
ALGORITHMIC COMPLEXITY OF TERM REWRITING SYSTEMS

Co CHOPPY, S. KAPLAN, M. SORIA

Laboratoire de Recherche en Irfformatique

U.A.C.N.R.S. 410

Urtiversit6 Pads-Sud, B~t 490

F-91405 ORSAY C~dex, FRANCE

net : mcvax!inria!lri!cc, mcvax!inria!lri[kaptan, mcvax!Luria!lri[soria

Introduction

Algebraic specifications are now widely used for data structuring and they turn out to be quite useful

for various aspects of program development, such as prototyping, assisted program construction, prov-

Lug properties, etc ['BCV 85, FG 84, FGJM 84, GHW 85, Kap 86]. Some of these applications require

to add a notion of computation to algebraic specifications, for instance by providing a (convergent)

rewrite rule system that expresses the properties of the operators. In this context, k may be of first

interest to define a notion of algorithmic complexity for an algebraic specification, or, more precisely, a

notion of complexity for each operator defined in the specification. Computing operator complexity

within a given specification helps understanding how evaluation costs are distributed ; k may point out

"cosdy" operators, and motivate the search for an equivalent, but "cheaper", specification.

In [CLR 80], the cost of a term is defined as the number of rewriting steps for reducing it to its normal

form, and the cost of an operator is defined as the genera1 cost of a term obtained by applying this

operator to terms in normal form. In this paper, we further formalize this notion of operator complex-

ity and investigate ks computation through analysis methods developed for instance in [Stey 84] and

[Ha 87]. We show how these methods apply to the computation of the enumerative series over the

terms of an algebraic specification. We define the notion of regular rewriting systems, and consider

cost series of operators that are described by such systems. We show how these analysis methods

apply to compute such costs and provide an asymptotic evaluation of the average cost of an operator.

Our restflts allow costs to be computed without any explicit manipulation of series. We provide an

eventual user with ready-to-use formulae, where the different parameters only depend on the

"geometry" of ~ e system, e.g. the number of constructors in the left handside of rules, number of

occurrences of a derived operator in the right handside, etc.

Quantitative evaluation of rewriting systems had not yet been studied under such an approach (except

in [CLR 80]), to our knowledge. From a different point of view, complexity of algebraic implementa-

tions has been studied in [BBWT 81, E&M 81, etc.] w.r.t, computability issues.

1. Introductory example

Let us assume that one wants to evaluate the average cost of a given computation on some data set.

The data belong to a set of objects, a size can be computed for each object ; let D n denote the set of

257

objects of size n, and N a = card (Dn). Assuming all the objects have the same probability, the average

cost is [GSF 86] :

- - 1 Ca
Ca = -~n deED=COSt(d) = --Nn

Generating series are defined by associating the series a(z) = ~ anz n to a sequence (an): to the

sequence (N n) is associated the enumerative series N(z) =]~ Nnz a , and to the sequence (Cn) is associ-

ated the cost series C(z) =]~ Cnz n . Computation of the coefficients of the generating series can be

performed either using "exact" methods (e.g. using the Lagrange inversion theorem) or methods that

provide an approximation, based on real or complex analysis techniques. The asymptotic value of the

coefficients an of a complex series ~ anz n may be evaluated using results of complex fimctions theory

(essentially based on Cauchy formula) : the singularity cIosest to the origin determines the order of

growth of the coefficients (more precisely, their exponential factor is determined by convergence radius

of the series and their polynomial factor is function of the nature of the singularity) [Fla 87].

Consider the example of a specification of binary trees with two constructors : the constant 'a ' and the

' _ . ' operator (think of "cons" in Lisp).

Considering the enumerative series : Ntre¢(z) = ~ N n z a , since each nth power of z appears as many

times as there are trees of size n, we have : Nt~e(z) =]~ z Itt where T t ~ is the set of terms built with
t ~ Tin,,

the constructors 'a ' and ' . _ ' .

Let us first perform the computation of Ntr~(Z) by case analysis on terms :

Nt~=(z) = Z z l t l + Z z't*'t21 •
t = a t = h . t2

S i n c e l t l . t 2 1 = l + l t l l + t t : l : N t ~ = (z) = z + z ~ .~, z l t~ lz l t21=z(l+N~e(Z)) .

In the general case, computation of Ntree(z) can also be performed using systematic methods for com-

puting enumerative series and cost series for algorithms on combinatorial structures [Fla 87] (in partic-

ular, one may apply these methods when trees are used as data structures to represent terms) ; the main

steps of these methods are the following :

• take the construction primitives of the combinatorial object and deduce the structural equations ; in

the case of tree this leads to :

tree = a + / ' \ or tree = a + . × tree × tree
tree tree

where + is the disjoint union and × the cartesian product

• transpose the structural equation(s) to generating series, using the fact that, when considering the

associated series, any disjoint union is expressed by a sum and any cartesian product is expressed by a

product ; in our example, this leads to :

Ntrce(z) = z (1 + N 2 (z))

258

(the same result was obtained above by case analysis)

® solve the generating series equations. In the above example, simple resolution leads to :

1_ l_di-2~z 2
N~¢(z) - 2z (this solution is adequate since it is analytic at the origin), and further computa-

tion by series development leads N2p = 0 and to N2p+ I = ~ (Catalan numbers, cf. [Knu 731).

