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Abstract: A generalization of tree matching and unification algorithms is presented. Given the 
equation s = t, this algorithm can often quickly determine that the rewrite rule s --+ t leads to an 
infinite sequence of "simplifications". The rule t --~ 8 can be tested in the same way. Rules leading 
to infinite simplifications should not be included in a rewrite system. In general, the problem of 
deciding whether a set of rewrite rules leads to infinite simplifications is undecidable. The algorithm 
that is used for tiffs problem is a cross between a unification algorithm for terms with overlapping 
variables and a matching algorithm. In the simplest case it attempts to find a, ~r M and gu SUCh 
that CrMC~V8 = c~ut/a. In other words, is there a substitution (r~r such that in ~he rule ~rus --~ ~rut 
the left side matches a subpart of the right side. The same basic algorithm can be used to test 
more complex cases of looping involving the interaction of several rules, but it is limited to those 
cases where each application of a rule occurs inside of the previous rule application. Experiments 
suggest that the simplest form of the algorithm is about 80 percent effective in eliminating bad 
orientations of rules. The algorithm never rules out a good orientation of a rule, and so it is most 
useful when one wants to consider all possible rule orientations. 
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1. I n t r o d u c t i o n  

One basic problem that arises in the Knuth-Bendix procedure [6, 10] is to orient equations: 

convert an equation s = t into the rule ~ -* t or the rule t --~ s. The decision of how to orient 

each rule can be critical to the operation of the procedure. Two variations of the procedure obtain 

the same final answer if they use the same method for orienting rules [11]. On the other hand, 

one orientation method may lead to a finite set of rewrite rules, while another may lead to infinite 

calculations. 

Often when a person runs the Knuth-Bendix system, he wants to obtain a finite set of rewrite 

rules so long as ~t is not too much trouble. Various termination orderings have been devised for 

such people. Dershowitz [2] gives a survey of such orderings. Sometimes, however, a person wishes 

to obtain a finite set of rewrite rules if at all possible. Then he may wish to try every possible 

ordering until he finds one that works. He will have to be careful not to spend too much time on 

any one ordering because some of them probably lead to infinite computations. At such times he 

would like an orientation method that eliminates those orientations which are known to lead to 

infinite computations but that does not eliminate any which might lead to finite computations. A 

perfect system would elinfinate all orientations that lead to infinite computations and no others, 
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but there is no such algorithm - -  the problem is undecidable. 

This paper gives an algorithm for the elimination of most orientations that lead to infinite 

simplifications while not eliminating any that do not. In what follows infinite simplifications will 

be called looping to save space. The Knuth-Bendix procedure can diverge due to looping or due to 

starting to generate an infinite set of rules. The current paper attacks the looping problem. Herman 

and Prlvara [4] attack the infinite number of rules problem. They eliminate some orientations that 

are known to lead to an infinite number of rules. Thus, their algorithm complements the current 

one; the' Knuth-Bendix procedure needs to consider only those rules that pass both test. 

The present algorithm is apparently the first algorithm to reject (some) looping rules while not 

ever rejecting non-looping rules. Plaisted [13] gives an algorithm based on a similar idea: he elim- 

inates orientations that are not consistent with any simplification ordering while not eliminating 

any that are consistent. His method does not allow rules such as f ( f (X) )  ---* f(g(f(X))),  which 

do not loop, because such rules are not consistent with a simplification ordering. 

I recommend that you first use the Knuth-Bendix procedure with some termination ordering. If 

the termination ordering leads to a finite set of rules, you have obtained your answer the easy way. 

If it does no t  seem to be leading to a finite set of rules, then yon can use the current method and 

order the rules whichever way seems best. Eventually you will orient your rules correctly or give 

up on the problem. The method does not prevent you from trying out any promising orientation. 

So far I have not followed my own advice; the loop detection algorithm is easy to program and 

is fairly effective, so I have used it aione until I get around to building a simplification ordering 

routine. Before I had any assistance with orientation, looping was a major problem. After I added 

the loop testing algorithm, looping has seldom been a problem. 

It is undeeidabte whether or not a set of rewrite rules loops [7]. The problem remains unde- 

cidable for sets with 2 rules [2]; the complexity of one rule systems is not known. As a result~ no 

ordering method is completely satisfactory if one wishes to exhaustively consider possible orienta- 

tions for rules. Compared to other published orientation methods the current algorithm gives the 

most freedom but the least help in solving orientation problems. The user is left with the problem 

of proving that his final set of rules do not loop. 

