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Abstract 

We study multiway asymmetric tries. Our main interest is to investigate the depth of a leaf and the 
external path length, however we also formulate and solve a more general problem. We consider a 
class of properties called additive properties. This class is specified by a common recurrence rela- 
tion. We give an exact solution of the recurrence, and present an asymptotic approximation. In par- 
ticular, we derive all ( factorial ) moments of the depth of a leaf and the external path length. In addi- 
tion, we solve an open problem of Paige and Tarjan about the average case complexity of the 
improved lexicographical sorting. These results extend previous analyses by Knuth [12], Flajolet and 
Sedgewick [6], Jacquet and Regnier [10], and Kirschenhofer and Prodinger [1 I]. 

1. INTRODUCTION 

Digital searching is a well-known technique for storing and retrieving information using lexicographical 

(digital) structure of words. Let U be an alphabet containing V elements, and each element may occur with dif- 

ferent probability ( asymmetric trie ). A trie or radix search trie is such a V-ary digital search tree that edges are 

labeled by elements from U and leaves ( external nodes) contain the keys [1],[8], [12]. The access path from the 

root to a leaf is a minimal prefix of the information contained in the leaf. An important variant of tries is 

obta'med using a sequential storage algorithm for subtries with the size less than or equal to a fixed bound b. In 

other words, each external node is capable of storing at most b keys. Such a trie will be called b-trie [3], [5]. 

This paper presents a thorough analysis of b-tries from the depth of a leaf point of view. Although we 

focus our attention on the depth and external path length, we consider them as motivating examples for general 

studies of the average complexity of so called additive properties for tries. Roughly speaking, a trie property is 

additive if its recurrence description is linear. For example, the depth of a leaf, the external path length, the 

number of internal nodes are additive properties, while the height of a trie is not. We discuss a class of additive 

properties which possess a common recurrence equation. The exact solution and asymptotic approximation of 

the recurrence are obtained. These results are then used in a number of applications. We present all factorial 

moments of the depth of a leaf and the external path length in a b - trie. In particular, we prove that the m-th fac- 

torial moment of the depth of insertion is cdn'nn +~inm-tn +O(lnm-2n), where a and [3 are some constants 

dependent on the distribution of elements in the alphabet. This implies that the variance of the depth is either 

equal to a i n n + O ( 1 )  for asymmetric tries or only O(1) for a symmetric trie. We also compute the average 

number of internal nodes and the number of internal nodes with all sons external nodes. The average external 
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path length and the average number of internal nodes are used to solve an open problem of Paige and Tarjan [l 7] 

about the average complexity of the improved lexicographical sorting. 

Finally, let us mention that the average case complexity for symmetric V-ary tries was discussed [12], [6]. 

Recently, Iedrschenhofer and Prodinger [11 ] studied the variance of the depth of insertion for symmetric binary 

tries, while Jacquet and Regnier [10] obtained the limiting distribution for the depth of insertion for binary tries. 

This paper extends all of these results. We omit here all proofs, and provide them in the final version of the 

paper. 

2. NOTATIONS AND MAIN RESULTS 

Letus consider a set Tn of all b- tr ies  with n keys over an alphabet U = {at . . . . .  Cv}. We assume that 

a key x = {xl, x2 . . . . .  xk,...} is a sequence of elements from U which form an independent sequence of Ber- 
v 

noulli trials. That is, for any k the probability Pr (xk = csi } = Pi, ~,  Pi = 1, and Pi does not depend on k. Such 
i=1 

an approach is known as Bernoulli model [3], [5], [10]. In many applications such trie properties ( parameters ) 

as: the depth o f  a leaf  ( the number of internal nodes in the trie on the path from the root to the leaf), the exter- 

nal path length ( the sum of the depths of all leaves ), the number o f  internal nodes, the height ( the maximum 

over all depths ) ,  etc. are of particular interests. We shall study a class of properties called further additive pro- 

perties which possess a common description through a recurrence equation. We focus our attention on the aver- 

age case complexity of such properties. 