Using the Stifling formula : p! = 2"~,~ f2-e ;P(1 + O (1)) , this yields : p

(1 + o N2p+i =

Another approach is to use complex analysis methods (local analysis around singularities) for passing

from functional equations over generating functions to asymptotic expressions of their coefficients.

q2~-Zz 1+4i-~z 1
Continuing with our example, we have : Ntree(z) = 2z e 2z

t 1 I
Ntis(z) is analytic for Izf < T and has two singaaIarifies : z = -~ and z = - - ~ .

 ow oo : rn-°- l
n"~-i

One shows [Fla 87] that when n ~ + . o : [znl (l -kz) ~ = ~ . kn(1 + O ())
t t -cc)

(where F is the Euler Gamma fanction : F(x) = fo'~e~tX-idt. We recall that : F (x+l) = x F (x),

F(t) = 1 -- hence F (n) = (n-1)g when n ~ N -- and F (2) 4) .

The contributions of singularities with same module are added together, leading in our case to :

' (L)) [z n] N(z) = @ 2 a+l n -3j2 (1 + O for n odd, and 0 for n even,
"42r; n

A more systematic approach that uses "transfer lemmas" [Fla 87] is presented in section 2.

Now let us add a derived operator ' 1" ' (called "shuffle" since it is moving subtrees around) defined

with the following rutes :

(S1) : a $ t ~ a . t, (t 1 . tz) $ a ~ (t 1 . t z) . a, (t t . t2) $ (u t . u~) ~ (t t $ u I) . (t2"~ uz)

The cost of a term is the number of rewriting steps necessary to reduce it to its normal form for a

given strateg7 ; the cost of an operator is defined as the cost of a term obtained by applying this opera-

tor to the terms in normal form. In all examples considered in this paper, it is insured that operator

costs are independent from the evaluation strategy (cf. propsition in section 3).

Let us evaluate the cost functions for the operators of this specification : 'a ' and ' _ . _ ' being construc-

tors, the corresponding cost fimctions are equal to zero. Computation of the cost function for the opera-

tion ' T ' will be done by means of the following generating function (cf. definition 3.4) :

CT(z) = E C~ z ~ where C~ = ~ cost (t T u) (where I t I is the size of the term t, i.e. the

Itl + l u l = n

t [z n] ~ (z) denotes the coefficient of z n in ~ (z)

259

total number of symbols that appear in t, and where Ttree is the set o f terms in normal form, which is

exactly here the set Of terms built on the constructors ' a ' and ' _ . _ ') .

Hence : CT(z) = ~ cost(t 1" u) z Itt+lul
t, ue T~,~

Let us use a case analysis for terms in normal form to compute Ct(z) :

cl"(z) = ~ cost (a 1" t) z l+ltl + ~ cost ((tl.t2) 1" a) z Ih'tzl+l
te %,,~ h.tze T~,,,

+ Z COSt ((t I . t2) 1" (U 1 . U2)) Z Ih't~l+lu''ual
h ,h,ul,u2e Tn,.

since : cost (a 1' t) = 1 + cost (a . t) = 1,

cost ((tl.t2) ~" a) = 1 + cost ((tl.t2) . a) = I,

cost ((t 1 . t2) 1" (u 1 . u2)) = 1 + cost ((t 1 1" Ul).(t z 1" u2))

= 1 + cost (t iSu 1) + cost (t2"['u2) ,

we have :

C t (z) = z Z Zltl + Z Z Zltll Z Zltzl "t" Z2 Z Zltll Z Zltzl

+ z2 Z cost (h 1" ul) z ~''l z tu'~ Z z~'~ Z z i~ l
h,ul~T~,~ t~.e Ta~,, u.,eT~

+ Z 2 ~ COSt(t 21"u2) z It~l Z lu:t ~ Z It'l ~ Z ~ud
t~,u~eT~,,, t~e T~,,, u~e T~,~

= z Ntrce(z) + z 2 N~ , (z) + z 2 N~ce(z) + 2 z 2 N2~(z) CT(z) .

Hence :

cl.(z) = z N~e(z) + z 2 N2e(z) + z 2 N4t~(z) = z N~e,(z) + z N~ee(z)

1 - 2 ~2 N[~,o(z) 1 - 2 ~2 n 2 o (z)

zlUt I ~ z luzl

u le T,~ uze T~,,

1 - 2 z 2 N2e(z)

Replacing in this expression Ntree(z) by its value : 2z and using the same complex analysis

method as for Ntrcc(z) (development around singularities, Newton expansion, adding up the contribu-

tions of sing~alarities) yields t o : C ; = ~ 2 2 p p - 3 / 2 (1 + O (~))

Now the average cost is : C ; = C2Tp where Nz,2p (cf. section 2) is the number of tree couples (tt, t2)
N2,2p

such that [ttl + It21 = 2p. Computation of N2,2p yields :

C ; = 4(1 + O (I))
P

in this case, the average cost is cons tan t (asymptotically).

