ALGORITHMIC COMPLEXITY OF TERM REWRITING SYSTEMS

C. CHOPPY, S. KAPLAN, M. SORIA
Laboratoire de Recherche en Informatique
UA. CNRS. 410
Université Paris-Sud, Bat 490
F-91405 ORSAY Cédex, FRANCE
net ; mevax!inrallrilec, mevax!inriallritkaplan, mevax!indallrilsoria

Introduction

Algebraic specifications are now widely used for data structuring and they tum out to be quite useful
for various aspects of program development, such as prototyping, assisted program construction, prov-
ing properties, etc [BCV 85, FG 84, FGIM 84, GHW 85, Kap 86]. Some of these applications require
to add a notion of computation to algebraic specifications, for instance by providing a (convergent)
rewrite rule system that expresses the properties of the operators. In this context, it may be of first
interest to define a notion of algorithmic complexity for an algebraic specification, or, more precisely, a
notion of complexity for each operator defined in the specification. Computing operator complexity
within a given specification helps understanding how evaluation costs are distributed ; it may point out
"costly” operators, and motivate the search for an equivalent, but "cheaper”, specification.

In [CLR 80], the cost of a term is defined as the number of rewriting steps for reducing it to its normal
form, and the cost of an operator is defined as the general cost of a term obtained by applying this
operator to terms in normal form. In this paper, we further formalize this notion of operator complex-
ity and investigate its computation through analysis methods developed for instance in [Stey 84] and
{Fla 87]. We show how these methods apply to the computation of the enumerative series over the
terms of an algebraic specification. We define the notion of regular rewriting systems, and consider
cost series of operators that are described by such systems. We show how these analysis methods
apply to compute such costs and provide an asymptotic evaluation of the average cost of an operator.
Our results allow costs to be computed without any expiicit manipulation of series. We provide an
eventual user with ready-to-use formulae, where the different parameters only depend on the
"geometry” of the system, e.g. the number of constructors in the left handside of niles, number of

occurrences of a derived operator in the right handside, etc.

Quantitative evaluation of rewriting systems had not yet been studied under such an approach (except
in {CLR 80]), to our knowledge. From a different point of view, complexity of algebraic implementa-
tions has been studied in [BBWT 81, E&M 81, etc.] w.r.t. computability issues.

1. Introductory example

Let us assume that one wants to evaluate the average cost of a given computation on some data set.
The data belong to a set of objects, a size can be computed for each object ; let D, denote the set of

257

objects of size n, and N, = card (D). Assuming all the objects have the same probability, the average
cost is [GSF 86] :
C,= L Y. cost(d) = -;1 .
n deD, n

Generating series are defined by associating the series a(z) = Y a,z" to a sequence (a,): to the
sequence (N,) is associated the enumerative series N(z) = 3, N,z% , and to the sequence (C,} is associ-
ated the cost series C(z) = 3 C z" . Computation of the coefficients of the generating series can be
performed either using "exact” methods (e.g. using the Lagrange inversion theorem) or methods that
provide an approximation, based on real or complex analysis techniques. The asymptotic value of the
coefficients a, of a complex series }, a,z" may be evaluated using results of complex functions theory
(essentially based on Cauchy formula) : the singularity closest to the origin determines the order of
growth of the coefficients (more precisely, their eprnemial factor is determined by convergence radius
of the series and their polynomial factor is function of the nature of the singularity) [Fla 87].

Consider the example of a specification of binary trees with two constructors : the constant "a’ and the

’_. ' operator (think of "cons" in Lisp).

Considering the enumerative series : Ni..(z) = 3, N, 2%, since each nth power of z appears as many
n0

times as there are trees of size 11, we have : N (z) = 3 z't! where T, is the set of terms built with
€ Topee

’

the constructors 'a’ and _ .

Let us first perform the computation of N () by case analysis on terms :
Nieel@) = Y AL ¥ AL

t=a t=thty

Since Ity .t = 1+l + 1yl : Npe@=z+z 3 ¥ 22" =21+ N2(2)
HE Tyee € Tuee

In the general case, computation of N, .(z) can also be performed using systematic methods for com-
puting enumerative series and cost series for algorithms on combinatorial structures [Fla 87] (in partic-
ular, one may apply these methods when trees are used as data structures to represent terms) ; the main
steps of these methods are the following :
¢ take the construction primitives of the combinatorial object and deduce the structural equations ; in
the case of tree this leads to :

tree = a + / N\ or tree = a + . X tree X tree
tree tree

where + is the disjoint union and X the cartesian product

¢ transpose the structural equation(s) to generating series, using the fact that, when considering the
associated series, any disjoint union is expressed by a sum and any cartesian product is expressed by a
product ; in our example, this leads to :

Niree(@) = 2 (1 + Nie(2))

258

(the same result was obrained above by case analysis)
e solve the generating series equations. In the above example, simple resolution leads to

1-V1- 47°
2z

Nipolz) = (this solution is adequate since it is analytic at the origin), and further computa-
£,
tion by series development leads Ny, = 0 and to Ny y = ;*_1-1— ﬁf} (Catalan numbers, cf. [Knu 73}).