2. Some S imple  Loops 

The rewrite rule *(e,X) ~ *(X,e) loops on the term *(e,e). The reason for this is that the 

left and right sides of the rule unify with each other - -  for X = e the two sides are the same. This 

generalizes to: s --* t loops when s unifies with any part of 4. 
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For many  appilcutlons of unification, one ~rst modifies one of the terms so that  they have 

distinct variables. This  is incorrect for this problem~ the original variables must  be retained. For 

example, the rule + ( X )  --~ X does not loop even though X * unifies with + (X) .  

The rule * ( X , Y ) - +  *( i ( i (X) ) ,Y)  loops. In this case the two sides do not  unify. Here the 

reason for looping is that  the left side matches the right - -  if on the left side X is replaced with 

i ( i (X))  then *he left and right sides are the same. This generMizes t o : ,  --~ t loops when s matches 

part  of t. For this case, the variables of t can be considered as distinct from those of s. 

The following nota t ion is useful for generatizing these observations. Let ~r be a subst i tut ion of 

values for variables. The individuM subst i tut ions in , will be wri t ten in the form X +-- t, where 

X is a variable and  t is a term. The term t may contain variables. Those variables that  are not 

assigned values in c~ retain their original value. I will say cr[X] is empty in such cases. The notat ion 

~rt means replace each variable in the term t with its value in e. Do not apply ~ to itself, i.e., do 

not  assign values to variables tha t  appear in the right side of the assignments in ~r. The notat ion 

cr2t means cr(crt) and t /a  means the subtree at position a in t. The posit ion is usually represented 

as a number  where the first digit says which child of the root to follow, the second digit says which 

child of that  node to follow, etc. The nota t ion a i means to follow the path  consisting of i a's. 

T h e o r e m  1. The  rewrite rule s -~ t loops if there exists a position a in t and subst i tut ions 0" M 

and ~v  such that  

CrM~TU8 -~ cru(t/a ). 

(The subs t i tu t ion  o- M is similar to matching,  and the subst i tu t ion err is similar to unification.) 

Proof: Let 

~ = (~o-t)[~ ~-  ~ ( * ) ] . . - [ a  ~ ~ -  ~ u ( ~ ) ] .  

Applying the rule s -+ t to ul at a/+1 gives ui+l ,  leading to an infinite sequence of simplifications. 

Theorem 1 detects all loops where a subst i tu ted form of the original rule, ~ru, -* *ut has the 

property that  the left side of the rule matches a part  of the right side~ but  it does not detect all 

causes of looping. Dershowitz [2] gives a number  of cases where it  fails. In practice, however, it 

does quite well. For example, when the Knuth-Bendix  procedure is run  on the s tandard  3 rule 

representat ion of group theory [10], theorem 1 suggests a unique orientat ion for all equations that 

arise except for two: , ( * ( X , Y ) , Z )  --- * (X ,*(Y ,Z) )  and  i ( * (X ,Y ) )  = *( i (Y) , i (X)) .  These two 

equations can be oriented either way without causing looping, al though the second rule must be 

oriented properly to avoid generating an infinite number  of rides. 
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The following table summarizes the results of a few tests based on theorem 1. 

Initial rules 
groups (three rules) [10] 
dihedral group of order 8 
central groupoid (second version) [10] 
groups (one rule) [5] 

number of orientations 
0 1 2 
0 17 2 
0 22 24 
0 43 13 
9 137 14 

The three columns of numbers show the number of rules for which it permitted zero orientations: 

one orientation, and two orientations. In most cases the algorithm was able to rule out one of the 

two possible orientations. Even when just one orientation passes the test there is no guarantee that 

the rule does not loop: but this trouble seldom occurs in practice. In most cases the algorithm was 

able to suggest the correct orientation by considering a rule in isolation. When the Knuth-Bendix 

procedure was run on the one rule version of group theory, some equations were generated where 

neither orientation was satisfactory. Some of these equations were eliminated by introducing new 

operators. Others were simplified away by later rules. 

