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A b s t r a c t  The inference rutes "reduction" and "narrowing" are generalized 
from terms resp. equations to arb i t rary atomic formulas. Both rules are 

parameterized by st rategies to control the select ion of redices. Church-Rosser 
propert ies of the underlying Horn clause speci f icat ion are shown to ensure 
both completeness and strategy independence of reduction. "Uni formi ty"  turns 
out as the crucial  property of those reduction st rategies which serve as 

complete narrowing strategies. A character izat ion of un i fo rmi ty  (and hence 

completeness) of le f tmost -outermost  narrowing is presented. 

I. INTRODUCTION 

Term reduction (or rewr i t i ng )  is the process of i terated subterm replace- 

ment according to a set of "oriented" equational axioms (cf. /Huet, Oppen/). 
Narrowing is a method to solve an equation t~_t' by t ransforming t=t '  into an 
equation u_~u' such that u and u ~ are uni f iable terms. Each t ransformat ion step 

subst i tu tes  into terms to obtain tefthand sides of axiom instances, which are 
then replaced by the corresponding r ighthand side instances. A solut ion of t-=t ' 
is given by the composit ion over the resul t ing sequence of subst i tu t ions (cf. 

e.g. /Stagle/ ,  /Lankford/~ /Fay/,  /Hut lo t / ) .  Reduction and narrowing can be 

generalized in several respects: 
Star t ing from a Horn clause speci f icat ion (w i th  ident i ty )  we describe 
reduction and narrowing as t ransformat ion rules for goals, i.e. for sets of 

atomic formulas (where, of course, equations are a special case). 
As a consequence, narrowing can be regarded exact ly as reduction plus 
subst i tu t ion,  and therefore st rategies to control redex select ion can f i r s t  
be associated w i t h  reduct ion and later  be l i f ted  to narrowing. 
Goal reduction a l lows us to consider d i f ferent  notions of "reducedness", 

which correspond to d i f ferent  Church-Rosser properties. 
- Goal narrowing generalizes "condit ional narrowing" (cf. /HuJ3mann/, 

/Fr ibourg/) .  
Aspects leading to and resul t ing from th is  approach are discussed in detai l  in 
/Padawi tz / .  The paper at hand focuses on goal reduction and narrowing w i th  
regard to s t rategies that  control  the select ion of reduction resp. narrowing 
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redices, While reduction redices are instances of tefthand sides of 

(condit ional)  equations, narrowing redices are pref ixes of possible reduction 

redices. 
For instance, let AX consist of the (condit ional) equations c = true and 

(*)  ~(s(y)) - ~(y) <== y ~ 0 
The goal ~ = {~(s(s(O)))vc = true} has two AX-reduction redices, namely c and 

~:(s(s(O))). Replacing them by the righthand side instances of c = true resp. (* )  

leads to the goals 
8 = {~:(s(s(O)))vtrue - true} resp. ~ = {~(s(O))vC - true, s(O) ~ 0}. 

Let ~t' = {~(s(O))vC = true}. The only reduction redex of ~' is c because for 

~:(s(O)) to be a reduction redex the corresponding premise instance of (*), 

namely 0 ~ O, is not AX-reducible. However, there is a pref ix  of ~', namely 

~" = {T(s (z ) )vc  = true}, 
w i t h  narrowing redex ~(s(z)). Consequently, le f tmost -outermost  narrowing 

would select the redex ~:(s(z)) of ~t", whi le  le f tmost -outermost  reduction 
would choose the redex c of ~'. Hence - w i th  respect to AX - le f tmost -  

outermost narrowing is not uniform w i th  le f tmost-outermost  reduction. 
The paper is organized as fol lows: Section 2.1 presents syntact ical  p re l i -  

minaries. Section 2.2 provides the semantical background: the Horn clause 
calculus, the deductive theory and conservative extensions, which resul t  from 

sp l i t t i ng  speci f icat ions into base (or "constructor")  parts and extension parts, 
Conservative extensions al low us to res t r i c t  reductions to appl icat ions of 

extension axioms (cf. section 3. I). Section 3.2 develops the proof of reduction 

strategy independence in the presence of a Church-Rosser speci f icat ion 
(Theorem 3.2.2). Section 3.3 is concerned w i th  narrowing and aims at Theorem 
3.3.t, which says that narrowing control led by uniform strategies is complete 
- provided that we work w i th  Church-Rosser specif icat ions. Chapter 4 

discusses the consequences of uni formi ty ,  presents a su f f i c ien t  condit ion on 

speci f icat ions to make ler tmost-outermost  narrowing uniform (Lemma 4.2), 
provides a way to extend speci f icat ions such that th is  condit ion holds true 

(Lemma 4.4) and closes w i th  a completeness resul t  for le f tmost -outermost  

narrowing (Theorem 4.5). 

2. HORN CLAUSE THEORIES 

2. I Syntax 

A signat.ure SIG = <S,OP,PR> consists of a set S of sorts and two S+-sorted 
sets OP and PR the elements of which are cal led operation and predicate 

symbols, respectively. S-sorted operation symbols are called constants. For cr 

E OPws w i t h  w E S* and s E 5, w is called the a r i t v  and s the coar i tv of cr. 
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Typical operation symbols are cr and T, typical predicate symbols are P and Q. 

6 e n e r a |  A s s u m p t i o n  We suppose that a signature SIG = <S,OP,PR> is given. 