P
Using the Stirling formula : pi = ¥Zrp [P-] (140 (), this yields :
e P

Napt = 072 (140 ()
Another approach is to use complex analysis methods (local analysis around singularities) for passing
from functional equations over generating functions to asymptotic expressions of their coefficients.
VI 13z, 1

Continuing with our example, we have : N (z) = ~
2z 2z

Niee(z) is analytic for lzi < -;— and has two singularities : z = —;— and z = —-;—.

Let us apply the Newton expansion : [2°] (1-kz)* t = g-n [EJ = kP {n-—o‘i-ll]
ot
T(-o)
(where T is the Euler Gamma function: I'(x) = fye‘*t"‘ldt. Werecall that : T (x+D)=x I (x),

One shows [Fla 87] that when n—>+ee : [2%] (1-kz)* = k'(1+0 (—:l-))

I'(1y=1--hence T (n) = (n-1) whenne N-and T (-%) = V).

The contributions of singularities with same module are added together, leading in our case to :

1
(ZIN@) = —= 2*1g (1+0 (-1-*)) for n odd, and 0 for n even.
V21 n
A more systematic approach that uses "transfer lemmas” [Fla 87] is presented in section 2.

Now let us add a derived operator ’_ T’ (called "shuffle” since it is moving subtrees around) defined
with the following rules :
Sp:aTtoa.y, (. .tpTa-n@ .2 . T@. w->0Te. Ty

The cost of a term is the number of rewriting steps necessary to reduce it to its normal form for a
given strategy ; the cost of an operator is defined as the cost of a term obtained by applying this opera-
tor to the terms in normal form. In all examples considered in this paper, it is insured that operator
costs are independent from the evaluation strategy (cf. propsition in section 3).

Let us evaluate the cost functions for the operators of this specification : "a’ and '_ . _’ being construc-
tors, the comesponding cost functions are equal to zero. Computation of the cost function for the opera-
tion '_ T _’ will be done by means of the following generating function (cf. definition 3.4) :

CT(Z) =3 CnT " where Cf = Y, cost(t Tu) (where i tlis the size of the term t, i.e. the
>0 ¥, U € Tiee
tth 4 lul=n

T {Z" @ (2) denotes the coefficient of z° in ® (z)

259

total number of symbols that appear in t, and where Ty, is the set of terms in normal form, which is

exactly here the set of terms built on the constructors ’a’ and '_ . _’).
Hence : CT(z) = ¥ costt T uy 't
t, UE Tiree

Let us use a case analysis for terms in normal form to compute CT(z) :
C'ey= 3 cost(alopz* + T cost ((tuty) T a) 2!

1€ Toe 11,826 Taeo

. fubpl+luu,!
+ 3 cost ((t; . t) T (uy . up)) I ¥iom
£1,82,11, 026 Teres

since : cost (a T ty=1+cost(a.t)y=1,
cost ((t;.1) T a) = 1 + cost ({tyty) .) = 1,
cost ((ty . 1) T (uy . up)) =1 + cost ((t; T u.t; T uy))
=1 + cost (tiTul) + cost (tzTuz) y

we have :
CT(Z)=Z Z zm +z 2 th,l Z thzl +ZZ Z thll Z thzl Z ZIu,l Z zIu2I
t€ Torew 1€ Toreo 26 Toeo 1€ Tea € Three WE Trree 28 Trree
+22 Y cost(t Tuy) PR p3 2% 3 2!
£1,01€ Tiree 1€ Tiren 7€ Toee
+ 22 Y cost (tzTuz) LYIREY 3 iy Y Lol
5,026 Toree 1€ Tooe € Ties
=2 Nppo(2) + 22 N2 (2) + 2 N2 (2) + 2 22 N&(2) C'(2) .
Hence :
Ty = 2 Niee(2) + 2 NEeo(@) + 2 Niee(2) 2 Nigee2) + 2 Nieo2) NZ.(2) "
1-22" N2 1-22N%(1-222N2.@)

11— 422
2z

Replacing in this expression N,,..(z) by its value : and using the same complex analysis
method as for N..(z) (development around singularities, Newton expansion, adding up the contribu-
tions of singularities) yields to : CZT? = 3—2%-”(1 +0 (i))

T Vr P
Cop
i 2 >2P
such that It)] + Ityl = 2p. Computation of N, 5, yields :

cf=a(1+o0 (-E-I;))

Now the average cost is : 621;, = where N; o, (cf. section 2) is the number of &ee couples (1, tp)

in this case, the average cost is constant (asymptotically).

