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Abstr-act 

In "dais paper, we propose a new and complete method based on narrowing for solving equations in 

equational theories. It is a combination of basic narrowing and narrowing with eager reduction, 

which is not obvious, because their naive combination is not a complete method. We show that it is 

more efficient than '.he existing methods in many cases, and for that establish commutation properties 

on the narrowing. It provides an algorithm that has been implemented as an extension of the REVE 

software. 

t Introduction 

Narrowing is a general method to solve equations in equational theories, that was introduced by Slagte [20], 

and studied by Fay [2, I] and Hullot [9, 8]. It needs a convergent set of rewrite rules equivalent to the 

considered equational theory, and returns a complete set of solutions (also called unifiers), i.e. a basis of 

the set of all the solutions. But this method has drawbacks: it is inefficient and often does not terminate. 

Implementations are described in [17, 10]. Narrowing has some similarities with linear resolution principle 

of the Prolog language, and is used in logic programming language like Eqlog [3] or [21]. 

Let us describe wha~ narrowing is. Assume that we have a convergent set of rewrite rules. The narrowing 

of a term g consists of two passes. The first one instantiates l so that it becomes reducible by a rule. The 

second one reduces it by this rule. The resulting term ii may he reducible into 12 without any further 

instamiation. If so, t;~ is reduced until one gets a irreducible term (said in normal form) in. The relation that 

transforms ~ into tl was called narrowing in [8, 10], and we call the transformation of l into in normalized 

narrowing. If one considers all the narrowing derivations issued from I (the narrowing tree), the 

intermediate terms q ,  t2 are nodes from which edges are issued, while they do not appear in the tree using 

normalized narrowing. So, the narrowing gee contains the normalized narrowing tree. 

in order to compute solutions of an equation l = t '  modulo a term rewriting system, one computes the 

narrowing derivations (normalized or not) issued from ~ = t ' ,  = being considered as a binary function 

symbol, and check at each node whether the corresponding equadon has a syntactic solution. If  the term 

rewriting system is confluent and noetherian, all the solutions are found by building the whole narrowing 
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tree (which can be infinite). 

In order to get a smaller tree, it is obviously better to use the normalized narrowing relation. Another idea 

[8] consists of using only narrowing at some occurrences called basic. This method is called basic 

narrowing, and gives another tree included into the narrowing tree. 

Our idea is to mix the two previous relations, in order to further reduce the tree. The simplest way (we will 

say naive) is to consider their intersection. Unfortunately, the set of solutions that it provides is not always 

complete. Therefore, we had to build another relation in a non trivial way that preserves the completeness 

of the solution set. It use at normalization time a new computation of the basic occurrences based on the 

residual notion [6], that we wilt call weakly basic. 

In addition this method gives a tree smaller than the one obtained with the normalized narrowing, and 

smaller than the one obtained with the basic narrowing in many cases. It can be implemented and gives a 

unification method that is more efficient than the previous ones. 

tn section 2, we introduce the basic concepts and definitions, and recall ~ existing results. In section 3, 

we consider the naive combination of normalized and basic narrowings, and using an example, show that 

this method does not generate a complete set of solutions. Therefore, we propose in section 4 a new 

combination of the two relations that provides all the solutions. We compare it with the existing methods in 

section 6 and for that, we establish commutation results about the narrowing relation in section 5. Details of 

implementation are described in section 7. The various narrowing relations used in this paper are 

summarized in the appendix. 

All proofs and many examples can he found in [19]. 

2 Definitions and existing results 

In this section we introduce the concept of narrowing and recall that it provides a complete method for 

solving equation in a theory described by a confuent and noetherian term rewriting system. The following 

notations and properties are valid for the whole paper. They are consistent with [7, 11]. 

Let F be a set of symbols, X be a set of variables. A term is a partial applieatioa from N~- (the free 

monoid on N+ whose elements are called oeetm-enees) imo F U  X that respects the symbol arities. 

T ( F, X ) is the set of terms build on F and X. For each tE T ( F, X ) ,  D ( t ) is the set of occurrences of 

l, O ( t ) is the set of non variable occurrences and V ( l ) is the set of variables that occurs in t. t is said 

linear if each variable of t occurs once in t. 

An eqm'~lion s = l is a pair of terms, a rewrite rule s o  t is a directed pair of terms satisfying 

g ( t ) ~ V ( s ) .  t [u  ~ t ' ]  is the term obtained from t by changing the subterm of t at the occurrence u by 

t '. An equational theory A is a set of equations and one writes =A the smallest congruence induced by A. 