2.1 Additive properties of b-tries 

Let us consider an asymmetric b-trie with n records, and let E be a property of such a tile. For example, E 

might be the depth of a leaf ,  the external path length, the number of internal nodes, the height, etc. We denote 

by xn the quantitative value of E .  Let an repremnt the value of the property E that is possessed by the root of a 

trie. Then, in studying the average complexity of the property E we may use the following graphical representa- 

tion: 

/ 

In other words, the value xn of the property E is a ( recursive ) function of the values xj ...... xjv ( j  i + " " " +Jr = n 

) of E in all subtries of the wie, and the amount an of the property E possessed by the root. If xn is an additive 

function ofxj, ..... xjv, then the property E is called additive. More precisely, we need that xn satisfies the follow- 

ing recurrence: 
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given: Xo, Xt , . . . ,  x~,  

solve: x n = a . +  ~ j P{' . . .  p y ( x : ,  + . . .  + x j O ,  n > ~ ,  

(t) 

V 

where an is a given sequence ( we also call it additive term ) ,  Y, Pi = 1, and B is an integer. In (1) we have 
i=1 

used the the following notations: j = L Jl  . . . . .  j v  Jl! J2! , • • . ,  J r !  and j~=n ~ f (Jl . . . . .  J r )  iS a 

sum o f f ( j 1  . . . . .  j r )  over all j such that Jl  + Jz  + " " " + j v  = n .  We shall study properties E for which their 

quantitative values x~ have the above description, and such properties are called additive. For example, the 

depth of  a leaf, the external path length, the number of  internal nodes are additive properties, while the height of  

a tile is not. 

It tums out that a general solution of  the recurrence depends on a transformed sequence, d , ,  o f  a ,  defined 

a s :  

k~0 

The pair a .  and dn is called inverse relations [151, since d~ = a . .  Let also 

fJi = - (xi - ai - 2 P~ . . . .  P~' Z x j , ) / i  !, 
j z  = i k= l  

i =1,2 . . . . .  B~ 

Zn 
Note that the generating function o f x , ,  i.e., X(z)=~.,x,,,,=o n-'-(.' satisfies the following functional equation 

V B 

X (z ) -  ~ X (Pi z )  e O-p')~ .-.A (z ) -  ~ z i ~i 
i=1 i=0  

Define now ~(z )  =X (z) e-z, and transform the above into functional equation on ~(z).  Using Taylor expansion 

of  ~)(z) one proves that 

LEMMA 1. For any n,  the recurrence (1) possesses the following solution 

rain {B ,~ } 
d k -  ]~ (-1)r I rk]  r'[3r 

i = l  

Proof: See [14]. 
[] 

Solution (2) simplifies i fxo  = xl  = " " * = xB = 0. In this case, in fact, we are also able to compute ~. which is 

necessary to obtain the m-th factorial moment of  the depth of  a leaf. 

COROLLARY 1. I fxo  = xt  = . . . .  x~ = 0, then 
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and 

k=2 

r=O 

V 

1 -  Z P f  
i=l 

(3) 

r=O 
~. = v (4 )  

1 - Z p / k  
i=1 

Proof'. Eq (3) follows directly from (2), and (4) is a consequence of the definition of the inverse relations. 

[] 

2.2 Applications of Lemma 1 

Factorial moments o f  the depth o f  a leaf and the external path length 

There is a simple relationship between the depth of insertion ( depth of a leaf) and the external path length. 