We develop in section 3, a general method for computing the coefficients of series such as CT(z), when
the rules defining *_ T _’ constitute a regular rewriting system.

t using the fact that : Ny (z) = 2 (1 + N2 .(z))

260

2. Enumerative series of the term algebra

We denote by Teguq the set of terms built on the signature Constr. Let us denote by oy the number of
symbols in Constr of arity k. We always suppose that o # 0.

Definition 2.1
Let N, stand for the number of terms in Ty, of size n. The enumerative series of Tegpe 18 ¢
N@ = YN,z = Y z''.
020

1€ Teoanr

Let O(X) stand for the polynomial : &(X) = f’_ocka, where ‘p’ denotes the largest arity in Constr, and
x=0

where there exists ¢ > 0 with k 2 Al

We have the following resuits :
(1) N(z) is a solution of the functional equation : N(z) = z.® (N(z)) (cf. section 1 : transposition

from structural equations to generating series).

(2) Let us suppose that there is no polynomial ¥ and integer d22 such that &(X) = ¥ (X% ;let 1 be
T
D(r)
and 0 < p < 1.t is the only real positive root of the equation $(X) = X®’(X) such that IX] = 1. More-
over, T = N(p“) and p is the only singularity of N(z) such that lzi = p. Then around z = p [M&M 78] :

the smallest root of the equation P(X) = XP’(X), and p = ; p is the convergence radius of N(z)

5@ | 2 2) . 32
N@EZ)y=1~ l—— 1l +O | |[1~— F1
(2 =1 (7) o st 5 0 (F1)

(3) Transfer Lemmas : when it is possible to have an asymptotic development of a series around the
singularity that is closest to the origin, under some conditions (that are always fulfilled in the case of
term algebras) an estimation of the series coefficients can be deduced from the series estimation

through transfer lemmas {Fla 87].

We use the transfer lemmas in the following case .
Let £(z) = h(z) + O(g(z)) be the expansion of f around the singularity p, where f and g are stan-

[+
dard functions of the type {1 — ﬁ-] and h is of higher order than g around p. Then :
[2"] f(z) = [2"] b(z) + O ([2"] g(2)).

Considering the expression (F1) and applying the transfer lemmas, one gets :

20 1)) 32 . [_.5,42] .
- —_— e - -1/ = -
N, " =) 0 p"ln with I" (~1/2) 2V

= 420 1
N!! = 21,;@"(1) p o (1 + O (n))'

+ If this condition is not satisfied, this means that N(z) = z(1+0;N), and thus : N(z) =

ie. finally :

}."alz

261

Note 1 :
For average cost computations, we need to evaluate the quantity N, ., that is the number of terms
tyye ooty € Toonsee Sach that i+, 41t { =n. Then:

Z Nm.n 20 = E Z 2% = Z zlt‘l+...+|tml = (N(z))m.

=0 =0 t1,0055 Towar Hyooe o€ Teomr
ittty l=n

Thus, Ny, , is the coefficient of 2" in (N(z))™, and using (F1) we have :

2500 12 . k77)
N@)™ = @ m—f»\/-—- 1-Z -=|+0 ||1-= .
Ny ™+m7t ') { p} +v2 { 5 + 5

Now, using the transfer lemmas, we obtain :

- -1 .\f D) 4 1
Ny, = mt™® -_an)"('c) pn (1+0{n))

- d
and : Ny, =m ™I N, = N @) | 22Ny
More generally, given the polynomial on N(z) : P(z) = iaiN"(z) similarly : [z°] P(z) = N,;g% {Fp .

i=1

Note 2 :

The above results were obtained for the case where p was the only singularity of N(z) such that
lzl = p. Let us now consider the case where there are more than one such singularity. If
BX) = WX, let T still denote the unique real, positive root of the equation @(X) = X&'(X). The
other solutions of this equation are e?mdr fork =1,2,...d-1. We now have :

= _E(E)____ ~-n =32 _1_ : -
N, =dy/ (D) pn (1+O(n)) ifn = 1 [modd],

N, = 0 otherwise.
and :
- O(1) _ 1 .
Npn = dm7® 1‘\,m P02 (1 +O(-r-l-)) ifn = m [mod dj,
Npa = 0 otherwise.
Example :
These results immediately apply to the example of section 1 where Constr = {a, _ . _ }. We have

=1, o = 0, oy = 1. Then B(X) = 1+X?, of the form ¥(X?), with W(Y) = I+Y. 1T satisfies :
1+ =212 Thus t=1 and p = —— = 1/2. , and we derive :

(1)
1 1
= 2n+1 ~32 2 .
N, = n (1+O(n)) for n odd, and 0 for neven;
RN | QNS R 7, 1 - ;
Nya = o 2%l (1+0 (n)) forn = m [mod d], and 0 otherwise.