We develop in section 3, a general method for computing the coefficients of series such as C?(z), when

the rules defining ' 1" ' constitute a regular rewriting system.

f? using the fact that : N~(z) = z (I + N2e(z))

260

2. E n u m e r a t i v e ser ies o f t h e t e r m a l g e b r a

We denote by Tcona r the set of ~erms buih on the signature Constr. Let us denote by o~ k the number of

symbols in Constr of arity k. We always suppose that 0q~ ~e 0.

Definition 2.1

Let N n stand for the number of terms in Tconstr of size n. The enumerative series of Tconstr is :

N(z) = Z N a zn = Z zttt"
ta T c ~ =

Let qb(X) stand for the polynomial : ~(X) = ~ (Xk x k , w h e r e 'p ' denotes the largest arity in Constr, and
k:O

where there exists a k > 0 with k _> 2. t

We have the foUowing resuits :

(1) N(z) is a solution of the functional equation : N(z) = z . q~ (N(z)) (cf. section 1 : transposition

from structural equations to generating series).

(2) Let us suppose that there is no polynomial ~t' and integer d22 such that qb(X) = ~t' (X d) ; let "c be

the smr/lest root of the equation ~(X) = X~'(X), and p = - ~ ; p is the convergence radius of N(z)

and 0 < p < 1. "t is the only real positive root of the equation q)(X) = Xq~'(X) such that tXl = "c. More-

over, x = N(9) and P is the only singnlarity of N(z) such that Izl = p. Then around z = P [M&M 78] :

(3) Transfer Lemmas : when it is possible to have an asymptotic development of a series around the

singaJlarity that is closest to the origin, under some conditions (that are always fulfilled in the case of

term algebras) an estimation of the series coefficients can be deduced from the series estimation

through transfer lemmas [Fla 87].

We use the transfer lemmas in the foUowing case :

Let f(z) = h(z) + O(g(z)) be the expansion of f around the singularity p, where f and g are stan-

Z
dard fimctions of the type - p and h is of higher order than g around p. Then :

[21 f(z) = [z ~1 h(z) + o ([z ~] g(z)).

Considering the expression (Ft) and applying the transfer lemmas, one gets :

N . : " ~ 2-~n-3 '2 + O [p - N - 5 / 2 j w i t h F (- 1 / 2) = - 2 4 - n x
- 'q ~ r(-1/2-----7

i.e. finally :

%[~(~) p-" (l + o (k)).
Nn = 2rc<D"('c) n-3:2 n

z
5" I f this cotxi i t ion is no t satisfied, this m e a n s that N(z) = z(I+CClN), and thus : N(z) - !-cqz

261

Note 1 :

For average cost computations, we need to evaluate the quantity Nm~, that is the number of terms

tt,...,tmeTconstr such that lhl+. . .+l tmt = n. Then :

Nm., z n = ~L ~ za = '~ z Itd+'''+lt~l = (N(z)) m.
n=O n=O h,...,t~eTc~,,, t~,...,t~eTc~

iq t+...+1%l=a

Thus, Nm~ a is the coefficient of z n in (N(z)) m, and using (F1) we have :

(N(z)) r a = z m + m x ~ - +y2 I - + O 1- .

NOW, using the transfer lernmas, we obtain :

Nm~, = m e ~-~ "~/ ~(~) 0 -~ n -~z (1 + O (!))
" ¢ 2r~O"(z) n

and : Nm. a = m "c m - 1 N. = # (N m (z)) I z_aoNn

More generally, given the polynomial on N(z) : P(z) = i=l~CqNi(z) similarly : [z n] P(z) = Nn3N3P Iw-~.

Note 2 :

The above results were obtained for the case where p was the only singularity of N(z) such that

Izl = p. Let us now consider the case where there are more than one such singularity. If

O(X) = ~F(Xd), let x stiI1 denote the unique real, positive root of the equation ~(X) = XO'(X). The

other solutions of this equation are e2ikradz, for k = 1,2,...,d-1. We now have :

"X/ ~(x) p-an-3/2 (1 + O (1)) i f n m I [modd], No =
n

N n = 0 otherwise.

and :

,/ O(z)
p-.n n-3/z (i + O (n)) if n = m [mod d], Nm, n = d m z m-1 ' / 2 r c O " (x)

Nm, n = 0 otherwise.

Example :

These results immediately apply to the example of section I where Constr = {a, _ _ }. We have

~0 = I, o~ 1 = 0, o~ 2 = 1. Then O(X) = I+X 2, of the form W(X2), with ~F(Y) = l+Y. x satisfies :

l+x 2 = 2 z 2 . T h u s ' ~ = l a n d p = "c - - = 1/2. , and we derive :

1 2 a+ln -3/2 (1 + O (1)) f o r n o d d , a n d 0 f o r n e v e n ; Nn - ~ ' ~ n

m 2 n+l n -312 (1 + 0 (1)) for n - m [mod d], and 0 otherwise. Nm'n = ~ n

1 22 p p_3r2(1 + O (p)) which leads to the Notice that letting m = 2, n = 2p, we obtain : Nz.2p =

same result as obtained in section 1.