A term rewritiQg system R is a set of rewrite rules and --, is the rewriting relation derived from R and 

--, * its transitive closure. A sequence of rewriting steps is called a derivation. A term t is said normalized 

if it is not reducible by -.*. and the term t '  is a normal form of t if t--, * t '  and t '  is normalized, t '  is also 

denoted t$ .  R is confluent if for any term t, t ~ * t l  and t--,*/2 implies there exists a term t '  such that 

II --' * t '  and t2 " * t ' .  R is noetl~rian if the relation .~. is noetherian. R is interredtKx~ if for any rule 

g--,d in R, d is normalized, and g is normalized with respect to R - { g - , d } .  One says that R is 

convergent if it is confluent and noetherian, and canonical if it is also interreduced. R is regndar if for all 

rule g--, d in R,  V ( d )  = V ( g ) .  = n is the relation defined by = n = ( oLI~ ) * where ,,- is the rewriting 

relation obtained by reversing the rules of R. 
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Sub~itulions cr are defined as endomorphisms on T ( F, X ) that extend mappings from X to T ( F, X ) 

with a /-mite domain D ( ct}. A substitution cr is denoted by { ( x l  / t l )  . . . . .  ( x n / l n )  }. 

We write -~ the subsumption quasi-order ing on T ( F , X )  defined by: t_~t" iff t ' = c r ( t )  for a 

substitution c~ (called a match from ~ to t ' ) ,  Composition of substitutions o and 9 is denoted by a .  9, 

then ( or. p) (~) : a ( p ( t )  ). 

Given an equational theory A, two terms ~ and t '  are said to be A-unifmble  [15, 5] iff there exists a 

suNtitution cr such that o - ( t )  =AC~(t'}. • is also called an A-solut ion of the equation t =  t ' .  Given a 

subset V of X, we define cr-~Aa '[V] iff c r ' = a c r  ", cr[V] for some substitution o " (the notation [V] 

means that the formula is valid for any variable in V). If V = X, V is omitted. I- is a complete set of A -  

uffff~-s of l and t" away from W containing the set V of the variables of t and t" iff: 

for all ~ E V, D ( a ) c_ V and I ( o ) f'l W = ~ (The goal of this technical restriction is only to 

avoid conflict between variables) 

* for atl c rEF,  cr(~)  =ACr(t ')  

* for all unifiers cr ' ,  there exists crEI- such that ~<2A cr '[V]. 
In addition g is said to be minimal if it satisfies the further condition: for all g and cr 'E r ,  

a n n  a '  implies a =  cr '. 

An A-unif icat ion algorithm is complete if it generates a complete set of A-unif iers .  Note that this set may 

be infinite. 

We now give a very general definition of narrowing by introducing any fixed mapping ~ such that 

c .~, • One wilt say that a givee derivation s ~ * s '  is c o m ~ b l e  with ~ iff s ~ s  '. 

Def in i t i on :  We say that t is narrowable to t' at the occurrence n, using the rule g - ,  d and with the 

substitution cr iff 

® tiu and g are unifiable by the most general unifier c~ 

e tl = o ' ( t )  [u , -O ' (  d ) ]  

We call this relation narrowing and denote it l-~-*lu,g~cl, o] t '  A sequence of narrowing steps is called a 

o a r r o v ~ g  derivation. 

This definNon is generic because by choosing the mapping ~ one obtains different narrowing relations, in 

particular the two followings: 

® If ~ is the identity ~en  ~ = ~'. We have the relation called narrowing by Hullot[8], and that we 

will call simple aarrowhlg or S-nar rowing  and we write t-~lu,g-,a, ~l t ' .  A sequence of 

S-hart 'owing steps is called a S-nar rowing  derivation. 

* If ~ is the normalization mapping then t' is in normal form. We have the relation called 

narrowing by Fay [2]. We propose to call it n(mmdLxed narrowing or N-nar rowing  and we 

denote it by 
-"~'~lu,g~d, o'l t '. A sequence of N-nar rowing  steps is called a N--Barrowing derivation. 

With these notations we have: 

L if" - ~[u,g~d, ~l ' ' t  o [t-"-.lu,g~d,f.Tlltandt'= ti~ 1 

C -%, -~.~, C --~...** 
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If a is a match from g to t]u, the step t - ~ q  is in fact a rewriting step, 

In the following we suppose the mapping ~ fixed, so that the narrowing relation - ~  is fixed. 