For  all s E S, PRss imp l i c i t l y  contains a predicate symbol =s called the 

~Quali_ty. predicat_e [Q..r.~.s. Furthermore, we f ix  an S-sorted set X of var iables 

such that for  all s in S, X s is countably inf inite. I 

The S-sorted set L~_G) of terms over SIG is recursively defined as usual: 

- F o r a l l s ~  5 ,OPsuX~c T(S1G)s,i.e. constants and variables are terms, 

- f o r a l l w E S ~ , s E S ,  c rEOPwsand tET(S IG)w,  o' tET(SIG) s. 
Typical variab]es or sequences of variables are x, y and z. Typical terms or 

sequences of terms are t, u and v. £q.ot(t) denotes the le f tmost  symbol of t. The 

- r t _ ~ c o i n c i d e s  w i th  the coar i ty  of root(t). 

The par t ia l  function label : T(StG)×IN*--~OPuX is defined by 

- tabel(t,E) = root(t) ,  
label(or<t~,...,tn>,iw) = label( t i ,w) for all 1 <i~n. 

if !abel( t ,w) is defined, say labet(t ,w) = cr, then w is an occurrence of cr in t. 

vat[t..), denotes the set of variables occurring in t. t is ground i f  vat( t )  is empty. 

The set of g£iound terms over SIG is denoted by GT(SIG). 

Genera l  A s s u m p t i o n  (continued) For all s E S, GT(SIG)s is nonempty. I 

Let A be an S-sorted set. The set of S-sorted functions from X to A is 

denoted by A~ x. f E T(SIG) x is called a subst i tu t ion over 51G. f is often w r i t t en  

as the set of all expressions t / x  - read as "t for x" - such that f (x) = t # x. f E 
GT(SIG) x is called a ground subst i tu t ion over SIG. Typical subst i tu t ions are f, g 

and h. Some readers may not be fami l ia r  w i th  the functional v iew on 

subst i tut ions. Here the names "f", "g", etc. do not stand for operation symbols. 

The reason for  our choice of notat ion is to c lear ly separate funct ions from 
symbols and to adopt the t rad i t ional  notat ion for  funct ions in mathematics, 

whi le  keeping Greek le t ters  for names of syntact ical  objects l ike operation 

symbols and formulas. 
Let t be a term and g be a subst i tut ion. Then t [g ] .  the instance of t by g. is 

the term resp. subst i tu t ion obtained from t by simultaneously replacing each 

occurrence of a variable x in t by g(x). Vice versa, t is called a .prefix of t[g~. 

Consequently, for a subst i tu t ion f, f [g ]  is the subst i tu t ion defined by f [g] (x)  = 
f (x) [g]  for all x E X, and f is a pref ix  of f [ g l  Given terms t and t', f unif ies 
<t.UZ or f is a un i f ie r  of <t t'> i f  t [ f ]  = t ' [g]  for some subst i tu t ion g. A uni f ier  f 

of <t,t~> is most general i f  f is a pref ix  of every uni f ier  of <t,t'>. The 

comDosit iong2~ of two subst i tu t ions f and g is defined as usual by gof = f[g]. 
Let w E S +, P E PRw and t E T(SIG)w. Pt is called an atom over SIG. If P is an 
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equa l i t y  predicate, say =s, and t = <to,t~>, then Pt is an equation over SIG, 

w r i t t e n  as t o = s t  I or to=t~. The set of atoms over SIG are denoted by ~ .  A 

goal over StG is a subset of At(SIG). GoaI(SIG) stands for the set of goals over 

51G. Typical  atoms are p and q. Typical  goals are ~, ¢~ and X. The funct ion label 

is extended to atoms p = P<t~ ..... t~> and goals ~ as fo l lows:  
- label(P<tl , . . . , t t>,w) = u { l abe l ( t i ,w ) l  l<i~n}, 
- labe l (~ ,w)  = u { l abe l (p ,w ) lp  E ~). 
var(p) and var (~)  denote the set of var iab les occurr ing in p resp. ~. p resp. ~ is 
ground i f  var(p) resp. var(2t) is empty. Instances, pre f ixes and un i f i e rs  of atoms 
and goals are def ined analogously to instances, pre f ixes resp. un i f ie rs  of 

terms. 
Note the d i f ference between an equation t= t  ' and the syntac t ica l  equa l i ty  of 

t and t', wh ich is expressed by the "meta-equat ion"  t=t  ', The notat ion used here 
f o l l ows  the same pr inc ip le  as our nota t ion for  subs t i t u t i ons  (see above): When 

reasoning about syn tac t i ca l  en t i t i es  we prefer  symbols which are used in 

mathemat ics,  wh i le  the syntac t ica l  en t i t i es  themselves are denoted by other 

symbols. Unfor tunately,  many authors do jus t  the other way round and, e.g., use 
_= for  the syn tac t i ca l  equal i ty  of terms. 

The type of formulas we adopt to ax iomat ize data types are de f in i te  (or 
pos i t i ve )  Horn clauses, b r i e f l y  cal led clauses: A clause over StG cons is ts  of an 

atom p and a goat ~ over SIG, w r i t t e n  as p<==~ or p@=p~ ..... Pn. P and ~ are the 
conclus ion and the premise of p4==~, respect ive ly .  I f  ~ is empty, we omi t  the 

imp l i ca t ion  sign 4~=. p4==~ is ground i f  p and ~ are ground, tf p is an equation, 

then p ~ t  is a cal led a condi t ional  eouation. (By previous def in i t ions ,  a clause 

w i t h  empty premise is an atom and a condi t ional  equat ion w i t h  empty premise 
is an equation.) Let AX be a set of clauses over SIG. The pair  <SIG,AX> is cal led a 

spec i f ica t ion.  

