
Detecting Looping Simplifications
Paul Walton Purdom Jr.

10t Lindley, Computer Science

Indiana University

Bloomington, Indiana, 47401, USA

Abstract: A generalization of tree matching and unification algorithms is presented. Given the
equation s = t, this algorithm can often quickly determine that the rewrite rule s --+ t leads to an
infinite sequence of "simplifications". The rule t --~ 8 can be tested in the same way. Rules leading
to infinite simplifications should not be included in a rewrite system. In general, the problem of
deciding whether a set of rewrite rules leads to infinite simplifications is undecidable. The algorithm
that is used for tiffs problem is a cross between a unification algorithm for terms with overlapping
variables and a matching algorithm. In the simplest case it attempts to find a, ~r M and gu SUCh
that CrMC~V8 = c~ut/a. In other words, is there a substitution (r~r such that in ~he rule ~rus --~ ~rut
the left side matches a subpart of the right side. The same basic algorithm can be used to test
more complex cases of looping involving the interaction of several rules, but it is limited to those
cases where each application of a rule occurs inside of the previous rule application. Experiments
suggest that the simplest form of the algorithm is about 80 percent effective in eliminating bad
orientations of rules. The algorithm never rules out a good orientation of a rule, and so it is most
useful when one wants to consider all possible rule orientations.

Keywords" Knuth-Bendix, Looping, Matching, Rewrite rules, Simplification, Unification.

1. I n t r o d u c t i o n

One basic problem that arises in the Knuth-Bendix procedure [6, 10] is to orient equations:

convert an equation s = t into the rule ~ -* t or the rule t --~ s. The decision of how to orient

each rule can be critical to the operation of the procedure. Two variations of the procedure obtain

the same final answer if they use the same method for orienting rules [11]. On the other hand,

one orientation method may lead to a finite set of rewrite rules, while another may lead to infinite

calculations.

Often when a person runs the Knuth-Bendix system, he wants to obtain a finite set of rewrite

rules so long as ~t is not too much trouble. Various termination orderings have been devised for

such people. Dershowitz [2] gives a survey of such orderings. Sometimes, however, a person wishes

to obtain a finite set of rewrite rules if at all possible. Then he may wish to try every possible

ordering until he finds one that works. He will have to be careful not to spend too much time on

any one ordering because some of them probably lead to infinite computations. At such times he

would like an orientation method that eliminates those orientations which are known to lead to

infinite computations but that does not eliminate any which might lead to finite computations. A

perfect system would elinfinate all orientations that lead to infinite computations and no others,

55

but there is no such algorithm - - the problem is undecidable.

This paper gives an algorithm for the elimination of most orientations that lead to infinite

simplifications while not eliminating any that do not. In what follows infinite simplifications will

be called looping to save space. The Knuth-Bendix procedure can diverge due to looping or due to

starting to generate an infinite set of rules. The current paper attacks the looping problem. Herman

and Prlvara [4] attack the infinite number of rules problem. They eliminate some orientations that

are known to lead to an infinite number of rules. Thus, their algorithm complements the current

one; the' Knuth-Bendix procedure needs to consider only those rules that pass both test.

The present algorithm is apparently the first algorithm to reject (some) looping rules while not

ever rejecting non-looping rules. Plaisted [13] gives an algorithm based on a similar idea: he elim-

inates orientations that are not consistent with any simplification ordering while not eliminating

any that are consistent. His method does not allow rules such as f (f (X)) ---* f(g(f(X))), which

do not loop, because such rules are not consistent with a simplification ordering.

I recommend that you first use the Knuth-Bendix procedure with some termination ordering. If

the termination ordering leads to a finite set of rules, you have obtained your answer the easy way.

If it does no t seem to be leading to a finite set of rules, then yon can use the current method and

order the rules whichever way seems best. Eventually you will orient your rules correctly or give

up on the problem. The method does not prevent you from trying out any promising orientation.

So far I have not followed my own advice; the loop detection algorithm is easy to program and

is fairly effective, so I have used it aione until I get around to building a simplification ordering

routine. Before I had any assistance with orientation, looping was a major problem. After I added

the loop testing algorithm, looping has seldom been a problem.

It is undeeidabte whether or not a set of rewrite rules loops [7]. The problem remains unde-

cidable for sets with 2 rules [2]; the complexity of one rule systems is not known. As a result~ no

ordering method is completely satisfactory if one wishes to exhaustively consider possible orienta-

tions for rules. Compared to other published orientation methods the current algorithm gives the

most freedom but the least help in solving orientation problems. The user is left with the problem

of proving that his final set of rules do not loop.

2. Some S imple Loops

The rewrite rule *(e,X) ~ *(X,e) loops on the term *(e,e). The reason for this is that the

left and right sides of the rule unify with each other - - for X = e the two sides are the same. This

generalizes to: s --* t loops when s unifies with any part of 4.