The narrowing relation provides a method to compute a complete set of unifiers of two terms modulo a 

convergent term rewriting system. The method consists in building all the possible narrowing derivations 

issued from to = l0 and to collect the corresponding narrowing substitutions, until we obtain equations 

l, = l~ such that In and t~ are unifiable. The unification problem in the equational theory is then reduced to 

the narrowing together with the standard unification of terms. 

In order to iterate the narrowing process on the two terms, = is considered as a new operator of the 

equational theory, and the process starts with the term tO = t0, It is obvious that if to = to - ~ *  l then t is 

of the form li = ti. 

The following result has been proved by Hullot [9] for the S-narrowing, by C. and H. Kirctmer [12, 13] 

and Rtty(et al) [18] for any nurrowiag relation. 

Theo rem:  Let R be a convergent term rewriting system, to and t0 be two terms. The set of substitutions 

¢r such that 

• there exists a narrowing derivation issued from to = tO 
to = to-~-*l ozlt i  = ti-~--,...-~--~[ o~] t ,  = t,~ such that tn and t~ are unifiable by the most 
general unifier ~ and that ~ .  cro...o 1 is normalized on V ( tO = tO ) 

• o - =  ~ • O 'n . . .O  1 

is a complete set of R -unifiers of to and t~. 

Basic S-narrowing was defined and studied by HuUot[9]. It consists of torbiding a reducxion at an 

occurrence brought by the substitution ha a previous step. 

Oefinition[Hullot]: Given the deriwltion 

tO~luo,go~do, croltl~ . . . .  lu~_~,g~_l--,d~_bcr~_llt n ( 1 )  

and U0,..., U, sets of non variable occurrences of to,,.., tn respectively. One says that the derivation is 

based on U0 iff for all i 

utC Ui 

= [ u ~  - (~c tr;/u~___ v}] u{u~. ~ / ~ o ( a , ) }  Ui+, 

We write Ui+ ~ = B ( Ui ) ,  or U i~  =: B ( ti+ ~, ( 1 ) ) where (1) specifies which derivation is considered, or 

more simply Ui+,= B (ti+~) if it is not ambiguous. One will say Ui+l is the base of ti+t. The 

occurrences that belong to UO,..., Un are said basic. 

If it is not ambiguous we wil ! say more simply ttmt this derivation is basic, or that this is a basic 

derivation. In the same way, we define the basic S-narrowing derivations. 

Remark: B is monotonic i.e. Uc_U ' implies B (  U ) C _ B ( U ' ) ,  and preserves the closure by prefix i.e U 

is closed by prefix implies B ( U ) is closed by prefix. 

The basic method consists in building all the S-narrowing derivations issued from to = /~  and based on 

O(tO = lo), 
Theorem[Hullot]: The previous theorem is still valid when we restrict to S-narrowing derivations based 

on uo= o(~o= ~). 
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One of the interests of the basic S-narrowing is its termination property. 

T e r m i n a t i o n  property[Hutlot]: If  all the basic S-narrowing derivations issued from a right hand side 

of a rewrite rule terminate, then all basic S-narrowing derivation issued from any term terminates. 

3 The naive basic narrowing 

Actually, the "basic" concept is only used for the S-narrowing, and we are loading to extend it to all the 

narrowing relations (including the N-narrowing).  Let us recall that a narrowing step is formed by a step of 

S-narrowing followed by steps of rewriting. The first idea that comes to mind is to define the basic 

occurrence sets along the rewriting steps as Hullot did, i.e. by using the mapping B. But this method misses 

some solutions. 

Example 1: Consider the canonical term rewriting system R ,  

/ g ' \  r l it> / f \  / ' \  r2 ' '  x' i ---C-it> x' 

X' X' 

x ! ! ! 
Let ~= gi (D~ ( Y , Y ) , z )  and sup~se one wants to solve modulo R the equation t =  0. The "%" symbol 

means that the corresponding occurrence is not basic, t = 0 is considered as a term whose top symbol is =, 

The tree of basic S-narrowing is formed by the branches (1) and (2): 

t = /g~O ~ _sift. 

7 
Y Y Y Y 

w 

1, r l  
t~ %h=O 

i 
Y 

(1) 

f=O .l, r3, y/7 /\ 
xx h 

i 
O/oh 

I 
x 

x=O (2) 

The branch (2) gives the substitution cr= (y/h(O),z/g2(h(O),h(O))  ) which is the unique 

solution. 