Notice that letting m = 2, n = 2p, we obtain : Ny, = P p~2(1+0 (-é—)) which leads to the

1 22
2r
same result as obtained in section 1.

262

3. Cost series for the derived operators

We suppose that the set of operator symbols X is partitioned into :
s a set Constr of constriccrors (these are functions that generate the set of terms, and for which
the generating function N was computed hereabove) ;
» 3 set Der of derived operators (that realize computations on terms of Ty, .0)-
We wish to ensure that any term of Te,, (ie. built with constructors only) is irreducible, and that for
feDer and for ty,...0€ Teopse » H(1seeesty) Tewrites into a unique term of Teyney in @ finite amount of
rewrite steps. To this effect, we are going to restrict the form of the mles that are acceptable.

Definition 3.1
A Constr-enumeration associated to an operator fe Der, with ar(f)=n, is a finite family of n-tuples
Brsesniny Of (Teonsr(X))" such that :

« each @, contains at least a constructor symbol

¢ for any Te (Teonar)”, there exists a unique substitution 0:X—Te . and a unique e such

-
that : t = Bo

Thus, intuitively speaking, the (®,) form a description of the possible arguments of f, that is at the
same time exhaustive and non-ambiguous. For instance, with Constr={0, s} and Der={+}, we can
take : @, =(x,0) and B, =(x,s(y)), asa Constr-enumeration of the symbol *+’.

Let X, stand for the variables that appear in @,, and &, for the number of constructors that appear in
W, (let us recall that, according to Definition 3.1, & = 0). In the previous example, we have :
Xl = (X}, &1 =} and Xz = {X,y}, E‘,z = 1

Definition 3.2
A Consr-definition of feDer is a set of rewrite rules Ry = (f.)1ceqnp) Such that :
» ecach rule is of the form r, : f(W,) — p, Where (B,)ee sy is @ Constr-enumeration of £ ;
s each p, is of the form p, = K(x,....X0,01,-..9p) , Where :
e X is a conmtext made of constructors only,
° {Zpml c X,
o each ¢, is of the form g(yy,....Yaxg))» Where g is a derived operator,

263

A typical rule thus looks like :
f(@(x1.X0,%3.X4.X5.%6:%7)) —

X X1

g / f\ f\
X1 % X X X4 4/"2 i7
Definition 3.3

A set of R of rewrite rules is regular if it is of the form R = Ugp.Rs, where R; is a Constr-

definition of f, for each feDer
For instance, the following systems are regular :

(S;) Constr = {0, s}, Der = {+, even} and
Ryt x+0-x, x+s(y) 2 sx+y)
Reven : even(0) — True, even(s(0)) — False, even(s(s(x))) — even(x)
The Constr-enumeration associated to ‘+’ is the one presented hereabove, while the one associated to

‘even’ is @y = (0), ® = (s(0)), 03 = { s(s(x))).

(83) Constr={a, _._},Der={f;(_),f2(_,_)} and
sz fla) ~——p 2
(A —» X Ta
x g o opEy)
RQ : 2(2a) =—p 3/\3

(AN 2) —p ~~ .
L 4 P
1) £1(y)

2(a. A oy A
¥ 3y . 2(y.x)

2IAC A —
1 g1 xl/\yq, — ——
f1(x1) [1(p2) L1(71) f1(x2)
Thus, regular systems can be mutually recursive.

We have the following result :

Theorem 3.1
A regular system is confluent and neetherian. Moreover, it provides sufficiently complete and

264

hierarchically consistent definitions of the derived operators w.r.t. the constructors.

Proof : confluence is because a regular system has no critical pair. Let us now prove neetherianity.
We order Teopanper DY the recursive path ordering >g,, (cf. [Der 82,85]) such that all the constructors
are equivalent, all the derived operarors are equivalent, and the derived operators are greater than the
constructors. Then consider a rule :

f@) - K&y Xpdieofn)
with the previous notations, Each ¢y is of the form g(yy,....Yaxg)- Since by hypothesis @; is not empty,
the mulriset {1} is strictly greater (for the associated ordering »50) than the multiset {y),...Yaqg)-
Thus, (@) >p, ¢y for any k, and finally :

(@) >po KXpeXndpe o)
This ends the proof of the termination of a regular system.
We notice that terms in Tq,,e, are irreducible, since no left-hand side admits a constructor at the root
occurrence. This implies hierarchical consistence w.r.t. the constructors. Conversely, a term in normal
form contains no derived operator, since otherwise a rule would apply to further reduce it. Thus, the

system is also hierarchically complete.