262

3. Cost ser ies for the de r ived o p e r a t o r s

We suppose that the set of operator symbols Z is partitioned into :

* a set Constr of constructors (these are functions that generate the set of terms, and for which

the generating function N was computed hereabove) ;

, a set Der of derived operators (that realize computations on terms of Tconstr)-

We wish to ensure that any term of Tcons = (i.e. built with constructors only) is irreducible, and that for

f eDer and for h,. . . , t~eTco~tr, f(tl,...,tn) rewrites into a unique tema of Tcon~tr in a finite amount of

rewrite steps. To this effect, we are going to restrict the form of the rules that are acceptable.

Definition 3.1

A Constr-enumeration associated to an operator f~ Der, with ar(f)=n, is a fi.mte family of n-tuples

(~ e) l ~ (t 3 of (Tconstr(X)) n such that :

e each ~e contains at least a constructor symbol

e for any "~e (Tconstr) n, there exists a unique substitution (r:X-->Tconstr and a tmique e such

that : ~ = i~eo

Thus, intuitively speaking, the (~e) form a description of the possible arguments of f, that is at the

same time exhaustive and non-ambiguous. For instance, with Constr={0, s} and Der=-{+}, we can

take : ~1 = (x , 0) and ~ = (x , s(y)), as a Cons~-enumeration of the symbol '+' .

Let ~ stand for the variables that appear in ~e, and ~ for the number of constructors that appear in

i~ e (let us recall that, according to Definition 3.1, ~ ~ 0). In the previous example, we have :

X 1 = {X}, ~1 =]" a.rld X 2 = {x,y}, ~2 = ~"

Definition 3.2

A Constr.definition of fe Der is a set of rewrite rules R e = (re)l_~.<~D(t3 such that :

® each rule is of the form r e : f(~e) -+ Pe, where (~e)e~D(t3 iS a Constr-enumeration of f ;

* each 19= is of the form Pc = K(xl,--.,xaAbl,--~m) , where :

e K is a context made of constructors only,

- {xv...,x,} c_ x~,
, each % is of the form g(Y*,...,Yar($)), where g is a derived operator,

{y,,.,.,y~g)} c X~, and Yi ~ Yj if i:~j.

263

A typical M e thus looks like :

f(~(xl ,x2 ,x3,x4,x5 ,x6,x7))

g

/ \
Xl x 4

K

f f

x6 x5 x4 7

Definition 3.3

A set of R of rewrite rules is regular if it is of the form R = Ue~DerR f, where Rf is a Comtr-

definition of f, for each fe Der

For instance, the following systems are reg~alar :

($2) Constr = [0, s}, Der = {+ , even} and

R+: x + 0 - - -) x , x + s (y) - - -) s (x + y)

R~ve, : even(0) --~ True, even(s(0)) ~ False, even(s(s(x))) ---) even(x)

The Constr-enumeradon associated to '+ ' is the one presented hereabove, while the one associated to

'even ' is 031 = (0), o. h = (s(0)), 033 = (s(s(x))).

(S3) Cortstr = {a }, Der = {fi(-), f2(- , -)} and

fl (~) - - - -~ a

x y ~(z,y)

R
/2 a a

~ (. . ~ . ,a) _ _ ~ .A. . .
x y

ti(x) fI(v)

z 7 • ~Cv,x)

xl y! xZ ~ ~
fi(xl) ntvz) tIC¢O fi(z2)

Thus. regular systems can be mutually recursive.

We have the following result :

Theorem 3.1

A regular system is confluent and nmtherian. Moreover, it provides suffici~ndy complete and

264

hierarchJcatiy consistent definitions of the derived operators w.r.t, the constructors.

Proof : confluence is because a regular system has no critical pair. Let us now prove naetheriardty.

We order Vconstr~Der by the recursive path ordering >rpo (cf. [Der 82,85]) such that all the constructors

are equivalent, all the derived operators are equivalent, and the derived operators are greater than the

constructors. Then consider a m I e :

f(~p -o K(xl,..,x,,~l,... ,¢r,)

with the previous notations. Each 9k is of the form g(Yl,'-',Yar(g))" Since by hypothesis ~i is not empty,

the multiset {i~} is strictly greater (for the associated ordering :~mo) than the multiset {Yb...,Yar(g)}.

Thus, f (~) >too ~ for any k, and finally :

f(~i~) >rpo K(x1,'",Xn,¢l,'",*m)

This ends the proof of the termination of a rega~lar system.

We notice that terms in Tco~m are irreducible, since no left-hand side admits a constructor at the root

occurrence. This implies hierarchical consistence w.r.t, the constructors. Conversely, a term in normal

form contains no derived operator, since otherwise a role would apply to further reduce it. Thus, the

system is also hierarchically complete.