The leaf of the branch (1) can not be narrowed at a basic occurrence, and since h ( y )  and 0 are not 

unifiable this branch does not give a solution. 

If one uses the naive basic N-narrowing,  the term s disappears from the tree, and with it the branch (2). 

Therefore the solution wilt not be found by this method, 

Nevertheless in order to find c,  our idea is to compute on a larger set of basic occurrences during the 

rewriting steps. This computing will be said weakly basic, For it the term h ( y ) = 0 can be narrowed into 

x = 0 by the rule r3 using the substitution ( y / h ( x ) ) which gives the solution tr. 

Another difficult3,' is that the rewriting steps do not respect the basic occurrences, 

Example 2: Let R be the canonical term rewriting system that contains the associativity rule: 
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R = { f ( x , f ( y , z ) ) - - , f ( f ( x , y ) , z ) } .  Let us apply basic N-narrowing on the term 

f (  f ( y ~ x ' )  , x ' ) .  One possibility is: 

f ( f ( y ' x ' ) , x ' ) - ~ , i ~ : . a l t :  = f ( f (  9 6 f ( y ; f ( y , z )  ) , y ) , z )  
with ~ =  ( x ' / f ( y , z ) , x / f ( y ' f ( y , z ) ) )  

The occurrence pointed out by 96 is the unique occurrence of t on which the rule can be applied. Since this 

occurrence is not basic it is not possible to normalize t by a basic derivation. 

In the following, we will define a property on basic occurrence sets that will guarmatee that basic 

normalization is possible. 

4 The basic mowing  

The aim o f  the following definition is to characterize the sets of basic occurrences that allow to find a 

solution. We will say that a set of occurrences U is sufficiently large on a term t if all the subterms that 

correspond to the non U-occurrences are normalized. 

DefmifiOB: Let t be a term, U a set of occurrences of l, we say that U is waff~-featly lm'ge on t i f f :  

( uE D ( t ) and u¢. U ) ~ tlu is in normal form. 

L e l n m a  1: Let to be a term, U0 a set of occurrences of to sufficiently large on to. Then all the derivations 

issuing from to and following a bottom-up strategy to --, tl --, - .  --, in are based on U0. I f  we denote by 

Uo ..... Un the sets of basic occurrences then for all 0 < i < n, Ui is sufficiently large on li. 

Proof: By induction on the size of the derivation. 

If n = 0 the terama obviously holds. If  the property is true for i ,  Ui is sufficiently large on ti, then the step 

li "[uJ,Si--,d~, O~l ti+, satisfies uiE Ui. Since the strategy is bottom-up, the match cr i is normalized, and the 

non basic occurrences of li+ ~ are normalized. • 

C o r o l l a r y  1: If U0 is sufficieady large on to, there exists a derivation based on U0, leading to the normal 

form of to and such that for any term ti in this derivation, the set Ui of the basic occurrences of ti is 

sufficiently large on ti. 

But, there exist basic derivations that do not preserve the sufficient largeness property of the occurrence 

sets. For instance, consider the rewriting system of the example 1, the term 

t = f ( h ( h ( x ) ) ,  h ( h ( x ) ) i ,  and the occurrence set U = { ~, 1, 1 t ,  2, 21 }. U is sufficiently large on t, 

l~ I  ~.n] t '  = h ( h ( x ) ) and B ( t '  ) = 0 .  Since t '  is not normalized, B ( t '  ) is not sufficiently large on 

We must define a new notion of basic derivation, that always preserves the sufficient largeness property. 

For that, we introduce the antecedent notion that is (nearly) the dual of the residual notion introduced by 

Church for the h -ca lcu lus  and by Huet and Levy [6] for lef t - l inear  term rewriting systems, It 

characterizes the fact that along a rewriting step, a subterm can be preserved. 

Def in i t ioB:  Let t-'lu,g-"d, cq t '  be a step of rewriting and v 'E  D ( t '  ) .  We say that the occurrence v of 

t is an antecedem of v ' iff 

v = v '  and are not comparable to u 

or 

there exits an occurrence p '  of a variable x in d such that 



2 3 4  

V ' =  ~ , p ' .  w 

v = u.  p ,  w where p is an occurrence of x in g. 

u t = , g ' > d  

We extend this definition to a derivation by transitive closure of the rewriting relation. We say that v '  is a 

residual of v iff v is an antecedent of v ' .  