In this article, we restrict attention to regular systems only. We then have the following result :
Proposition :
Let R be a regular system. For any term t = f(t;,...,t;) with feDer and t;,..t; € Tegpqs the

number of rewrite steps between t and its normal from is independent of the rewriting strategy.

Proof : Let us denote by I" the set of terms of Teg ariper SUch that ar most one derived operator
appears from any path inside the term to the root. It is clear that, if R is regular, if tel and =",
then t'el’. We are going to show, more generally, that for any te, the cost of t does not depend of
the evaluation strategy (which proves the previous lemma). Ad absurdum, suppose that this is not the
case for a given t. We can write t = K[fl()a),...,fn(ﬁ)], where K and the ;-&’s are made of constructors
only, and the d;’s are derived operators. We consider two cases :
Case 1 : if K is empty (and t = fl(;a)), then exactly one rule applies to t. We let ¢(t) be the term
such that t—>¢(t). Then, necessarily, the cost of ¢(t) depends on the evaluation stategy.
Case 2 : else, if the cost of each fi(g_{}) is equal to my, wharever the evaluation strategy, then the
cost of t would be m+...+m,, whatever the strategy, which would contradict the hypothesis. Thus,
there exists an i such that the cost of fi()a) depends on the evaluation strategy. We then let
0 = §C0).
We define the ordering “>" by t > t’ iff either t — 1" or t’ is a strict subterm of t. *>” is well-founded.
Now, the infinite chain :
t, o), (), ...

is decreasing for *>’, which yields the desired contradiction. This terminates the proof.

Note : the property is not wue for elements outside of I". Consider for instance the regular system !
x{0—0, xis(yy > sixly)

265

The term (0 | 0) | O’ (which is not in I') would be nommalized in respectively 1 or 2 steps by an

“outermost” or an "innermost” strategy.
We now provide results about the complexity of the rewriting of the derived operators.

Definition 3.4
Let fe Der of arity m. Let Cf stand for sum the number of rewrite steps of the term f(;,....t,,) to

its normal form, where the (1)<, 1ange over Tey,, and are such that 4! + ..+ Il =n:

cf = T cost(f(ty,.ty)
e S0€ Tonsee
It +utityi=n

The cost series associated to f is :
Cay=Y Clt= Y cost(flty,.tp) z '
020
From now on, we suppose that Der = {f},...fyp.,} where NDer is the number of derived operators.
Given a regular system, with each f; defined by a Constr-definition, we can write :

. gl - Fltg,yl f i
¢t (z) = > cost(fi{ty,...,tuyey)) z ol y ¥ cost{f(@,0)) z'®°!,
tl,.‘.,t,,((i,é'fc,,n., eeD(f) &
We have : cost(fi(ﬁieio)) =1+ 3 cost(Py ; .0), in accordance with definition 3.2. Thus :
= 3 3%+ 3 3T 3 cosulty;.0 2™
eeD(f) o eeD(fy o Isk<n,
< A > + < B >

Where A = Nal(f‘)(z) is a constant part of this sum, and B is a recursive part.
In order to simplify the B part of CF, we first notice that it is actually quantified over e corresponding
to the rules with non-constant right handsides, that we denote D, (f). Let X, ; stand for the variables
of tﬁé. Then, we may write ¢ ;, = fj(yl,...,yar(fi)), for a certain j, and
Xei = YiYangy} = {WpWig 9}, with ije) = X it - ar(f)
where the w;’s are the variables that appear in the left handsides and not in the right handsides of the
rules,
Let &, ; stand for the number of constructors appearing in ‘cﬁé. We suppose that o restricted to the vari-
ables X, ; of Blis: {ys= U Yary™= Loty W= Voo Wi)™= Uiy}
We have : 1801 = & + Ity 1+t + 1014418 |
Then :
2, cost{dy;.0) 299 o5) COSUE (L1 basy)) Z
esD{f) ee D, (f)
Let gl ; stand for the number of occurrences of ‘f;’ in the right handside of the mile i The B part of ch

;xz!+‘~+ltu{,j}l zlt’,§+"'+lt"ﬁ_wl.

finally rewrites into :
2 Z‘,;"i 2 Eéd E COSt(f}(tl,...,tar(fj))) 4
eeD(f) 15jENDer [),)s Teoaer
Vet i) Tonsr
> y &l § £ NiGi®) fig) = S O¥ &l f £ N Kl ofiy
ee D (f) 1<isNDer e€ Dy (f) 1Si<m

Tl n byl 100]
Iz =

266

. r
(i | | N)
Then, let 6(2) stand for the vector . and 7(2) for the vector .
\Cfm’“(z) Nar(fNDer)(z)
We also define M@ = ¥ eb2N"'*®g) | and we let M(z) denote the mawix
ee Do ()

(M; {(2))1<; jaNperr We obtain the central result of this paper :

Theorem 3.2

[H

The cost series satisfy the equation : @(z) M(z) a(z) + ?(z). Thus, the expression of each

cost series is :
6]
Chpy = e de-Mia))
@ det(10-Mz))
where Id is the identity matrix, and (I&-M)l)(z) is the matrix Id-M(z), the i® column of which
being replaced by ¥(2).