In this article, we restrict attention m regular systems only. We then have the following result :

Proposition :

Let R be a regular system. For any term t = f(tb...,ta) with f a d e r and tl,...,t a a Tcon~, the

number of rewrite steps between t and its normal from is independent of the rewriting strategy.

Proof : Let us denote by F the set of terms of Tconstr~Der such that at most one derived operator

appears from any path inside the term to the root. It is clear that, if R is regular, i f ta F and t--> t ,

then t ' a F . We are going to show, more genera~y, that for any taF , the cost o f t does not depend of

the evaluation strategy (which proves the previous lemma). Ad absurdum, suppose that this is not the

case for a given t. We can write t = K[fl(x1),...,fn(~)], where K and the %i s are made of constructors

only, and the ~ ' s are derived operators. We consider two cases :

Case 1 : if K is empty (and t = f1(%1)), then exactly one rote applies to t. We let ~(t) be the term

such that t-->0.(t). Then, necessarily, the cost of ~(t) depends on the evaluation strategy.

Case 2 : else, if the cost of each fi(%i) is equal to rn i, whatever the evaluation strategy, then the

cost of t would be mt+...+m w whatever the strategT, which would contradict the hypothesis. Thus,

there exists an i such that the cost of fi(%i) depends on the evaluation strategy. We then let

,<t) = f~<z3.

We define the ordering '> ' by t > t ' /ff either t -e t ' or t ' is a strict subterm of t. ' > ' is well-founded.

Now, the infinite chain :

t, ~(t), ¢(¢(t))

is decreasing for '> ' , which yields the desired contradiction. This terminates the proof.

Note : the property is not true for olements outside of I'. Consider for instance the regular system :

x { 0 -o 0, x l s(y) --> s(x I y)

265

The term '(0 I 0) 1 0' (which is not in F) woutd be normalized in respectively 1 or 2 steps by an

"outermost" or an "innermost" strategy,

We now provide results about the complexity of the rewriting of the derived operators.

Definition 3,4

Let f~ Der of arity m. Let Cn f stand for sum the number of rewrite steps of the term f(tl,,.,,tm) to

its normal form, where the (ti)l.¢.i~ range over Tco,str and axe such that I t 1 t + ... + I t m I = n :

Ca f =]E] c°st(f(tl,"',tm))
t t . - 3 ~ T c ~ t ~
I tl I +...+1 t~ l --n

The cost series associated to f is :

Cf(z) = 2 Ca f zn = ~ c°st(f(tl,'",tm)) zlttl+"'+rt~l
n_>O h,,- . , t~e Tc..=,,

From now on, we suppose that Der = {fb...,frci~r} where NDer is the number of derived operators.

Given a regular system, with each fi defined by a Constr-defmition, we can write :
I t t I + " " • + l t ~ f i) l

Cff~(z) = 2 c°st(fi(tl,"',tar(f+))) z = ~, Y. cost(fi(N~G)) zlm'*crt+
tt,...,t,eq)~ Tc.~, . eE D(fi) G

We have : cost(fi(~iG)) = 1 + ~, COSt(~}k,L,G), in accordance with definition 3.2. Thus
1_~_~

d'(z) = X X z'<*' + X X X cost(~.o~) z m~°'.
e e D (f l) (~ e e D (f 0 (I l ~ n ,

< A > + < B >

Where A = N~f0(z) is a constant part of this sum, and B is a recursive part.

In order to simplify the B part of C 4', we first notice that it is actually quantified over e corresponding

to the rules with non-constant right handsides, that we denote Dne(fi). Let Xe, i stand for the variables

of N~. Then, we may write q~i., = fj(Yl,..-,Y~@, for a certain j, and

X~,~- {Yl,'",YaKG)} = {wl,'",wt(ij.~)}, with l(i,j,e) = IX~,il - ar(f i)

where the wi's are the variables that appear in the 1eft handsides and not in the right handsides of the

n~es.

Let ~, i stand for the number of constructors appearing in ~ . We suppose that (s restricted to the vari-

ables Xe, i of N~ is : {yt:= tl,...,y~fj):= tmf~) , wl.= t 1,...,Wl(id,e).= t l(ij,e)}"

We have: INi(Sl = ~.i + Itll+..-+ltar(f~)l + It'll+..-+lt't(id.,) I

Then :
t h l + • + • +lt~xej)t I t ' , t + - - - +h ' t (~ ,~ l

e°st(%a,,(s) zl+:+l = Z~O'a 2 COSt(fj(ti,...,tar(fj))) Z Z
~fO ee O~.(fO

Let E~d stand for the number of occurrences of 'fj' in the right handside of the rule r i. The B part of C f'

finally rewrites into :
I t t l + • ' • + l t=q j) l I g ~ l + • • " +lt'~(t,j~)l