Remarks: With the notations of the previous definition we have: 

• t ' / v ' =  tlv 

• v '  may have no antecedent if v '=  u. p" with p ' E  0 ( d )  or if v '<  u, 

® v ~ may have several antecedents if g is not linear. 

Def in i t i on :  Given the derivation 

~'*[u0.go-'abl ~l "* .--- 'qu,- ~,g,- t-~d~-~l t~ 

and U0 . . . . .  Un sets of non variable occurrences of to,-.., In respectively. We say that this derivation is 

weakly based on U 0 iff for all i 

• uiEU~ 

• u~,~= ~[u~- {veV~/ui_~v}] u{u~. v/veO(di)} 
U {rE 0 ( h+ ~ ) / v = ul .  w, wf~ 0 ( dl ) and all antecedents of v in Li are in Ui} 

We write Ui+~ = W B ( U i ) ,  Ui+~ = W B ( l i . , , ( l )  ) or more simply Ui+~ = WB(t i+~)  if it is not 

ambiguous. One witl say Ui + ~ is the base of Ii ÷ ~. The occurrences that belong to Uo,. . ,  Un are said basic. 

If it is not ambiguous we will say more simply that this derivation is weakly basic, or that it is a weakly 

basic derivation. 

Remark: WB [s increasing i.e. U C - U" implies WB ( U ) C_ WB ( U" ) ,  and preserves the ctosure by prefix 

i.e U is closed by prefix implies WB ( U ) is closed by prefix. 

This definition differs from Hullot's one by addition of the last line, i.e. the occurrences under di may 

belong to Ui+ ~. Therefore B ( Ui ) c_ WB ( Ui ). 

In practice the set U0 is supposed to be closed by prefix, and since the weakly basic reduction preserves 

this property then all the Ui are closed by prefix. Therefore we can get a new and simpler definition of 

WB by writing: 

° Ui. 1 = {rE 0 ( ti+ ~ ) / all the antecedents of v in ti are in Ui} 

In the following we will use this definition. 

The interest of the weakly basic derivations is pointed out in the following lemma, that emphasizes the fact 

that the notions of weakly basic derivation and sufficient large occurrence set are very linked. 
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L e m m a  2: Let t o -, * tn be a derivation, and Uo be a set of occurrences of to sufficiently large on to. 

Then to --, * in is weakly based on U0 and the set Un of basic occurrences of tn is sufficiently large on to. 

Proof: By induction on the length n of the derivation. 

tf n = 0 the lemma obviously holds. Assume to --, * to- l is weakly basic on Uo and the basic occurrence set 

Un - t of tn - 1 is sufficiently large on t n -  ~. T h u s  the  reduction occurrence of t o -  I "* to must be in Un ~ ~, 

Let Uj, be the basic occurrence set of tn and  vaE D ( t o )  such that vn~ Un. From the defimtion, there exists 

at least an antecedent v n -  j of vn in to- ~ that does not belong to Un ~. Therefore ln /Vn = in-  ~ [Vn-  x which 

is normalized by hypothesis. • 

We can now define the basic narrowing with sufficient largeness as a step of basic S-narrowing such that 

the sufficient largeness property is preserved, followed by a derivation compatible with 7.  The previous 

lemma ensures that this derivation is weakly basic, and that the method will be complete. 

Defmi t io i l :  Let to be a term, U0 an occurrence set of to, the step of narrowing tO-~- - , tn  (which is 

equivalent to t o - ~ t t ~ l n  i.e. t o - ~ t l - - ,  ...--, in) is said based on U0 with sufficient largeness or S L -  

based on U0 iff there are occurrence sets UI, ..., U, such that: 

a) t o - m t l  is based on U0 and UI = B ( U 0 ) ,  

b) Ul is sufficiently large on il, 

c) For all iE{1 . . . . .  n - 1}, Ui+~ = W B ( U i ) .  

We extend this definition to a narrowing derivation and we wilt say that a narrowing derivation is S L -  

based on U0. If the set U0 is not specified we will say more simply that this narrowing derivation is S L -  

basic, or that it is a SL-bas i c  narrowing derivation. 

This definition prunes the narrowing tree because all the nodes that do not satisfy the sufficient largeness 

property are cut. As the narrowing definition, this definition is generic and can be instanciated in two 

particular cases: the S L - b a s i c  S-narrowing when ~ is the identity, and the SL-bas i c  N-nar rowing  

when ~ the normalization mapping. 