2.2 The Horn clause calculus 

General  A s s u m p t i o n  (cont inued) We suppose that  a s ignature 

SIG = <S,OP,PR> and a spec i f i ca t ion  <SIG,AX> are given. I 

A StG-structure A cons is ts  of 
- an S-sor ted ca r r ie r  set  denoted by A, 
- an element crA ~ As for  each constant  cr E OPs, 

- a func t ion  crA:Aw---*A5 for  each w E S +, s E S and cr ¢ OPws, 
- a re la t ion  pn _c A w for  each w E S + and P E PR w. 
If for  a l l  s E S, =s A is the equal i ty  on As, then A is a 51G-structure w i t h  

ident i ty .  The S-sor ted evaluat ion mapping for  A, eva} A : 6T(51G)-~A, is 

recu rs i ve l y  defined as fo l lows:  
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- F o ra l l  s ~ 5and cr E 0Ps, eval~(cr) = cr ~, 

- for al l  w E S + , s  E S, cr E OPws and t E GT(SIG)w, 
evals~(Crt) = GnoevalwR(t). 

! feva l  A is sur ject ive,  then A is term-generated. Let StG(X) = <S,0PuX,PR> and b 

E A x. A becomes a SIG(X)-structure A(b) by defining x A(b) = b(x) for all x E X. 

Vice versa, b is extended to an S-sorted funct ion b_~*- T(SfG)--eA by b * ( t )  = 

evalA(b)(t). Given a goal ~, b is a solut ion of ~ i n  A i f  for al l  atoms Pt E 2}', b * t  
pA. 2~s~LLsfies_D~ or D_is ~ o d e l  of ,t~Y~ If  for al l  clauses p ~  in AX, the 

solut ions of ~' in A are solut ions of p in A. A class C of StG-structures 

sa t is f ies  AX i f  al l  A E C sat is fy  AX. M o d ~ : A X ~  denotes the class of al l  
StG-models of AX w i th  identi ty.  

Let C be a set of clauses and c be a single clause. The l:L&rn clause calculu~ 
consists of the fo l lowing der ivat ion rules where "C F- c" stands for "c is 

derivable from C". 
S u b s t i t u t i o n  Rule For clauses c and subst i tu t ions f, {c} l -  c[f]. 
Cu{ Rule For atoms p,q and goals i~,c~, {p~ tu {q } ,q@=c~}  I -  p ~ ' u S .  
Compos i t ion  Rule C t-  c and C'u{c} t-- c' imply CuC' t-- c'. 

The set EAX of ~quali ~ " _ ~ ~  consists of al l  clauses of the form 

X=X 

y=x '@= x=y 
x=z ~ x-:y,y_=z 

o-<x<,_.,Xn>~G<y4,...,yn> <== x<=yt, ...: Xn=Yn 
P<y~ ..... yn > 4~= P<x~,...,Xn>, x~=yd, .., Xn=Yn. 

The .deductive tJle, DS_y__o~.AX>:_0_T~LSLCI~, is given by all goals over 51G, 
which are derivable from AXuEAX using the Horn clause calculus. Goals in the 

deductive theory of <SIG,AX> are b r ie f l y  called <_~G:AX>-theorems. 
If al l  predicate symbols of SIG are equal i ty predicates, then DTh(SIG,AX) 

agrees w i t h  the congruence re lat ion on T(SIG) generated by AX (cf. /Ehrig, 
Mahr/, pp. 77 f. and 1 19, or/Kap~an/, Thm. 2.3). In general, for all goals ~, ~ is 

a <SIG,AX>-theorem i f f  Mod(SiG,AX) sa t is f ies  ~' ( c f . /Padawi tz / ,  Thm. 4.2). 
Reduction and narrowing w i l l  be regarded as ref inements of the Horn clause 

calculus. However, completeness of these ref inements depends on certain 
requirements to the speci f icat ion based on the suitable sp l i t t i ng  into a base 

speci f icat ion and an extension. The base speci f icat ion contains all sorts, 
"constructor"  operations and all predicates of <StG,AX>, whi le  the extension 
adds fur ther  funct ion symbols and corresponding axioms to the base speci- 
f icat ion. The idea is to f i r s t  speci fy the "pure" objects of the data type and 
later add operations to be performed on these objects. Of course, such an 
extension should be £ ~  in the sense that al l  ground base goals, which 
are theorems of the extension, are already theorems of the base specif icat ion. 
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Base Assumpt ion  Let BSIG = <S,BOP,PR> be a subsignature of SIG and BAX 
c AX be a set of clauses over BSIG. The condit ional equations of BAX are 

denoted by EBAX EBAX is supposed to be symmetr ic,  i.e. for each condit ional 
equation t _ = t ' ~  ' in BAX, t '_=t~'~ is in BAX, too. <BSIG,BAX> is called the base 