During the tests many rules had one orientation e~minated for one of the following simple 

reasons: (1) one side was a variable, (2) one side contained a variable that the other side did not, 

or (3) one side was a subpart of the other side. A number of more complex cases were also correctly 

oriented. Any method of testing each rule in isolation will have trouble when there are a large 

number of equations relating terms with two different main operators. In such cases it is often 

important to orient all the equations for a pair of main operators the same way. 

Theorem I can be generalized as follows. 

T h e o r e m  2. The set of rewrite rules sj --~ tj for 1 _< j _< m loops there exists position at in tv~ 

and rule numbers r~ where 0 _< i </~ for some k and there exists substitutions OM and c~v such 

that 

C~M~rUS~(,+~)=od ~ = cf~r(tr~/ai)  for 0 < i < k. 

For i # j ,  the rules s t ,  -*  tr, and sr¢ --* G; use distinct variables (even when ri  = r j ) .  

P r o o f :  Let 

[ ( a 0  . .  • • . .  ai-  

Applying the rule srl -~ trl to u i - 1  gives u l ,  leading to an infinite sequence of simplifications. 

The time for testing with theorem 2 appears to increase rapidly with k ( O ( n  ~) times the time 

for solving equations of the form aMerUS = crUt , where n is the total size of the rules). I have not 

tried to use it with k k 2. Like Theorem 1, Theorem 2 does not find all cases of looping. 
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3. The U - m a t c h  Algor i thm 

To solve for cr M and cru that satisfy the equations 

O"McrU,$ . { ,+ , } .o , , i ,  ~ = crU( tr, ~at) 

for 0 < i < k, one can try each combination of possible values for the a:s and r's. For each set of 

a's and r's~ one obtains a set of equations of the form 

crMcrUPi = cruqi. 

This set of equations can be solved using decomposition and merging [9]. If some p has the form 

f ( P l , . . .  ,Pb) and the corresponding q has the form g ( q l , . . .  ,qe)  with f - g and b = e, then the 

equation CtM,rU p = cruq can be replaced with the set of equations O'Mergpi = cruqi for 1 < i < b, If 

some equation has this form with f # g or with b # c, then the original set of equations does not 

have a solution [9, 10]. This replacement of equations is called decomposition. 

After decomposition, each equation wiU have one of the following three forms: 

1. crMe'Ut = c r u X  , 

2. ~ M ~ r u X  = crut , 

3. O'McrVX = crvY~ 

where ¢ is a term that is not a single variable and where X and Y are variables. 

If there is any equation of form 1, then it is necessary that t does not contain X and that the 

assignment X *--- crMcru~ b e  in ao-. If crMcru[X] is empty (as it will be the first time) then the 

assignment is X *- t. This assignment can now be applied to all remaining equations to eliminate 

X without changing the set of solutions. This process may lead to more decomposition and convert 

equations of form 3 to form I or 2, but repeated application wilt eventually eliminate all equations 

of form 1. Solving equations of form 1 is a unification problem. 

H two equations have the same left side variable, they can be satisfied if and only if their right 

sides unify, because only cru affects the right sides. If the right sides do unify, then the unifier can 

be applied to the equations and the two original equations will be the same. This process may 

generate some more equations of form 1, but those can be eliminated as before. Eventually all 

equations will be of forms 2 and 3, and there will be at most one equation for each variable. These 

remaining equations can be solved setting gr M so that c r M ( X )  is the right side of the equation for 

X. 
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In all of the unifications, it is important to check that the variable X does not occur (either 

directly or indirectly) in the value of X. When computing O-M no such occur check is made. 

The above explanation of the algorithm was chosen for clarity. The actual implementation was 

selected to be reasonably fast without being overly complex. It is a variation of an exponential 

time unification algorithm, but in practice it is "fast enough" - -  loop testing takes a small fraction 

of the total time used during a Knuth-Bendix calculation. It would be interesting to know how fast 

the calculation can be done. For example, can the linear time algorithm of Paterson and Wegman 

[1, 12] be modified to solve this problem. The current approach can take up to n times longer 

than the underlying unification algorithm, but perhaps a faster approach exists. A fast version of 

the algorithm would be useful as a filter on a termination ordering algorithm. The loop test could 

eliminate about half of the possible orderings, potentially saving about half the time used by the 

termination ordering algorithm. 

Here is the algorithm that I actually use. 