The SL-bas ic  S-narrowing and the basic S-narrowing (definition from Hullot) are not the same relations 

because of the sufficient largeness property imposed by the point b) in the previous definition. The S L -  

basic S-narrowing relation is included in the basic S-narrowing relation. 

Any SL-bas ic  narrowing relation provides a complete method for unifying in a convergent term rewriting 

system. 

T h e o r e m  (completeness ixolx~y):  Let R be a convergent term rewriting system, to and to be two terms. 

The set of substitutions cr such that 

• there exists a narrowing derivation issued from to = i t  and SL-based  on O ( t o  = l~) :  

to = 10-~-,[ cr,] q = t ~ - ~ - " + ' - ~ - ' l  to] in = in such that in and tn are unifiable by the most 
general unifier ~ and that ~ .  cr . . . .  cr I is normalized on V( to = to) 

• ~ =  ~3 , O n . . . O  1 

is a complete set of R-uni f ie r s  of to and to. 

Proof: See [t9]. 

Remark: This result still holds if the definition of basic S-narrowing is changed in l e f t - t o - r i g h t  basic 

S-nar rowing defined as in [4], see also [19]. 
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5 Commutation of  the narrowing relation 

in order to compare the various narrowing relations (next section), we mast first study ~ commutation of 

the S-narrowing relation with the help of the antecedent notion. 

Commutation results are established for the rewriting relation [6] by using the residual notion and for the 

S-nar rowing relation by Herofd [4] in the restricted case where the commuted occurrences are not 

comparable. We establish a more general result by using the antecedent notion. 

We first extend the antecedent definition on a S-narrowing step. 

Def'tnJtion: Let t -%[u,g~O,  crl t '  be a step of S-narrowing.  Let v '  be an occurrence of t ' .  We say that 

v i s a n ~ n t o f  v ' i f f  

v is an antecedent of v '  in the r e ~ n g  step o r ( t )  "lu,g-.,a] t" 

* v6D(~), 

Suppose s -%lp ,g - , o ,  e l  ll- ~-'~lq J"*r, 0l  l/ ( 1 ) .  One could want to commute the two steps by applying first 

the rule 1 ~ r and second g--* d, If the subterm t[q already existed in s i,e. q admits at least an antecedent 

in s, the idea consists for applying t-* r in s at all the antecedents of q. 

In the following example p is the occurrence of application of the first rule and q those of the second rule. 

Example 3: Let the rewriting rules r t, ~ be as below and consider the two steps of S-narrowing:  

f r_____!__1 ~. h g r2 ,# 0 

/ \  / 1 \  I 
y' y' y' y' y' 0 

/ X p=e,r ,y x / [ ~  q=2,r2,x/O / I  1 
g g g g g g 0 g 

xl f I 1 | 
x g x k 

Here q = 2 and admits two antecedents Pi = 1 and P2 = 2. Then the two steps commute into three steps: 

f ~__.~ f .~_A___--~ f -'~ u'=h 
/ X pl=! , r2,x/O/ &p2=2, r2 ,y /O/  X e, rl / 1 ~  

g g 0 g 0 0 0 0 0 

x y Y 
The leaded terms u and u '  are not equal because Pl and ,c,z do not admit only as residual q but also qt = 1 

and q2 = 3. Thus u.-*[l,r2] "*13,r2] u '. 

Others examples and the proof of the following result can be found in [t9]. 

Notations: In order to simplify the notations, we denote the derivation 

u--, *[q~,l-~r] ul -'* --,-*[qn,l-~r] Un "~ U '  by u-~ *lqb....q,,l-*d u '. 



237 

~ r c m  (commutation property): Let R be any term rewriting system and 

s-~--~[p,g-~d, Ol t-%[q,l~r. Ol u ( I )  

be two steps of S-narrowing issued from s such that 

• q admits antecedents in s (we denote them by P0 . . . . .  Pro- l ) ,  

• O.  a is normalized on V(s), 

• V ( r ) = V ( / ) or g is linear (and in this case m =  1). 

Then (1) can be commuted into: 

S-~lPo,l-or, O~lt~-'--,...-~lp~,_~,l-,r,O'm_l]t'm-~lp,g-.d. Cr,lU' (2 )  

such that 

• a ' .  O;~_,...O~=O. cr [V(s ) ]  

• u~  *[q ~,..,,q.,l~r] u" where ql . . . . .  qn are the brothers of q i.e. the residuals of P0 . . . . .  Pm- ~ in t. 

Remark: If d is linear or u is normalized, or p and q are not comparable, then u '  = u. 