~ z e z J L ~ .  Terms, subst i tut ions,  atoms and goals over BSIG are called base 
terms, base subst i tut ions,  base atoms resp. base goals. <BSIG,BAX>-theorems 

are called base theorems. OP-BOP and AX-BAX are denoted by NOP resp. NAX, 

NAX is supposed to consist  of condit ional equations, and for all s E S, GT(BSIG)s 
is assumed to be nonempty. I 

3. REDUCTION AND NARROWING 

Two ref inements of the Horn clause calculus gain increasing signi f icance in 
logic programming and theorem proving: reduction ( rewr i t ing)  of terms and 

narrowing of equations. In the sequel, reduction is regarded as a bottom-up 

inference system for the deductive theory, whi le narrowing is used to derive 

goal solut ions in the deductive theory. Completeness of reduction is equivalent 
to a Church-Rosser property of <SIG,AX>. Completeness of narrowing requires a 

Church-Rosser property. To make th is  clear let us recall the equational case: 
Let t= t  ' be an equation to be proved. The reduction approach proceeds by 

rewr i t i ng  t and t' via the equations of AX unt i l  both terms have been rewr i t ten  
into the same term u. The Church-Rosser property says that each equational 

theorem can be proved in th is  way. We reformulate th is  procedure by saying 

that the equation t= t  ' is reduced to the equation u=u. 
Keeping to th is  def in i t ion of the Church-Rosser property one observes that 

many speci f icat ions are not Church-Rosser. Several var iants of the reduction 

approach have been proposed to cope w i th  th is  problem (cf. /Padawi tz / ,  

chapter 7). Some of them strongly refer to su f f i c ien t  condit ions for the 

Church-Rosser property (confluence, c r i t i ca l  pair convergence,...). Others make 
use of a modif ied Church-Rosser def ini t ion: Rewri t ing is confined to non-base 
equations, and the reduction process terminates as soon as a <SIG,BAX>- 
theorem u-u' has been obtained. In th is  case u and u' are requi red to be 
"normal" terms where "normal i ty"  serves as a cr i ter ion to stop the reduction 
process. In some approaches normal i ty  coincides w i th  NAX- i r reducib i l i ty ,  in 

other cases normal terms are exact ly the base terms. This gives r ise to the 
fo l lowing two notions of reducedness and reducib i l i ty :  

3.1 Goal r e d u c i b i l i t y  

A goal ~' is AX-reduced i f  "~ is a <SIG,BAX-EBAX>-theorem. (Consequently, in 
case that BAX consists of condit ional equations, i.e. BAX-EBAX is empty, an 
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equation t - t  ~ is AX-reduced i f  and only i f  t = t'.) 
Suppose that  a set  ELT_ of D_qrmal term~ including al l  base terms has been 

separated from the set of a]t terms. A goat ~ is NAX-reduced i f  ~ is a 
<SIG,BAX>-theorem such that  fo r  a l l  P<t4 ..... tn> E ~ and al i  t<i<n, t i  is normal. 

Nei ther  AX-reducedness imp l ies  NAX-reducedness nor NAX-reducedness 
impl ies  AX-reducedness. Just  i f  EBAX is empty and thus NAX contains a l l  
condi t iona l  equat ions of AX, then NAX-reducedness is a special  case of 

AX-reducedness. 
Given a goa! ~, a reduct ion s t ra tegy  se lects  a reduct ion redex of ~. But i t  is 

not the redex ~ that  mat ters ,  i t  is the redex ~Z~Lsit!on. Fo l lowing the 
data type LISPPOSITION given b y / B r o y / ,  sect ion 6.2: Let x o be a f ixed var iable,  

be a goal or term, t be a term and ~ = c~[t/xo]. The expression c~°t is cal led a 

oositl0J~ over 5tG j ] ] ~  i f  ~ conta ins x o exac t ly  once. The set of pos i t ions over 

SIG is denoted by PosL~EC;L~. 
By the fo l l ow ing  inference rules, term reduct ion and goal r educ ib i l i t y  are 

def ined s imul taneously :  Let {~X:NAX}, ST : Goal(SIG)--~Pos(SIG) be a 
par t ia l  funct ion,  ~ be a goal and t, t '  be terms, tA-~x, t' is an AX'- reduct ion v ia ST 
and ~' is •X!-reducible v i a _ ~  i f  the expression t~--e~ t' resp. ~x~>. ~ is der ivable 

by the fo l l ow ing  rules: 
Term Base Rule tA--~x, t fo r  a l l  te rms t. 
Goal Base Rule i f  ?J is AX'-reduced, then ~ ,  
Term Reduc t ion  Rule Let u-u'<==~ E AX', t = v [ u [ f ] I x o ] ,  t' = v [ u ' [ f ] I x o ]  

and ~L>~[f ] .  Then t~-~t ' .  
Goal Reduc t ion  Rule Let u-u'<==~ E AX', ST(~) = (~°u[f]  be a pos i t ion in ~, 

= = 6 [ u [ f ] / x o ] u ~ [  ]. Then A.~-~-~ ~ ' impl ies  Rx,~. i.e. ~ 6 [u [ f ] /Xo ] .  Let ~' ' f ~-r 
C o m p o s i t i o n  Rule tA×.>t' and t'~--~>x, t"  imply  tR--~ax, t". 
~J is AX!:red(LCible i f  ~' is AX'- reducib le v ia some ST. I f  u=u'<==~ ' E AX' and 