56

For many appilcutlons of unification, one ~rst modifies one of the terms so that they have

distinct variables. This is incorrect for this problem~ the original variables must be retained. For

example, the rule + (X) --~ X does not loop even though X * unifies with + (X) .

The rule * (X , Y) - + *(i (i (X)) ,Y) loops. In this case the two sides do not unify. Here the

reason for looping is that the left side matches the right - - if on the left side X is replaced with

i (i (X)) then *he left and right sides are the same. This generMizes t o : , --~ t loops when s matches

part of t. For this case, the variables of t can be considered as distinct from those of s.

The following nota t ion is useful for generatizing these observations. Let ~r be a subst i tut ion of

values for variables. The individuM subst i tut ions in , will be wri t ten in the form X +-- t, where

X is a variable and t is a term. The term t may contain variables. Those variables that are not

assigned values in c~ retain their original value. I will say cr[X] is empty in such cases. The notat ion

~rt means replace each variable in the term t with its value in e. Do not apply ~ to itself, i.e., do

not assign values to variables tha t appear in the right side of the assignments in ~r. The notat ion

cr2t means cr(crt) and t /a means the subtree at position a in t. The posit ion is usually represented

as a number where the first digit says which child of the root to follow, the second digit says which

child of that node to follow, etc. The nota t ion a i means to follow the path consisting of i a's.

T h e o r e m 1. The rewrite rule s -~ t loops if there exists a position a in t and subst i tut ions 0" M

and ~v such that

CrM~TU8 -~ cru(t/a).

(The subs t i tu t ion o- M is similar to matching, and the subst i tu t ion err is similar to unification.)

Proof: Let

~ = (~o-t)[~ ~- ~ (*)] . . - [a ~ ~ - ~ u (~)] .

Applying the rule s -+ t to ul at a/+1 gives ui+l , leading to an infinite sequence of simplifications.

Theorem 1 detects all loops where a subst i tu ted form of the original rule, ~ru, -* *ut has the

property that the left side of the rule matches a part of the right side~ but it does not detect all

causes of looping. Dershowitz [2] gives a number of cases where it fails. In practice, however, it

does quite well. For example, when the Knuth-Bendix procedure is run on the s tandard 3 rule

representat ion of group theory [10], theorem 1 suggests a unique orientat ion for all equations that

arise except for two: , (* (X , Y) , Z) --- * (X ,*(Y ,Z)) and i (* (X ,Y)) = *(i (Y) , i (X)) . These two

equations can be oriented either way without causing looping, al though the second rule must be

oriented properly to avoid generating an infinite number of rides.

57

The following table summarizes the results of a few tests based on theorem 1.

Initial rules
groups (three rules) [10]
dihedral group of order 8
central groupoid (second version) [10]
groups (one rule) [5]

number of orientations
0 1 2
0 17 2
0 22 24
0 43 13
9 137 14

The three columns of numbers show the number of rules for which it permitted zero orientations:

one orientation, and two orientations. In most cases the algorithm was able to rule out one of the

two possible orientations. Even when just one orientation passes the test there is no guarantee that

the rule does not loop: but this trouble seldom occurs in practice. In most cases the algorithm was

able to suggest the correct orientation by considering a rule in isolation. When the Knuth-Bendix

procedure was run on the one rule version of group theory, some equations were generated where

neither orientation was satisfactory. Some of these equations were eliminated by introducing new

operators. Others were simplified away by later rules.

During the tests many rules had one orientation e~minated for one of the following simple

reasons: (1) one side was a variable, (2) one side contained a variable that the other side did not,

or (3) one side was a subpart of the other side. A number of more complex cases were also correctly

oriented. Any method of testing each rule in isolation will have trouble when there are a large

number of equations relating terms with two different main operators. In such cases it is often

important to orient all the equations for a pair of main operators the same way.

Theorem I can be generalized as follows.

T h e o r e m 2. The set of rewrite rules sj --~ tj for 1 _< j _< m loops there exists position at in tv~

and rule numbers r~ where 0 _< i </~ for some k and there exists substitutions OM and c~v such

that

C~M~rUS~(,+~)=od ~ = cf~r(tr~/ai) for 0 < i < k.

For i # j , the rules s t , -* tr, and sr¢ --* G; use distinct variables (even when ri = r j) .

P r o o f : Let

[(a 0 . . • • . . ai-

Applying the rule srl -~ trl to u i - 1 gives u l , leading to an infinite sequence of simplifications.

The time for testing with theorem 2 appears to increase rapidly with k (O (n ~) times the time

for solving equations of the form aMerUS = crUt , where n is the total size of the rules). I have not

tried to use it with k k 2. Like Theorem 1, Theorem 2 does not find all cases of looping.