E z ~ E eij E COSt(fj(tl,...,tarff~))) z z =
e~D~(fO 1-<j<-NDer h,...,t~f~a T c ~

t'~,...,t 'gi.~)a Tc.~,~

Z Z ~eij z~'~ Nl(i'J'e') Cf~(z) = Z Z ~id z~,~ N+X,,~I-a+(fj) C~,(z).
ceDe(f0 l_<j~gDer ~D~(f-,) l~j~rn

266

We also define Mid(z) = ~ ei j z~NlX~al-~fj)(z) , and we let M(z) denote
e~ D.o(fO

(M@z))I.~j~rD~ r. We obtain the central result of this paper :

the matrix

Theorem 3.2

The cost series satisfy the equation : ~(z) = M(z) ~(z) + ~(z). Thus, the expression of each

cost series is :

det((Id-M)ri](z)) CS~(z) =
det(Id-M(z)) '

where Id is the identity matrix, and (Id-M)[il(z) is the matrix Id-M(z), the i m column of which

being replaced by ~(z).

N(z) , each cry(z) may .be rewritten into the following form : Since z - *(N(z))

Pi(N(z))
cf'(z) =

Qi(N(z)) '

where P and Q are respectively prime polynomials with integer coefficients. Now, in order to evaluate
f.

the C~', we have to determine the smallest singularity of each CrY(z). Its singaxlarities are :

- either the singularities of N(z), the smallest being for z = p,

- or the z's such that Qi(N(z)) = 0. Let us denote by p~ the smallest real positive root of

Qi(N(p~)) = 0 (with the convention that p~ = ~ if the equation Qi(N(z)) has no root for Izl < p~).

We now have the following main theorem :

Theorem 3.3

(3) if p < p$, then :

(2) if 13 = p~, then:

(3) if p > P0, then :

--f
c2 = k~ (i + o (L))

n

- -

--f,]nnm3+l/2

The ki's are real numbers, and the rni's are strictly positive integers ; all of them can be expressed sim-

ply (as shown hereafter - Results 3.4, 3.5 and 3.6).

We now proceed by proving theorem 3.3 by considering successively the three cases.

Study of case (1)

We can write, using Taylor-izritch expansion formula :

. + (N(z)-~) + (N(z)-'z) 2 + O(I N(z)--x t 2).
Qi(N(z)) Qi("~) ~ IN---, - ~ L i j I t ' ~

Applying the transfer lemmas of section 2, and using the approximation :

267

1/2
2cl)(x) z + 0

(F1)

we get :

C~ k - / O(' 0 --~-3/2 (1 + O (1)) , w i th k 1 = : , , / ~ p ~, =

and finally :

ar(fi)z~f0 -4- ~N t Qi JIN~

Result 3.4

c. = kl (t + o (k)), with kl = []
n ar(f~fo-t ON [Q~J,s~

Example 3.1

We consider, on binary trees built as previously, another version of a shuffle function on trees, defined

by the fol lowing set o f rules :

RTt T(a,a) ~ a

4 7 2 ~'(" A .a) ~ A
x y x y

473 • ?(a, ") ~ g(x.x)

x 7

4 ; 4 t (~ . . . , A . .)
xl yt x2 y2 ~ ?(xt,x2) "[(.vLy2)

Rgl g (a . a) ~ a~-'~ a

RI2 g (~ .a) ~ g(x,y)
x Y

Rg3 g (~t, ~) ~ g(x, 7)
x y

4 g, g (..:-.. , ..,:..) _ _ . ~ ~
xl yt x2 y2 t(xt,x2.) g(yl,y2)

The matrix M(z) associated to the 1' and g is :

z= [~2N2(z)[2÷N~'(z) 2~+.~N2(z)],

and replacement o f z by

Y2(z)]
and Y(z) = [N2(z)j. This yields, after computation of the determinants,

N(z)
(these computations have been performed with assistance of the

1+N2(z)

2 6 8

MAPLE program ~ P L E 85]) :
(I+N2(z)+N4(z)) N2(z) (l+NZ(z)) 2 PI(N(z))

C?(z) = I+2N2(z)_N4(z)_N6(z) = "Qt(N(z))

Cg(z) = (I+2N2(z)+N6(z)) N2(z) (l+N2(z)) 2 _ P2(N(z))

I+2NZ(z)-N4(z)-N6(z) Q2(N(z))

The denominator (l+2N2-N4-N 6) has no root for N~ [0,1]. We are therefore in the current case (1).

Computation gives :

C: = 72(1+0(1))
n

~g = ioo (i + o (l)) .
11

IN=I

= 144 and = 200. Finally :
I N = I

End of example 3.1

Study of case (2)

We can write :
Pi(N(z)) 1 Pi(N(z))

Qi(N(z)) (N(z)-¢) s Q--i(N(z)) '

where s is a strictly positive integer, and Qi is an integer polynomial such that Qi(z) ;e 0. Then :

Pi(N(z)) Pi('0
= ~ (N (z) - z) -s + ?2(N(z)---'O "s+l/2 + O(IN(z)--~l-S+l).