~ [ f ]  is AX'-reducib]e,  then the pos i t ions  v °u [ f ]  and c~,u[f] are cal led 

AX'- reduct ion red ices of v [ u [ f ] / x o ]  resp. ~ [ u [ f ] / x o ] .  v [ u ' [ f ] / x o ]  and a l l  
maximal  te rms of ~ [ f ]  are cal led d i rec t  AX'-ST-muccessors of v [ u [ f ] / x o ] .  A 
goal resp. term is ~ c ~ b l _ e ~  i f  i t  has no AX'- reduct ion redex. A 

subs t i t u t i on  f is/~LzLr_r,_e~L~2~]~ i f  for  al! x E X, fx is AX'- i r reducib le.  The set 
of a l l  term pai rs  <t,t'> where t' is a d i rec t  AX'-ST-successor  of t is cal led the 
r ~ u c L i v e A Y ~ ~  (cf. /Jouannaud, Waldmann/), 

Soundness of reduct ion f o l l ows  immediate ly ,  i.e. i f  t~,~-~t ' resp. ~--~->~', 
then t - t '  resp. ~ is a <SIG,AX>-theorem. Of course, the r educ ib i l i t y  of ~' is 
equiva lent  to the ex is tence of term reduct ions leading from ~ to a reduced 
goal, i.e. i f  P<t~ ..... in> is AX'-reducible,  then there are AX'- reduct ions t~ ~--~>~. u~ ..... 

t n i ~ U n  such tha t  P<u~,_.,Un> is AXe-reduced. 
AX is ( g m ~ X - C h u r r ,  j ] z ~ o s ~  i f  al l  (ground) <StG,AX>-theorems are 

AX-reducible.  A ground base term t' is a base rebresenta t ion  Of t E T(SIG) i f  the 
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equation t - i t  ' is a <SIG,AX>-theorem. An atom P<u I ..... Un> is a base represent- 

at ion of P<tl,...,tn> ~ At(SIG) i f  for  al l  l<i~n u i is a base representation of t i. A 
goal "~ is base-representable i f  al l  atoms of ~ have a base representation. AX is 
(ground) NAX-Church-Rosser i f  al l  base-representable (ground) <SIG,AX>- 

theorems are NAX-reducible. 
The mot ivat ion and a number of su f f i c ien t  condit ions for these Church- 

Rosser propert ies based on the analysis of "c r i t i ca l  pairs" can be found in 

/Padawi tz / ,  chapter 9. The fo l lowing resul t  comes up immediately: If AX is 
ground AX'-Church-Rosser and for al l  tEt'<==~ E AX', t is not a base term, then 
<SIG,AX> is a conservative extension of the base speci f icat ion (cf. section 2.2). 

Next we generalize to goat reduction the wel l -known fact that in the 

presence of Church-Rosser systems al l  well founded strategies work "the 

same". 

Lemma 3.2. 1 Suppose that AX is ground AX'-Church-Rosser and ei ther 
( 1 ) AX' = AX and for al l  t=__t' <== ~ E AX and q<==~ E BAX-EBAX t is not a variable and 

root( t )  does not occur in q, or 
(2)AX' = NAX, al l  ground normal terms are NAX-irreducible and NT is closed 

under BAX, i.e. for al l  ground <SIG,BAX>-theorems t= t  ', t is normal i f f  t' is 

normal. 
Let t~>~>t' and ~ i ' t / x ]  be a ground goal. Jf ~Et /x ]  is AX-reducible, then ~tEt'/x] 
is AX-reducible, too. If ~ ' [ t /x ]  is NAX-reducible and has a base representation, 
then ~ [ t ' / x ]  is NAX-reducible, too I 

The preceding lemma immediately entai ls that the order of reduction steps 
does not matter  i f  AX' is Church-Rosser. In other words, each strategy to 

select reduction redices is complete. Let us call  a part ia l  funct ion 

5T:Goal(SIG)---~ Pos(SIG) an AX'-reduction strategy i f  for each ground goal "~, 

ei ther ST(~) is an AX'-reduction redex of ~ or ST(~) is undefined. ST is fu l l  i f  
for each ground goal 7, ST(y) is defined whenever ~ has an AXe-reduction redex. 

Theorem 3.2.2 (Reduct ion s t ra tegy  independence) Let ST be a fu l l  
AX'-reduction strategy and ~ be a ground goal. Suppose that AX is ground 
AX'-Church-Rosser, the reductive AX'-ST-ordering is well founded on ground 

goals and e i ther  
(1) AX' = AX and for al l  t=t'<==3 in AX and q<==~ in BAX-EBAX, t is not a variable 

and root( t )  does not occur in q, or 
(2) AX' = NAX, al l  ground normal terms are NAX-irreducible base terms, NT is 

closed under BAY and ~ is base-representable. 
Then ~ is AX'-reducible via ST i f  ~t is AX'-reducible. I 
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3.3 N~rrow_ing ~olution~ 

Narrowing is reduction plus substitution: Prefixes of reduction redices are 
completed to the fu~l redices by subst i tut ing into variables. However, the 
pref ix must contain at least one operation symbol. Otherwise only the 
subst i tut ion would be reduced and the original (non-instantiated) goal would 
not be affected at all. Moreover, redices could be generated ad infinitum. 
Completeness of narrowing relies on a Church-Rosser property. According to 
which is available (the AX- or the NAX-Church-Rosser property) there are two 
ways to derive solutions of ~: They are obtained either by subst i tut ion and 
AX-reduction or by subst i tut ion and NAX-reduction. Hence the inference rules 
for narrowing evolve from the rules for reduction (cf. section 3.1 ): 