58

3. The U - m a t c h Algor i thm

To solve for cr M and cru that satisfy the equations

O"McrU,$. { ,+ , } .o , , i , ~ = crU(tr, ~at)

for 0 < i < k, one can try each combination of possible values for the a:s and r's. For each set of

a's and r's~ one obtains a set of equations of the form

crMcrUPi = cruqi.

This set of equations can be solved using decomposition and merging [9]. If some p has the form

f (P l , . . . ,Pb) and the corresponding q has the form g (q l , . . . ,qe) with f - g and b = e, then the

equation CtM,rU p = cruq can be replaced with the set of equations O'Mergpi = cruqi for 1 < i < b, If

some equation has this form with f # g or with b # c, then the original set of equations does not

have a solution [9, 10]. This replacement of equations is called decomposition.

After decomposition, each equation wiU have one of the following three forms:

1. crMe'Ut = c r u X ,

2. ~ M ~ r u X = crut ,

3. O'McrVX = crvY~

where ¢ is a term that is not a single variable and where X and Y are variables.

If there is any equation of form 1, then it is necessary that t does not contain X and that the

assignment X *--- crMcru~ b e in ao-. If crMcru[X] is empty (as it will be the first time) then the

assignment is X *- t. This assignment can now be applied to all remaining equations to eliminate

X without changing the set of solutions. This process may lead to more decomposition and convert

equations of form 3 to form I or 2, but repeated application wilt eventually eliminate all equations

of form 1. Solving equations of form 1 is a unification problem.

H two equations have the same left side variable, they can be satisfied if and only if their right

sides unify, because only cru affects the right sides. If the right sides do unify, then the unifier can

be applied to the equations and the two original equations will be the same. This process may

generate some more equations of form 1, but those can be eliminated as before. Eventually all

equations will be of forms 2 and 3, and there will be at most one equation for each variable. These

remaining equations can be solved setting gr M so that c r M (X) is the right side of the equation for

X.

59

In all of the unifications, it is important to check that the variable X does not occur (either

directly or indirectly) in the value of X. When computing O-M no such occur check is made.

The above explanation of the algorithm was chosen for clarity. The actual implementation was

selected to be reasonably fast without being overly complex. It is a variation of an exponential

time unification algorithm, but in practice it is "fast enough" - - loop testing takes a small fraction

of the total time used during a Knuth-Bendix calculation. It would be interesting to know how fast

the calculation can be done. For example, can the linear time algorithm of Paterson and Wegman

[1, 12] be modified to solve this problem. The current approach can take up to n times longer

than the underlying unification algorithm, but perhaps a faster approach exists. A fast version of

the algorithm would be useful as a filter on a termination ordering algorithm. The loop test could

eliminate about half of the possible orderings, potentially saving about half the time used by the

termination ordering algorithm.

Here is the algorithm that I actually use.

A l g o r i t h m U-match(s, t, c). The parameters s and t are terms. The parameter c has the value

unify, match, or both. The algorithm also uses two global variables, substitutions O-M and ~v. The

function Occur(X, t) returns true if the variable X occurs in O-~rt (the results of repeated applying

O-v to t) and false i f l t does not. On entry to the algorithm O-u must be such that, for each variable

X in O-tr, O e e u r (X , X) must be]alse (otherwise the algorithm may fail to terminate). Also for

each variable X either O-MiX] or O-u[X] is empty. These conditions are also true when exiting

the algorithm. When e = both the algorithm attempts to set O-M and aU so tha t O-Mo-bs -- a~t

for some i, i.e. O-M and O-~] solve the equation O-MC/vS = O-'vt with O-~ -- O-It. The algorithm is

allowed to modify c~ v by adding assignments for variables that do not yet have a value in c, v. It

is allowed to modify O-M only by adding assignments for variables that do not yet have a value in

either c~ and by moving an assignment from O-M to O-U (leaving an empty assignment in O-M)- Thus,

this algorithm finds a solution to the equation O-Mo-US ---- O-ut that is consistent with the current

substitutions, if such a solution exists. The algorithm returns the value true if it finds a solution

and false otherwise. If c = match then the algorithm only changes O'M, i.e. it attempts to match

s to t, and if c = unify then it changes O-•r, i.e. it attempts to unify s and t. When c = unify and

~rM is not empty, the algorithm can also change O-M. In effect, it is unifying O-M s and t, and it may

need to modify O-M to do this.