Since z = (Dl(\;(;i» , each Cf‘(z) may be rewritten into t'he following form :
chiz) P.(N(Z)) ’
Q(N(z))

where P and Q are respectively prime polynomials with integer coefficients. Now, in order to evaluate

the C;‘, we have to determine the smallest singularity of each Ciz). Its singularities are :
- either the singularities of N{z), the smallest being for z = p,
- or the z’s such that Qi(N(z)) = 0. Let us denote by pg the smallest real positive root of
Q'(N(p)) = 0 (with the convention that pj = = if the equation QY(N(z)) has no root for Izl < pj).

We now have the following main theorem :

Theorem 3.3
(3) if p < pg, then : f:‘ =k (1+0 («i-))
(2) if p = pj, then: T =™ (1+0(—=)
Vn
13
(3) if p > pg, then : o =y [[amen <1+0(‘}}>
4 n

Po

The k;’s are real numbers, and the my’s are sirictly positive integers ; all of them can be expressed sim-
ply (as shown hereafter ~ Results 3.4, 3.5 and 3.6).

We now proceed by proving theorem 3.3 by considering successively the three cases.

Study of case (1)
We can write, using Taylor-Izritch expansion formula :

P{N(z)) (D 3 1h ~ * B 5 2
= + o fom N o —— N + O(IN(Zzyt1).
QiNz) Qi oN [Q;] N«\:(@ oN? {Qi Iu&:{ s (N

Applying the transfer lemmas of section 2, and using the approximation :

267

2P(1) z z ”

N(z) =1 - -2 +v1[1-El+0| -2

o=) nlg ol .
we get

Y KON Iy wihg e——2>b 9 |B
Co = 5N P @ (HO(Q), withk, = L ON [Qi

and finally :

*

IN=t

Result 3.4
P

Q

— 1 9
ar(fye™ ! N

T =k (1+0(L), withk, =
n IN=t

Example 3.1

We consider, on binary trees built as previously, another version of a shuffle function on trees, defined

by the following set of rules :

R71 1(aa) > 2
Rta T(/'\ .a) —_— x/\

L 4
R13 12 2) g

LI 4

Rrs A T

X1 g1 2 y2 Tetx2) Wly2)
R gl g(aa) __p a/-\a.

Rz g(AL .2) —> gxy)
x y
Rgl gla,) —» 37
x 3

R g4 gl AY) —
oyt x2 g2 Txt,x2) &ly2)

The matrix M(z) associated to the T and gis:

222N2 2 2
[z‘ @ 2] o Yy = er(z)

 This vi . inants,
2NYz) 2242°N(z) ._N2 @ This yields, after computation of the determinan

N(z)

(these computations have been performed with assistance of the
1+N%(z)

and replacement of z by

268

MAPLE program [MAPLE 83]) :
(1N @ NY@) NA() (14NZ@)? _ PiN@)

' =
@ 142N%(2)-N*z)~-N(z) Qu(N@z)
Ciz) = (L+2N2(2NO() N*(z) (14N7z)? _ PaN@)
1N (z)-N*Y(z)-NS(z) Q,(N(2))

The denominator {142N*-N*-N%) has no root for Ne[0,1]. We are therefore in the current case (1).

P

Q

& = na+oy
n

= 200. Finally :
IN=1

Computation gives : ——

d | P2
= 144 d m e
an { e

i

(@]
G
it

100 {1+ 0 (L)),
n
End of example 3.1

Study of case (2)

We can write :
PNG@) 1 P(N@=)
QNE) M@t GNG)

where s is a strictly positive integer, and Q, is an integer polynomial such that Q%) # 0. Then :
P(NGE) B
UN@) Qv

Applying the transfer lemmas of section 2, and using the approxirnation (F1), we obtain :

(N@-™ + 1MN@-0"? + O(IN@-T1™).