Let ST . GoaI(SIG)--~Pos(SIG) be a partial function, ~d,c~ be goals and f be a 
substitution. "~i~<'d~,f> is an Z~X~-narrowing expansion via ST i f  the express- 
ion ~' Rl~x, <~':f> is derivable by the fol lowing rules: 

Base Rule If ~'[f] is AX'-reduced, then ~ ~1~-~ <~,f>. 
Narrowing Rule L e t u - - u ~  "E AX ~ ,$T ( '~ )=8o tbeapos i t i on in~such tha t  

= Sl-fEu[g] Xo]]U~'[g]. Then t is not a variable, and u[g] = t i l l .  Let ~ ° / 
"~ ~e~x, <~,f>, and Sot is an z~X'-narrowing rede_~ o[ ~. 

Conlposit ion Rule "~ Rl~x, <~',f> and ~"At~x, <~'",g> imply ~'Rt~x, <~'",gof>. 
"d AI~-~T <~',f> is most general i f  in all Narrowing Rule applications to derive 

~t~x,<~',f>, f is a most general uni f ier of <t,u> (cf. section 2.1). f is an 
AX'-narrowirlg solq_t~n via ST i f  ~ ~t~xT, <~,f>. 

An AX'-reduction strategy ST is an A×!,narrowing strategy i f  for each goal 
'~, either ST(~) is an AX'-narrowing redex of ~ or ST(~') is undefined. 

Let NS be a set of AX'-irreducible subst i tut ions called normal subst i tut ions 
such that the ident i ty on X is in N5 and for alI subst i tut ions f and g, fog E NS 
implies f,g E N5. ST is (bLS-)uniform if  for all goals ~ and f E N5, either 5T(~) 
and ST(~Ef]) are defined and ST(~')[f] = ST(~Ef]) or ST(~[f ])  is undefined. A 
detailed discussion of uni formity is given in section 4 below. Uniformity 
ensures that narrowing is complete w i th  respect to the deductive theory. 

Theorem 3.3.~ (Completeness of narrowing with strategy) Let ST 
be a ful l  and NS-uniform AX'-narrowing strategy. Suppose that AX is ground 
AX'-Church-Rosser, the reductive AX'-ST-ordering is wellfounded on ground 

goals and either 
(1) AX' = AX and for all t.:.t'@= ~ in AX and q<~::,'l, in BAX-EBAX, t is not a variable 

and root(t) does not occur in q, or 
(2) AX' = NAX, all ground normal terms are NAX-irreducible base terms, NT is 

closed under BAX and instances of normal terms by normal subst i tut ions 
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are no rma l  
Let f E NS If ~tt~xT. <~,f>, then ~ [ f ]  is a <SIG,AX>-theorem 

Let f be a ground normal subst i tu t ion .  I f  ~tEf] is a <SIG,AX>- theorem and - in 
case that  AX' is NAX - ~ [ f ]  is base-representable,  then there is a most  
general expansion "~ ~x~. <B,g> w i t h  f = hog for  some h. I 

4. STRATEGIES 

Having laid down the theoret ica l  basis for  s t ra tegy -con t ro l l ed  reduct ion 
and narrowing let  us now invest igate  how common s t ra tegy schemata f i t  into 

th is  f ramework.  By Theorem 3.22,  i t  is t rue that  - in the presence of Church- 
Rosser systems - each te rmina t ing  reduct ion s t ra tegy works equal ly wel t ,  i.e. 

reduces a given goal ~ whenever ~ is reducible at a l l  However, completeness 
of nar rowing w i t h  s t ra tegy (Theorem 3 3  I)  is guaranteed only i f  the s t ra tegy 

is un i f o rm  Unfor tunate ly ,  computat ion ru les l ike " l e f tmos t - i nne rmos t "  or 
" l e f tmos t -ou te rmos t "  ( c f  /Manna/,  p. 375 f f . )  do not lead au tomat i ca l l y  to 
uni form narrowing st rategies.  To i l l u s t r a t e  th is  let  ST be a narrowing 
st rategy,  ~ be a goal and f,g be ground normal subs t i t u t i ons  such that,  say, 

ST(~/rf]) = 8 ° t  and ST(~t[g]) = :p°u. Since f and g are i r reducib le ,  t and u overlap 

in ~ [ f ]  resp. ~'[g] properly,  i e. there are pos i t ions ~ ' . t '  and ~',u' in ~ w i t h  
(c~'-t ')[ f ]  = c~°t and (~0'.u')Eg] = ~p.u (where for  al l  pos i t ions g,.v, (,1,.v)Ef], the 

instance of R.v  by f, is defined as ~ [ f [ x o / x o J J . v [ f ]  , ie. the f ixed var iab le x o 
is " l e f t  open" when subs t i t u t i ng  f into 5L.) 

/ 

Z "~ 

~H:f ] ,:~,[g] 

~' is given by the polygon cons is t ing  of al l  three inner t r iangles,  wh i le  ~" and ~' 

are represented by the dotted polygons in the lef thand resp  r ighthand f igure. 
Provided that  ST is uni form, ST(~') is defined, 

ST(~)Ef] = ST(~Ef]) = 8 . t  = ( • ' ° t ' ) [ f ]  
and 

ST(~) [g ]  = ST(~Eg]) = ~-u = (SO'.u')Eg]. 