Step 1 If s is a variable then

Step 1.1 while t is a variable and O-vt # t set t e-- O-vt;

Step 1.2 if s = t then return true,

60

Step 1.3

Step 1.3.1

Step 1.3.1.1

Step 1.3.1.1.1

Step 1.3.1.1.2

Step 1.3.1.2

Step 1.3.2

Step 1.3.2.1.1

Step 1.3.2.2

Step 2

Step 2.1

Step 2.1.1

Step 2.1.2

Step 2.1.3

Step 2.1.4

Step 2.1.4.1

Step 2.1.5

Step 2.2

Step 2.2.1

Step 2.2.2

Step 2.2.3

otherwise

if (aMau)[s] is empty" then

if c = unify then

if Occur(s, t) then re turn false,

otherwise add s ~- t to c%~ and re turn true;

if c ¢ unify then add s ~- t to a M and re turn true,

otherwise if aM[S] is empty then

re turn U-match(c~us, 4, unify),

otherwise set s t to be the assignment to s in O'M,

change aM to have s ~-- t~ and

re turn U.rnateh(s ~, t, unify).

If s is not a variable then

if t is a variable then

if c = match then re turn false;

if Occur(t, s) then re turn false;

i f (aMOTy)[t] is empty then add t ~- s to a U and re turn true;

if aM[t] is not empty then

move t e - o'Mt to a v leaving aM[if empty;

re turn U-match(s, nut , unify);

if ~ is not a variable then (decompose)

let s have the form f (s l , . . . ,Sin) and t have the form g(t l , . . . ,tn),

constants have this form with zero for the number of children;

i f f # g or m ¢ n then return false;

for i = 1 to m if not U-match(si,ti,c) then re turn false,

otherwise re~urn true.

4. C o n c l u s i o n s

The U-match a lgor i thm gives a practical way to test single rewrite rules for looping. If a rule

fails the test, then it definitely causes looping. If it passes, i t may or may not cause looping. The

most impor tan t use of this test is for el iminating many of the possibly bad orientations of rewrite

rules when exhaustively considering various orderings.

The a lgor i thm may also be useful as a filter on slow terminat ion ordering algorithms. It

can el iminate nearly half of the possible orientations from further consideration. Unification and

matching are special cases of the computa t ion done by the algori thm, so a fast implementat ion

61

could be considered as a replacement of both the matching and unification algorithms of a Knuth-

Bendix program.

It is interesting to note that a local test, such as theorem 1, can often show that a rule is oriented

incorrectly, but that their are no useful local tests to show that a rule is oriented correctly. Whether

or not an orientation is correct depends on the complete set of rules.

Acknowledgemen t : I wish to thank Professors Cynthia Brown and Edward Robertson for

discussions that contributed to this work. I wish to thank Bruce Smith for carefully reading the

manuscript.

References

1. Dennis De Champeaux, About the Paterson- Wegman Linear Unification Algorithm, Journal of
Computer and System Sciences 32 (1986), pp 79-90.

2. Nachum Dershowitz, Termination, Rewriting Techniques and Applications (Jean-
Pierre Jouannaud ed.), Lecture Notes in Computer Science 202, Springer-Verlag New York
(1985), pp 180-224.

3. Naehum Dershowitz, Computing with Rewrite Systems, Information and Control 65 (1985), pp
122-157.

4. Mikul£~ Herman and Igor Pr~vara, On Nontermination of Knuth-Bendiz Algorithm, 13-th Col-
loq. Automata, Languages and Programming, Lecture Notes in Computer Science, Springer-
Verlag, New York (1986), pp 146-156.

5. G. tligman and B. It. Neumann, Groups as Groupoid8 with One Law, Publ. Math. Debrecen 2
(1952), pp 215-227.

6. G4rard Huet, A Complete Proof of the Correctness of the Knuth-Bendiz Completion Algorithm,
J. Computer and Systems Sciences 23 (1981), pp 11-21.

7. G. Huet and D. S. Landlord, On the Uniform Halting Problem for Term Rewriting Systems,
Rapport Laboria 283, IRIA (1978).

8. J. P. Jouannaud and II. Kirchner, Construction d'un plus petit order de simplification, Report
82-R-033, Centre de Recherche en Informatique de Nancy, Nancy, France (1982).

9. Claude Kirchncr, Computing Unification Algorithms, Symposium on Logic in Computer Sci-
ence, IEEE Computer Society (1986), pp 208-216.

10. Donald E. Knuth and Peter B. Bendix, Simple Word Problems in Universal Algebras, Com-
putational Problems in Abstract Algebra (J. Leech ed.) Pergamon Press, Oxford (1970), pp
263-297.

11. Yves Metivier, About the Rewriting Systems Produced by the Knuth-Bendiz Completion Algo-
rithm, Information Processing Letters 16 (1983), pp 31-34.

12. M. S. Paterson and M. N. Wegman, Linear Unification, Journal of Computer and System
Sciences, 16 (1978), pp 158-167.

13. David A. Plaisted, A Simple Non-Termination Test for the Knuth-Bendiz Method, 8-th In-
ternational Conference on Automated Deduction, Lecture Notes in Computer Science 230,
Sprlnger-Vertag, New York (1986), pp 79-88.