6 Comparison o f  the narrowing relations 

6.1 S L - b a s i e  S - n a r r o w i n g  vs  basic  S - n a r r o w i n g  

Property: SL-basic S-narrowing is strictly included into basic S-narrowing. 

Example 8: Consider the canonical term rewriting system 

R =  {rl:  f ( g ( x ) , r )  --,y, t2: h ( g ( x )  ) --, x, r3: rl ( x , x )  ~ x }  

We want to solve modulo R the equation fl (0,  f (  x ; h  ( x ' ) )  ) = 0. We compute all the S-narrowing 

derivations: ("%" symbol means that the corresponding occurreuce is not basic) 

f l (O, f (x :h (x ' ) ) )  =O-'-.[|.2.r~.x./g(x),y/h(g(x))lrl(O,~h(g(x))) =0 (1) 

--~'11 o2,r2,/d] fl (0 ,  X) ----- 0--'--~11,/-3,X/0] 0 = 0 (2 )  

and 

/'1 ( O , / ( x : h ( x ' ) )  ) = O-*'-*[l.2.2,r~.x'/g(x)] t"1 ( O , / ( g ( x ) . x ) )  =0  (3) 

- ~ l l . 2 , , , , l d l [ l ( O , x )  = 0-%ll,r3.x/01 0 = 0 (4 )  

The two branches give the solution x '  / g ( 0 ).  One of them is of course useless. By using basic S -  

narrowing there are only branches (1),(3)+(4); by using SL-basic S-narrowing there are only the branch 

(3) + (4) because the term ft (0,  ~6 h ( g  ( x ) ) ) contains a nob basic subterm (pointed out by "%") that is 

not in normal form. 

6 .2  bas ic  n a r r o w i n g  vs  basic  S - n a r r o w i n g  

In this paragraph, we consider basic narrowing rather than SL-basic narrowing because the sufficient 

largeness property does not interfere. It is difficult to compare basic narrowing with basic S-narrowing. 

Indeed, if we consider a basic narrowing derivation, we can transform it into a S-narrowing derivation by 

considering the rewriting steps as S-narrowing steps. But the rewriting steps use a weakly basic 

computation of the basic occurrences and then the resulting S-narrowing derivation would not be 

necessarily basic, but only weakly basic. 
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L,et to -  ~ *  ~n ~ahis weakly basic S-narrowing derivation. Suppose the beginning to-  ~ * ti ~ basic, and 

~o-%*ti+~ is not basic. Therefore in the step ti-~lu~,g,-,es, Cril,S+~, us satisfies niEW~(ti ) and 

uif~B ( ti ) .  From the definitions there is a step tj.-~luj,gj-,dj, crjl tj+ ~ with j ( i that creates the difficulty, 

i.e. the antecedent vj of ui in ~j satisfies v i E B ( t j )  and its antecedent vj+i in U+~ is so that 

In order to transform a weakly basic S-narrowing derivation into a basic S-narrowing derivation, the idea 

consists of applying the nile gi -" di not on ti,but on tj at the occurrence vj, which belongs to B ( tj ) .  This 

leads to commute the step ti - m l i +  ~ with the S-narrowing derivation t j - m * t i .  

This property is a consequence of the commutation property. 

Theo rem:  Let R be a right-linear term rewriting system, ~o be a term and U0 an occurrence set of b. 

We assume moreover R is regular or left linear. 

If the narrowing derivation b -~--, *{ t~ t ~. with 0 normalized on V ( t o )  is based on U0, then there exists 

a S-narrowing derivation to-'--, *[ 01 tn using the same rules and based on U0. 

Therefore, in some cases the basic narrowing is included in the basic S-narrowing. It will then be more 

interesting [o use the basic narrowing, and particularly the basic N-narrowing.  

Example 4: Consider the example used for the naive basic narrowing (example t): 

r l  t ~ j ~ r2 ~ x' I~ 
, ,  \ / \  / ?%, !, x, x, !, 

x' y' y' 

= i  . <. 
g Z Z Y Y 7 7 

/ \  I I 
Y Y Y Y 

- ' ~  X' 

~ A / V L . _  ~ °/oh:O ~ x=O 

Y × 

(1) 

-•- 
~ f=O - - - I~ f=O ----~x=O (2) 

x h 
I x x 

%1 
X 

By using basic N-narrowing one oly.ains the branch (1). One can consider it as a S-narrowing derivation, 

but then the last step of (1) is not basic, it is only weakly basic. However, by commuting (1) into (2) one 

obtains an equivalent basic S-narrowing derivation, 

6 .3  S L - b a s i c  N - n a r r o w i n g  v s  S L - b a s i c  S - n a r r o w i n g  

Under gcmd hypothesis, SL-basic  N-narrowing is included in SL-basie  S-narrowing, more precisely: 

Prolxxty: Let R be a right linear term rewriting system. We assume 

* R is left linear or for each r u l e l ~ r o f R ,  V ( r )  = V ( I ) ,  
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• R has no critical pair. 