Since ST(g), ~ ' - t '  as wel t  as ~e'-u' are pos i t ions  in the same goal, we obtain 
ST(g) = c~llt I = ~ l o U l ,  Therefore ST(~[g])  = (~ ' . t ' ) [g ] ,  and thus (c~'.t ')[g] and 

(ue'. t ' ) [ f ]  are reduct ion redices! Since ~, f and g were chosen a rb i t r a r i l y ,  we 
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have obtained a ne___cc_e~ssa['y_ condi t ion for  un i fo rm i ty ,  namely: 
(UNI) For al l  goals "~, ground normal subs t i t u t i ons  f,g and pos i t ions 2,~v in 

i~, ( ;~ -v ) [ f ]  is a reduct ion redex i f f  (3,°v) [g]  is a re~6~ction redex. 

E x a m p l e  4.1 Let NS = T({O,s}) x and AX' cons is t  of the equat ions x v t r u e  = 
true, c = t rue and ~(s(y) )  ~- %(y). Let ~ be the equat ion "~(z)vc = true. Suppose 

that  ST works " te f tmos t -ou te rmos t " .  Though O/z is a ground AXe-narrowing 

so lu t ion  of ~, O/z cannot be computed by ST. Instead, ST w i l t  subs t i t u te  s(y) 

into z and apply the equation "c(s(y)) =- "~(y), which leads to a var ian t  of the 
i n i t i a l  goat, namely to %(y)vc = true. This f o l l ows  from non -un i f o rm i t y  of ST: 

We have 
ST(~) = (XovC = t rue) • T(z), 

but 

and thus 

ST(~[O/z ] )  = ( 'c (O)vx o ~_ true) • c 

5T( '~) [O/z]  = (xo-,c = t rue)  ~ •(0), 
wh ich  is d i f f e ren t  from 5T(~EO/z]). However, 5T(~)  corresponds to a reduct ion 
redex of another ground instance of ~, namely to ~[s(O)/z ] :  

ST( 'd[s(O)/z])  = ( x o v c  = t rue) • q~(s(O)). 

So we have a pos i t ion  ,~.v in ~, namely (Xovc= t rue ) ,z ,  and two ground 

subs t i t u t i ons  f and g, namely s(O)/z and O/z, such that  
(;1.°v)[f] = (XovC _= true) • "c(s(O)) 

is a reduct ion redex, wh i l e  
(.9,,v)[g] = ( x o v c  - t rue)  • T(O) 

is not a reduct ion redex. Hence (UNI) is v io lated.  I 

The prev ious example suggests the conjecture that  (UNt) is su f f i c ien t ,  for  

u n i f o r m i t y  of l e f tmos t -ou te rmos t  narrowing.  Let us now make precise the 

term "1 e f tmos t -ou te rmos t " .  
Given a goal ~' and a set M of pos i t ions  in ~, c~°t ( M is le f tmqst-outermos_t  

w.r.t. M i f  for  a l l  ~°u { M the unique occurrence of x o in S is lex icograph ica l ty  
less than or equal to the unique occurrence of x o in ~. We conclude from the 
de f i n i t i on  of occurrences in a goal (cf. sect ion 2.1) that  ' l l e f tmos t -ou te rmos t "  
re fe rs  to the se_!t of maximal  terms in 8, i.e. an occurrence of x o in ~ is 
t e f tmos t -ou te rmos t  i f  ~ conta ins an atom P<t 1 ..... tn> in ~ such tha t  for  some 

l,~i~n, a l l  goals ~ ( w i t h  unique occurrence of xo), a l l  atoms Q<u~,...,Uk> E ~ and 
al l  l~j~k the occurrence of xo in t i  is lex icograph ica l l y  less than or equal to 
the occurrence of x o in uj. A s t ra tegy  searching for  l e f tmos t -ou te rmos t  
redices w i l t  thus inspect  a l l  te rms in a goal in para l le l ,  but each of them in 
the l e f t m o s t - o u t e r m o s t  manner~ Hence the order of arguments of an atom and 
the order of atoms in a goal are i r re levant .  Since reduct ion redices are terms, 
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we would not gain anything by taking these orders into consideration. (That the 
order of atoms in a goal is irrelevant is well-known from resolution; cf. 

/Lloyd/,  section 9). 
We define a partial function LO (" leftmost-outermost") from Goal(~IG) to 

Pos(SIG) as follows: For all goals ~, let M(~) be the set of positions ~e°u in 
such that u is not a variable and for some ground normal substi tut ion f, 
(~ou)[f ]  is a reduction redex. If M(~) is empty, then LO(~) is undefined. 
Otherwise let LO(~) be the leftmost-outermost posit ion w.r.t. M(~). 

Of course, LO is a ful l  narrowing strategy. Moreover, we obtain 

Lemma 4.2 tf (UNI) holds true, there are ground normal substi tut ions and 
NS is closed under composition, then LO is NS-uniform I 

(UNI) can be regarded as a generalization of cr i ter ion 4.1(2) in /Fribourg/ 
for the "well- innermost-reducing" property of rewr i te  systems. The def ini t ion 
of reduction redices allows us to characterize (UNI) by the fol lowing 
requirement to axiom instances: 
(UNI-Ax)For all terms t ~ × and ground normal subst i tut ions f,g there is an 

axiom instance t [ f ] - = u ~  wi th  reducible premise S i f f  there is an 
axiom instance t [ g ] = v ~  wi th  reducible premise ~e. 