A l g o r i t h m  U-match(s, t, c). The parameters s and t are terms. The parameter c has the value 

unify, match, or both. The algorithm also uses two global variables, substitutions O-M and ~v. The 

function Occur(X,  t) returns true if the variable X occurs in O-~rt (the results of repeated applying 

O-v to t) and false i f l t  does not. On entry to the algorithm O-u must be such that, for each variable 

X in O-tr, O e e u r ( X , X )  must be ]alse (otherwise the algorithm may fail to terminate). Also for 

each variable X either O-MiX] or O-u[X] is empty. These conditions are also true when exiting 

the algorithm. When e = both the algorithm attempts to set O-M and aU so tha t  O-Mo-bs -- a~t  

for some i, i.e. O-M and O-~] solve the equation O-MC/vS = O-'vt with O-~ -- O-It. The algorithm is 

allowed to modify c~ v by adding assignments for variables that do not yet have a value in c, v. It 

is allowed to modify O-M only by adding assignments for variables that do not yet have a value in 

either c~ and by moving an assignment from O-M to O-U (leaving an empty assignment in O-M)- Thus, 

this algorithm finds a solution to the equation O-Mo-US ---- O-ut that is consistent with the current 

substitutions, if such a solution exists. The algorithm returns the value true if it finds a solution 

and false otherwise. If  c = match then the algorithm only changes O'M, i.e. it attempts to match 

s to t, and if c = unify then it changes O-•r, i.e. it attempts to unify s and t. When c = unify and 

~rM is not empty, the algorithm can also change O-M. In effect, it is unifying O-M s and t, and it may 

need to modify O-M to do this. 

Step 1 If s is a variable then 

Step 1.1 while t is a variable and O-vt # t set t e-- O-vt; 

Step 1.2 if s = t then return true, 
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Step 1.3 

Step 1.3.1 

Step 1.3.1.1 

Step 1.3.1.1.1 

Step 1.3.1.1.2 

Step 1.3.1.2 

Step 1.3.2 

Step 1.3.2.1.1 

Step 1.3.2.2 

Step 2 

Step 2.1 

Step 2.1.1 

Step 2.1.2 

Step 2.1.3 

Step 2.1.4 

Step 2.1.4.1 

Step 2.1.5 

Step 2.2 

Step 2.2.1 

Step 2.2.2 

Step 2.2.3 

otherwise 

if (aMau)[s]  is empty" then 

if c = unify then 

if Occur(s, t) then re turn false, 

otherwise add s ~- t to c%~ and re turn  true; 

if c ¢ unify then add s ~- t to a M and re turn true, 

otherwise if  aM[S] is empty  then 

re turn U-match(c~us, 4, unify), 

otherwise set s t to be the assignment to s in O'M, 

change aM to have s ~-- t~ and 

re turn U.rnateh( s ~, t, unify). 

If s is not  a variable then 

if t is a variable then 

if c = match then re turn  false; 

if  Occur(t, s) then re turn false; 

i f  (aMOTy)[t] is empty  then add t ~- s to a U and re turn  true; 

if  aM[t] is not  empty  then 

move t e -  o'Mt to a v  leaving aM[if empty;  

re turn U-match(s, nut , unify); 

if  ~ is not  a variable then (decompose) 

let s have the form f ( s l , . . .  ,Sin) and t have the form g( t l , . . .  ,tn), 

constants have this form with zero for the number  of children; 

i f  f # g or m ¢ n then return false; 

for i = 1 to m if not  U-match(si,ti,c) then re turn false, 

otherwise re~urn true. 

4. C o n c l u s i o n s  

The U-match  a lgor i thm gives a practical  way to test single rewrite rules for looping. If a rule 

fails the test,  then  it definitely causes looping. If it passes, i t  may or may not cause looping. The 

most impor tan t  use of this test  is for el iminating many  of the possibly bad orientations of rewrite 

rules when exhaustively considering various orderings. 

The  a lgor i thm may  also be useful as a filter on slow terminat ion  ordering algorithms. It 

can el iminate nearly half  of the possible orientations from further consideration. Unification and 

matching  are special cases of  the computa t ion  done by the algori thm, so a fast implementat ion 
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could be considered as a replacement of both the matching and unification algorithms of a Knuth- 

Bendix program. 

It is interesting to note that a local test, such as theorem 1, can often show that a rule is oriented 

incorrectly, but that their are no useful local tests to show that a rule is oriented correctly. Whether 

or not an orientation is correct depends on the complete set of rules. 
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