Qi(N(z)) Qi(z)

Applying the transfer lemmas of section 2, and using the approximation (F1), we obtain :

C~ = k' 2 p-%~2 (I+0()), with k ' . = "r(s/2)'

and thus :

--f T 2~(x) ~ F(-l /2)
C= = k2n (i+0(-~2)), with k 2 = (-I) s-i

F(s/2)
(

Finally, using F(I/2) = "(~ and F(s/2) j (p--t)! = , we obtain :

L 22p+1 if s=2p+l

1 Pi("¢)

ar(f0~ ~) - ~ Qi(*)

if s=2p

(2p-i)! i

(p-I)!

Result 3.5
s+l

--f. ~ I
C n' = kzn ~ (l + O (- ~)) ,

with

k 2 =
[Pi(~)

ar(fi)'c ~e°-1 el(*)

i Pi(~)

2q,"(x)]-q,+i) ~ (p-i)!

L- w-j
f - =_e__~_

2~"('C) I- 2 2
L--~-77" j (p--l),

f f s = 2 p

ifs = 2p+1 0 k2 = ar(fi):~fo_ I ~i(.c)

269

Example 3.2

We consider the same system as in example 3.1, except that nile R'~2 is replaced by rule R?2, :

R~2' T(~ ,a) ~ g(x,y)

x y

The matrix M(z) associated to the I ' and g is now :

2z2N2(z)

z2N2(z)

We obtain, after replacement of z by N(z) :
l+N2(z)

det(I-M(z)) = (1-N(z)) (NZ(z)+2) (N(z)+l)
(l+N2(z)) 3

2:]
2z:+z2N2(z)]"

which yields :

C~(z) = 1 NX(z) (I+N2(z)) = 1 PI(N(z))
1-N(z) I+N(z) I -N(z) QI(N(z))

1 N2(z) (I+N2(z)) 1 Px(N(z))
Cg(z) = =

1-N(z) l+N(z) 1-N(z) Q2(N(z))

PI(1)
We are in the current case (1). Computation gives : _

QI(1)

C : = "k]~Knl/2v2 (l+O(--~n))

P2(1)
- - = l, and finally :

End of example 3.2

Study of case (3)

Let ~ = N(p~). We have : 0 < p~ < p, and 0 < x~ < "~. We can write :
Pi(N(z)) 1 Pi(N(z))

Qi(N(z)) (N(z)-x~) s Q-i(N(z)) '

where s is a strictly positive integer, and Qi is an integer polynomial such that Qi(x~) ~ 0. Then, using

a Taytor-Izritch expansion of z = N ! z) , , in the neighbourhood of p~, we get :
tvti~(z)) .

N(z) x~ O / N] r . i i 2
Z ---- ~ ---- ------7-. d" ~ [J ~ O(N(z)) cI~(xr) 3N cl~N) iN=C% (N'x°) + O(lz p01),

from which we derive :

N - x~ = 1 (z-p~) + O(Iz-p~l 2)

3N I N=No

270

- --I --TZ + 0(1 1 _ _ _ 1 2) . Z
I-'o

4
Pi(N(z>)

Using this developement in the previous expression of ~ yields :
Qi(N(z))

ThtlS,

i
and finally :

Result 3.6

-~, , f o ! ~ ~ ±
C n = K 3/-r-z -. [n 2(1+O(--~)),

J
f

with k3 = (-i)____s_s i [~
(S--l)] ar(fi).~a~"(f~) - I

Example 3.3

¢~'%)]" p~(~:6) f 2n¢,"c:6) []

We consider the same system as in example 3.1 (or example 3.2), except that rule R?2 (or rule R?2,) is

replaced by role R?2. :

- ' g(x,y) g(x,y)
x y

The matrix M(z) associated to the 1' and g is now :

2zZN2(z) 3z 2]

zZy2(z) 2z2+z2N2(z)]"

This yields, after computation of the determinants, and replacement of z by N(z) :
l+NZ(z)

C?(z) = (l+NZ(z)) 2 (l+3NZ(z)) N2(z)
l+2N2(z)-N4(z)-3N6(z)

Cg(z) = (l+N2(z))2 (l+2N2(z)) N2(z)
1+2N2(z)-N4(z)-3N6(z)

The expression (L+2N2(z)-N~(z)-3N6(z)) admits a root for N O N 0.93336, which gives ~o

0.49881 (< ": = 1/2). We are therefore in the current case (3), and computation ~ves finally :

271

Cg = k" 3 ~ (i-I-O())

with k 3 ~ 0.27901, k' 3 ,-~ 0.21234, and --P--. ,..a 1.00238
p6
End of example 3.3

We notice that, simply m o ~ i n g one role between examples 3.t, 3.2 and 3.3, induces respectively

constant, polynomial or exponential cost. This illustrates the great sensitivity of the cost of rewriting

w.r.t, mild modifications within the rewrite rules.

Thus, in each particular case, the asymptotic developments are obtained with very few computations,

that just rely on the "geometry" of the system. The user of our methods actuaUy never needs to mani-

pulate formal series ; (s)he simply has to apply theorems 3.3, 3.4 or 3.6 (according to the singularity

closest to the origin of the Qi(N(z))'s.

