be implemented, and we are examining the extension of our procedure to higher-order unification using

combinators.

We have also designed a version of the procedure taking advantage of confluence, but due to the lack

of space, we cannot discuss it here. Our procedure "guesses" the confluence point and alternately tries

to make progress from the left and the right; it reduces the search space considerably, since only oriented

equations need to be tried (as opposed to all equations in E U E -1 in the general case).

We are also examining a generalization of Paterson and Wegman's unification closure algorithm [15],

which amounts to using structure sharing [1] to avoid explicitly applying substitutions and which maintains

the solved systems in a triangular form; since backtracking may occur, a trace stack (as in Prolog) must

be stored. (An implementation using this technique is being written.)

In ~ d i t i o n to defining more closely the relationship of our method to previous procedures, we axe

currently examining a fundamentally new form of E-unification, termed Rigid E-unification, which has

come up in the study of equational rantings [6]. This method assumes that once equations are used,

they axe "frozen" with their substitutions, and can not be used again with another substitution (and are

essentially ground thereafter). We conjecture tha t rigid unification is decidable, and are studying the

application of the methods of this paper to its solution. Several decidable subcases have been isolated and

are being studied using the implementation described in this paper.

Acknowledgment: We wish to thank Stun Raatz for much helpful discussion concerning both the

general content of this paper and its presentation.

227

8 R e f e r e n c e s

[1] Boyer, R.S., Moore, J.S, The Sharing of Structure in Theorem-proving Programs, Machine Intelle-

gence 7:101-116 (1972).

[2] Church~ A., A Formulation of the Simple Theory of Types, Journa/of Symbolic Logic, 5:56-68
(1940).

[3] Fages, F. and ttuet, G., Complete Sets of Unifiers and Matchers in Equational Theories, TCS 43(2,3),
pp. 189-200, 1986.

[4] Fay, M., First-order Unification in an Equational Theory, Proc. 4th Workshop on Automated
Deduction, Austin Texas, 1979.

[5] Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Proving. New York:
Harper and Row (1986).

[6] Gallier, J.H., Raatz, S., and Snyder, W., Theorem Proving using Rigid E-Unification: Equational
Matings, submiited to LICS 1987.

[7] Herbrand, J., Sur la Th6orie de la D~monstration. In: Logical Writings, W. Goldfarb, ed., Cam-
bridge, 1971.

[8] Huet, G., R6solution d'Equations dans les Langages d'Ordre 1,2,... ,w, Th~se d'Etat, Universit6 de
Paris VII, 1976.

[9] Huet, G. and Oppen, D. C., Equations and Rewrite Rules: A Survey, in: R. V. Book (ed.), Formal
Languages: Perspectives and Open Problems, Academic Press, NY, 1982.

[10] Kirchner, C., M6thodes et Outils de Conception Systematique d'Algorithmes d'Unification dans les
Theories Equationnelles, Th&se d'Etat, Universit6 de Nancy I, 1985.

[11] Kirchner, C. Computing Unification Algorithms. 1st IEEE Symposium on Logic in Computer Sci-
ence, Cambridge, Massachusetts, 206-216, June 1986.

[12] Kozen, D. Positive First-Order Logic is NP-Complete. IBM Journal of Research and Development,
25(4), 327-332, 1981.

[13] Martelli, A., Montanari, U., An Efficient Unification Algorithm, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 2 (April 1982), pp. 258-282.

[14] Martelli, A., Moiso, C., Rossi, G.F., An Algorithm for Unification in Equational Theories, Third
IEEE Symposium on Logic Programming, Salt Lake City, Utah~ pp. 180-186~ September 1986.

[15] Paterson, M.S., Wegman, M.N., Linear Unification, Journal of Computer and System Sciences 16
(1978), pp. 158-167.

[16] Plotkin, G., Building in Equational Theories, in: Machine Intelligence 7:73-90 (1972).

[17] Robinson, J.A., A Machine Oriented Logic Based on the Resolution Principle, JACM 12 (Jan. 1965),
pp. 23-41.

[18] Siekmann, J. H., Universal Unification, Proc. CADE-7, Napa 1984, 1-42.