Then if t 0 - ' ~  *[ 0] tn by a SL-bas ic  N-narrowing derivation, then there exists a SL-bas ic  S-narrowing 

derivation to - ~ ,  *[ 0 "] tn such that 0 ' -- 0 [V (/o ) ]. 

7 Implementation 

We have proved in the previous section that the SL-bas ic  N-narrowing relation is the smallest narrowing 

relation provided some conditions are satisfied. We have implemented it within an experimental version of 

the-rewriting software REVE [t4] as a modification of the procedure NARROWER [17]. In order to mark 

the basic occurrences, we have bound a boolean to each occurrence of term, that we call occurrence 

indicator. Now our implementation does not check the sufficient largeness property and considers that an 

occurrence is basic if the most left antecedent is basic. Let us describe what wi~ be the final 

implementation. 

Compatation of the basic ocom-ence sets: let us consider a step of weakly basic reduction t - - , lu ,g- - ,d  ' o] t '  

and let us show how the basic occurrences of t '  are computed, We have t ' =  L [ u , - - a ( d ) ] .  Let x be a 

variable of d that appears at occurrence v ' .  x appears n times in g at occurrences Vl, ..., vn. When the 

matching process builds the occurrence w of cr ( x ) ,  the occurrences u.  v l .  w, .... u .  vn. w of l are 

examined, and the occurrence indicator of w in g ( x )  is set to the boolean product of those of 

u. vl • w . . . . .  u.  vn • w. When g is linear this computation is not more costly than a basic computation. 

Test of the sufficient largeness property: consider a basic S-narrowing step t-~[u,g--,d,  tr] t ', In order 

to check whether the basic occurrence set U '  of t '  is sufficiently large, before building t '  we cheek that 

the substitution c~ is normalized on [ V ( t )  U V ( d )  1. If it is the case, we build a ( t ) for building t ' ,  and 

verify that cr ( t ) is normalized at all the non basic occurrences of t, Actually, we only test occurrences 

appearing below some depth, since we know that t is in normal form at the non basic occurrences. 

Otherwise, the subterms at the non basic occurrences of t '  would be normalized, which is further more 

expensive, therefore this test improves the efficiency. 

8 Conclusion 

As languages like Eqlog and Slog show, narrowing is a fundamental mechanism for languages that capture 

both logic and functional programming concepts. The new narrowing relations introduced in this paper allow 

us to expect more efficient implementations. 

Currently, we work in three directions: to make experiments, to study the termination of these new 

relations, and to extend them to equational rewriting systems. 
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Appendix: denorrfination of the various narrowings 

A reduction is a sequence of rewriting steps, a normalization is a reduction that leads to the normal form. 

narrowing relation definition denoted in the literature by: 

simple narrowing or 
S-narrowing (denoted by 
- ~ )  

narrowing (denoted by 
- -..,) 

normal narrowing or 
N-narrowing (denoted by 
- - ~ )  

weakly basic S-narrowing 

basic S-narrowing 

basic narrowing 

basic N-narrowing 

SL-basic S-narrowing 

SL-basic nm'rowing 

$L-  basic N -  narrowing 

more general instaatiation and reduction by 
one rule 

step of S-narrowing followed by a given 
reduction 

step of S-narrowing followed by a 
normalization 

S-narrowing with respect to occurrences 
obtained by a weakly basic computation 

S-narrowing with respect to occurrences 
obtained by a basic computation 

step of basic S-narrowing followed by a 
given and weakly basic reduction 

step of basic S-narrowing followed by a 
weatdy basic normalization 

step of S-narrowing such that the leaded 
term satisfies the sufficient largeness 
property 

step of SL-basic S-narrowing followed by 
a given and weakly basic reduction 

step of SL-basic S-narrowing followed by 
a weakly basic normalization 

narrowing [8] 

narrowing [2, 1], narrowing 
with eager reduction [16, 10] 

basic narrowing [8] 
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