4. Conclusion

For the class of the regular term rewriting systems, we have provided ways of obtaining asymptotic

evaluations of the cost series. The user does not need to actually manipulate formal series, since our

results are given under the form of ready-to-use formulae. These results solely depend on physical

characteristics of the system, easily obtainable : number of variables and of constructors in the left-

hand sides, occurrences of derived operators in the right-hand sides. Then, the average cost is constant,

polynomial or exponential, according to the position of the singularity of the expressions Qt(N(z))

closest to the origin.

Acknowledgements

We thank Jean-Pierre Jouarmaud for contribution to the proof of Theorem 3.1 and Philippe Flajolet for

fruitful1 discussions. This work has been partially supported by the C.N.R.S.P.R.C. de Programma-

tion, and the ESPRIT Meteor project.

5. References

[-Bel 85] Belhassen S., "Sdries formeUes de complexitd dans les types abstraits algdbriques", Rapport de

DEA, Orsay 1985.

[-BBWT 81] Bergstra J.A., Broy M., Wirsing M., Tucker J.V., "On the power of algebraic

specifications", Proc. of the M.F.C.S. Conference, L.N.C.S. 118, Springer Verlag, 1981.

[BCV 85] Bidoit M., Choppy C., Voisin F., "The Asspegique specification environment : motivations

and design", Proc. 3rd Workshop on Theory and Applications of Abstract data types", Bremen, Nov.

272

1984. Recent Trends on Data Type Specification (H.-J. Kreowski ed.), Informatik Fachberichte 116,

Springer-Verlag, Berlin-Heidelberg, 1985.

[C&K 83] Choppy C., Kaplan S., "Complexity calculus for abstract data types", LRI Report no 147,

Nov. 1983.

[CLR 80] Choppy C., Lescanne P., Rrmy J.-L, "Improving abstract data type specification by

appropriate choice of constructors", Proc. Intern. Workshop on Program Construction, Bonas, France,

1980, Mac Millan, A. Biermarm, G. Guiho and Y. Kodratoff (eds), 1983.

[Der 82] N. Dershowitz, "Orderings for term-rewriting systems", T.C.S. vol. 17.3, March 1982.

[Der 85] N. Dershowitz, "Terrrfination", Proc. of the RTA'85 Conference, L.N.C.S. 202, 1985.

[E&M 81] Ehrig H., Mahr B., "Complexity of algebraic implementations for abstract data types", I. of

Computer and System Sciences, vol 23, no 2, Oct, 1981, pp. 223-253.

[Fla 87] Flajolet P., "The symbolic operator method", in Mathematical methods in the analysis of algo-

rithms and data structures, L.N.C.S., Springer-Vedag, to appear 1987.

[F&S 82] Flajolet P., Steyaert J.M., "A complexity calculus for classes of recursive search programs

over tree structures", Proc. 22nd tEEE Syrup. on Foundations of Computer Science, Nashville, 1982,

pp. 386~393.

[F&G 84] Forgaard R., Guttag J.V., "REVE : a term rewriting system generator with failure-resistant

Knuth-Bendix", Prec. of an NSF Workshop on the rewrite rule laboratory, Report no 84GEN008, Gen-

eral Electric, Apr. I984.

[FGJM 84] Futatsugi K , Goguen J.A., Jouannaud J.P., Meseguer J., "Principles of OB/2", CRIN

Report 84-R-066.

[GSF 86] Gaudel M.C., Sofia M., Froidevaux C., "Types de donnres et algorithmes - vol 1 : Analyse

d'algorithmes, Drfmition des types de donnres", Collection Didactique, INRIA, 1986.

[GHW 85] Gut-tag J.V., Homing I.J., Wing I.M., "Larch in five easy pieces" Digital System Research

Center Report, lul. t985.

[Kap 86] Kaplan S., "A compiler for conditional term rewriting systems" Proc. of the RTA'87 Confer-

ence, L.N.C.S. this volume, also : L.R.I. Report no 3t5, Dec. i986.

[l(_nu 68] Knuth D., "The art of computer programming : Fundamental algorithms", Addison Wesley,

Reading, 1968.

[Knu 73] Knutta D., "The art of computer programming : Sorting and searching", Addison Wesley,

Reading, 1973.

273

[M&M 78] Meir A., Moon J.W., "On the altitude of nodes in random trees", Canadian Ioumal of

Math. 30, 1978, pp. 997-1015.

[MAPLE 85] Char B.W., Geddes K.O., Gonnet G.H., Watt S.M., "MAPLE : Reference Manual",

University of Waterloo, 1985.

[S&S 84] Sofia M., Steyaert J.M., "Average efficiency of pattem matching on Lisp expressions", Proc.

of the CAAP 84 Conference, also : LRI Report no 178, May 1984.

[Stey 84] Steyeart J.M., "Complexit6 et structure des algorithrnes", Th~se d'Etat, Universit6 de Pads 7,

1984.