31 P(1) | 20(7) 1
fu v’ 2 - s
Ci=kyp™n? (140G~ » with K = (0’5 = 1y r(sm,
and thus :
sl P() {s+1)
=t 3 . el 1 (D [20(1) | 2 T(=1/2)
Co=kn ° (+0(—7 uz », with kp = (=1) ar(fy®! Qo (9" T(s/2)
4
L (p—1)! if s=2p
Finally, using I'(1/2) = V& and I'(s/2) = , we obtain
CpDl L i anpn
(p-1)! 2+l
Result 3.5
ﬁ—i‘ t
éni = kzﬂ 2 (1+0(~§17>>’
n
with
e, = 1 Py(1) 20"(1) R (p-D)! if's = 2p
2T e Qo (1) (2p—1)' 4!
P. "
k, L PO (2o T v ifs=2p+1 O
ar(fyr 0 Qo) [@(7) -1

269

Example 3.2

We consider the same system as in example 3.1, except that rule Ry, is replaced by mule Ryy :

Rr2 1¢ /‘\,a)__» g ()
X y

The matrix M{z) associated to the T and g is now :
22°N4(z) 222
2N z) 22%42°NY(z)

We obtain, after replacement of z by N@ :
14N%(z)
— 1oNGy N@H2) (NG
det(I-M(z)) = (1-N(z)) (1+N2(z))3
which yields :
M) = 1 N%z) (14N*2) _ ! EI(N(Z))
1-N(z) 1+N(2) 1-N(z) Q,(N(z))
o) = —L N@QUNG@) 1 P(N@)
1-N(z) 14+N(z) 1-N(z) Q(N(z))
. L Pi(1) Py1)
We are in the current case (1). Computation gives : ——— = ——— = 1, and finally :

UL QW)

9!
|

ol Tow 1

= \/zn (1+0(ﬁ))
G - AR L
C: = ’\/211 (1+0(45))

End of example 3.2

Study of case (3)
Let 75 = N(p{). We have : 0 < p§ < p, and 0 < 1§ < 7. We can write :
P(N@»y 1 PNz

QANGE) (N@-t) QNG

where s is a strictly positive integer, and Q; is an integer polynomial such that Q(zd) # 0. Then, using

. . N(z) . . .
a Taylor-Izritch expansion of z = ~——*— in the neighbourhood of p}, we get :
3 p . B(N@) i Po g
_ N@ % 3 | N

= = — vl R prene N~} Ol z— i|2,
NG o | O [DD | OO

from which we derive :

N-‘Cé:
9
oN

N

(z-pd) + O(lz-pdl?)
O(N) }m:uo

270

i {1_~-{u) + Ol 1-ii 12),

1 (1) o) Po
@ D)
Using this developement in the previous ression of FiNtz)) ields
e 100 1€ :
d pe P *P QN 7
PN o' | P -
(N() = (1)1~ A (9) _‘(TO_) + o272,
QMN@) ps- |t P | P
Thus,
[o | rad !
AL (%) . . o 1
Cf = (1) | | =2 (B (1+O(—)),
 DEd J Qzd I'(s—1) vn
and finally :
Result 3.6
—_ In s+-l— 1
C:‘:k;[—e.-'n 2(14+0(==)),
péj ¥

(e
e L5 90 R [FEE
’ 5 O | Q) Ot

{s—1)! a.r(fi)’tu(fi)ml

Example 3.3
We consider the same system as in example 3.1 (or example 3.2), except that rule R, (or rule Rpy) is

replaced by rule Rypn :

o

: . R — T —
Rt 1¢ ;‘\ysﬂ) oxy) gy

The matrix M(z) associated to the T and g is now :
225N¥z) 322
| 2NYz) 22%42*N¥(z)

This yields, after computation of the determinants, and replacement of z by 1—%—;—%—)— :
+. Z

) = (14N%(2))? (143N%(z)) N2(z)
1H2N3(2)-N¥(z)~3N0(z)
(L+NHz))? (142N%(z)) N3(z)

C¥z) =
142N2(2)~N*(z)~3N5(2)
The expression (1+2N%(z)-N*z)-3N%z)) admits a root for Ny ~s 0.93336, which gives Ty ~v

0.49881 (< T = 1/2). We are therefore in the current case (3), and computation gives finally :

cl = kK [—9—}6 (1+0(-—j§>)

Po

27

i

Tt = k| & a0k
3[90} o

with ks ~v 027901, K5 ~ 021234, and £ ~ 1.00238
Po

End of example 3.3

We notice that, simply modifying one rule between examples 3.1, 3.2 and 3.3, induces respectively
constant, polynomial or exponential cost. This illustrates the great sensitivity of the cost of rewriting
w.r.t. mild modifications within the rewrite rules.

Thus, in each particular case, the asymptotic developments are obtained with very few computations,
that just rely on the "geometry” of the system. The user of our metheds actually never needs to mani-
pulate formal series ; (sthe simply has to apply theorems 3.3, 3.4 or 3.6 (according to the singularity
closest to the origin of the Q;(N({z))’s.