If (UNI-Ax) does not hold for some t [ f ] - u ~ S ,  the specif ication can be extended 
by a new constant ± ("bottom") and the "grounding" equation t[g]=_±. 

Example 4.3 (cf. Example 4.1) Let t = ~(z), f = s(O)/z and g = O/z. Then 
there is an axiom instance t [ f ] = u ~ 8  wi th  reducible (here: empty) premise, 
namely ~(s(O))='~(O), but there is no axiom instance t [ g ] = v ~ O .  However, 
adding 1:(0)-± to the axioms makes (UNI-Ax) valid. Thus leftmost-outermost 
narrowing w i l l  now compute the solution O/z of ~ that we did not achieve 
before The individual narrowing steps are as follows: 

l : (z)vc = true ~ <±vc=-true, O/z>, 
J_vc-true t~, <±vtrue_=true, id>, 
J. vtrue=-true ~ <true=true, id>, 
true_=true ~ <~, id>. I 

tn fact, grounding equations do not violate the soundness of narrowing: 

Lemma 4.4  Let t be a ground term, AX" = AX'u{t=±}, NS be the set of AX"- 
irreducible substi tut ions, ST be an NS-uniform AX"-narrowing strategy, ~ be a 
goal and f E hiS. In case that AX' is NAX, instances of normal terms by normal 
subst i tut ions a r e  supposed to be normal. Let f be an AX'-narrowing solution of 

via ST. Then ~ [ f ]  is AX'-reducible via ST. I 
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The extension of AX ~ by t-_L preserves the completeness of narrowing 

provided that the Church-Rosser property carr ies over from AX ~ to AX ~j = 

AX~u{t~.L} (cf, Theorem 3.3.1). Consequently, grounding equations cannot be 

added for free. They should only replace "missing" axiom instances which 
v io la te (UNI-Ax). I t  might be a subject of fur ther  research to define axiom 

schemata where such axiom instances can be detected easily. For instance, 
/Fr ibourg /  keeps to axioms of the form cr<t~,...,tn>-=t where o'<t~,.o.,tn> is 

" innermost",  i.e. o" is a non-base operation and t~ ..... tn are base terms. In th is  
case - and provided that normal subst i tu t ions are base subst i tu t ions - 

(UNi-Ax) is guaranteed by adding a grounding equation t = i  for each ground 

innermost term t which does not match the lefthand side of some axiom. 

Closing th is  sect ion we combine Theorem 3.3.1 and Lemma 4.2 to obtain 
su f f i c ien t  condit ions for  the completeness of le f tmost -outermost  narrowing: 

Theorem 4.5 (Completeness of leftmost-outermost narrowing) 
Suppose that AX is ground AX'-Church-Rosser, the reductive AX~-LO-ordering is 

wel l founded on ground goals, (UNI-Ax) holds true, there are ground normal 

subst i tu t ions,  Ng is closed under composit ion and ei ther 
(1)AX' = AX and for al l  t=-t'<==6 in AX and q<==~ in BAX-EBAX t is not a variable 

and root( t )  does not occur in q, or 
(2)AX ~ = NAX, al l  ground normal terms are NAX-irreducible base terms, NT is 

closed under BAX and instances of normal terms by normat subst i tu t ions 

are normal. 
- Let f E NS. i f  ~ < ~ t , f > ,  then ~ [ f ]  is a <SIG,AX>-theorem. 
- Let f be a ground normal subst i tut ion,  i f  ~ [ f ]  is a <SIG,AX>-theorem and - in 

case that AX' is NAX - ~ [ f ]  is a base-representable, then there is a most 

general expansion ~ < B ~ , g >  w i th  f = hog for some h. I 

CONCLUSION 

Reduction and narrowing have been genera!ized from term transformat ion rules 
to goal der ivat ion rules. The appl icat ion of rules is control led by a strategy 
given by a part ia l  funct ion ST : Goal(SIG)-~Pos(SIG) that selects a unique redex 
in each goal. (Nondeterminist ic  s t rategies would correspond to a union of such 
part ia l  functions.) Under the assumption of a Church-Rosser property all 
terminat ing reduction s t rategies work equally welt  (Theorem 3.2.2). 
Unfortunately, th is  resul t  cannot be carr ied over to narrowing automatical ly.  
Although every reduct ion strategy ST, which selects narrowing redices, y ie lds 
a narrowing strategy, the completeness of narrowing via ST requires that  ST 
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is uniform: Given two instances ~[ f ]  and ~[g] by normal substitutions f resp. g 
of the same goal ~, ST must return the same "location" in ~. In section 4, we 
derived (UNI) as a necessary condition for the existence of uniform narrowing 
strategies. Furthermore, (UNI) was shown to be sufficient for uniformity of 
teftmost-outermost narrowing. Finally, (UNI) was characterized by (UNI-Ax), a 
property that refers to axiom instances and suggests to replace "missing" 
axiom instances by "grounding" equations. Further research should be devoted 
to a complexity analysis of different narrowing strategies in connection with 
appropriately chosen axiom schemata. 
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