4. Conclusion

For the class of the regular term rewriting systems, we have provided ways of obtaining asymptotic
evaluations of the cost series. The user does not need to actually manipulate formal series, since our
results are given under the form of ready-to-use formulae. These results solely depend on physical
characteristics of the system, easily obtainable : number of variables and of constructors in the left-
hand sides, occurrences of derived operators in the right-hand sides. Then, the average cost is constant,
polynomial or exponential, according to the position of the singularity of the expressions Q;(N(z))

closest to the origin.

Acknowledgements

We thank Jean-Pierre Jouannaud for contribution to the proof of Theorem 3.1 and Philippe Flajolet for
fruitfull discussions. This work has been partially supported by the CN.R.S. PR.C. de Programma-
tion, and the ESPRIT Meteor project.

5. References

{Bel 85] Belhassen S., "Séries formelles de complexité dans les types abstraits algébriques”, Rapport de
DEA, Orsay 1985.

[BBWT 81] Bergstra J.A, Broy M., Wimsing M, Tucker J.V.,, "On the power of algebraic
specifications”, Proc. of the M.F.C.S. Conference, LN.C.S. 118, Springer Verlag, 1981,

[BCV 85] Bidoit M., Choppy C., Voisin F., "The Asspegique specification environment : motivations
and design", Proc. 3rd Workshop on Theory and Applications of Abstract data types", Bremen, Nov.

272

1984. Recent Trends on Data Type Specification (H.-J. Kreowski ed.), Informatik Fachberichte 116,
Springer-Verlag, Berlin-Heidelberg, 1985.

{C&K 83] Choppy C., Kaplan S., "Complexity calculus for abstract data types”, LRI Report no 147,
Nov, 1983.

{CLR 80] Choppy C., Lescanne P., Rémy J.-L., “Improving abstract data type specification by
appropriate choice of constructors”, Proc. Intern. Workshop on Program Construction, Bonas, France,
1980, Mac Millan, A. Biermann, G. Guiho and Y. Kodratoff (eds), 1983.

{Der 82] N. Dershowitz, "Orderings for term-rewriting systems”, T.C.S. vol. 17.3, March 1982.
[Der 85] N. Dershowitz, "Termination”, Proc. of the RTA’85 Conference, L.N.C.S. 202, 1985.

{E&M 81] Ehrig H., Mahr B., "Complexity of algebraic implementations for abstract data types”, J. of
Computer and Systern Sciences, vol 23, no 2, Oct, 1981, pp. 223-253.

[Fla 87] Flajolet P., “The symbolic operator method”, in Mathematical methods in the analysis of algo-
rithms and data structures, L.N.C.S., Springer-Verlag, to appear 1937,

[F&S 82] Flajolet P., Steyaert IM., "A complexity calculus for classes of recursive search programs
over tree structures”, Proc. 22nd IEEE Symp. on Foundations of Computer Science, Nashville, 1982,
pp. 386-393.

[F&G 84] Forgaard R., Guttag J.V., "REVE : a term rewriting system generator with failure-resistant
Knuth-Bendix", Proc. of an NSF Workshop on the rewrite rule laboratory, Report no 84GENOQO8, Gen-
eral Electric, Apr. 1984.

[FGIM 84} Futatsugi K., Goguen LA., Jouannaud J.P., Meseguer J., "Principles of OBJ2", CRIN
Report 84-R-066.

[GSF 86] Gaudel M.C., Soria M., Froidevaux C., "Types de données et algorithmes - vol 1 : Analyse
d’algorithmes, Définition des types de données”, Collection Didactique, INRIA, 1586.

[GHW 85] Guttag J.V., Homing I.J., Wing J.M., "Larch in five easy pieces” Digital System Research
Center Repor, Jul. 1985,

[Kap 86] Kaplan S., "A compiler for conditional term rewriting systems” Proc. of the RTA87 Confer-
ence, LN.C.S. this volume, also: L.R.I Report no 315, Dec. 1986.

[Knu 68] Knuth D., "The art of computer programming : Fundamental algorithms”, Addison Wesley,
Reading, 1968.

[Knu 73] Knuth D., "The art of computer programming : Sorting and searching”, Addison Wesley,
Reading, 1973.

273

M&M 78] Meir A, Moon J.W., "On the altitude of nodes in random trees”, Canadian Journal of
Math. 30, 1978, pp. 997-1015.

[MAPLE 85] Char B.W., Geddes K.O., Gonnet G.H., Watt SM., "MAPLE : Reference Manual",
University of Waterloo, 1985,

[S&S 84] Soria M., Steyaert J.M., "Average efficiency of pattern matching on Lisp expressions”, Proc.
of the CAAP 84 Conference, also : LRI Report no 178, May 1984.

[Stey 84] Steyeart J.M., "Complexité et structure des algorithmes", Theése d’Etat, Université de Paris 7,
1984.