Let H~ (z) 

the external path length be the generating function with the coefficient at z k representing the expected number of 

external nodes at level k in the family of tries Tn built from n records. Also let L, and D, be random variables 

representing the external path length and the depth of a leaf in the family T,. The m-th factorial moment d~ of 

D n is defined as : 

dn m-= E {Dn(D n - 1) " '" (D n - m + 1)} 

In a similar way we define factorial moments of Ln. However, it is more convenient to introduce a generalized 

external path length. Let Dn ( i ) denote the path length from the root to the i-th record in the family Tn, where 

i = 1,2,...,n. Then, the generalized external path length of order m is defined as 
n 

L~= ~ O n ( i )  [On( i ) - I  ] " "  [Dn(i ) -m +1 ] 
i=1 

aef 
and let l~ = ELm. We call l~ the average of order m of the external path length L~. Note that l~ is not the m-th 

factorial moment of the external path length Ln, but the moments of Ln are simply related to l~, e.g., the average 

of L n is equal to 12-, and the variance of the external path length is l~+l~ - - 1  (l~-) 2. The following lemma 

establishes a relationship between Hn (z) and the moments. 

LEMMA 2. For any natural m and n the following holds 

Hn(1 ) = n. d ' H .  (z) iz=l = H(r,,)(1 ) = I~. 
dz m 
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d~ = l~/n. 

Proof. It follows directly from the above definitions. 

[] 

There is no explicit formula for H. (z), but a rather nice recurrence, 

LEMMA 3. For any natural n and b,  H~ (z) satisfies the following recurrence 

nn(z) = z E 
j z = n  

Proof. See Knuth [12]. 

H.(z )=n for n < b  

j p ~ p ~ '  - . .  p~' [ n j : z ) +  . . .  +Hjv(z)l  for n > b .  

[] 

By Lemma 2 to compute all factorial moments of  the depth of  insertion we need l~. Using Lemma 3 we may 

prove that l~  m = 1,2 . . . . .  satisfy a system of  recurrence equations. 

THEOREM 1. The average of order m of L~ is given by the following recurrence 

/ ~ = 0  for n < b  

" I l° + j ~  p~'(l~ + + tg) n > b, 1~ = m ! ~ ( - 1 )  m-i ( i - 1 ) !  J p {  . . . .  " . . . . .  
i=1 = 

where l ° = n.  

Proof: The proof is by induction, and it is left for the reader. 

[] 

By Theorem 1 I m satisfies (1) with an = m ! ~ ( - 1 )  m-i ( i-1)!  " 
i=t 

from Lemma 1 and Theorem 1 

For example, for m=I  one immediately obtain 

and 

k=2 1 - Z P ~  
i~l  

r=l 
V 

1 -  Zp~ 
i=1 



18 

Let now m = 2 Then by Theorem t a (z)= 2 [ iX- - h i ,  and dn (2) = 212-- 28n,l [t 5]. After some algebra, we find 

that 

V 

E p~ 
I~=2 ~(-1)r+'r ~ ( - l )  n [ ~ ]  [kr] i=' v 

r=l /~=2 (1 - Zp/k) 2 
i=1 

Generalizing the above, and applying recursively Lemma 1 , Corollary 1 and Theorem 1 we obtain the exact 

solution for the m-th  factorial moment of the depth. 

PROPOSITION 1. For all n the moment of order m.  l ~ ,  of the generalized external path length in a b-ti le is 

given by 

V 
[ E p / ' ]  '~-~ 

l~=m, ~ (-1)r+l r ~ (-1)' [ ~ ] [ kr ] , i=l v , n > b, (5) 
r=l k=2 [ 1 - E P• ]m 

i=1 

and l~  = 0 for n < b .  The m -th factorial moment of the depth,  d m is l~/n. 
[] 

The average number of internal nodes and other applications 

A number of  other applications of Lemma 1 is possible. For example, from the storage view point it is 

important to know the average number of internal nodes, I n. Naturally, I ,  is an additive property, hence the 

recurrence (1) is satisfied with x0 . . . .  xb =0, and an = 1. Applying Corollary 1 we obtain immediately 

b 

~=2 1-  2p~ 
i=l  

In some other applications we might be interested in the average number of intemal nodes with all sons extemat 

nodes ( see [12], [6] ). Assume for simplicity that b = l  and V=2. Let En denote the average number of such 

nodes. Then E 0 = E I = 0 ,  E z = I  and for n > 2  the average En satisfies the recurrence (1) with an =0. Note that 

[3o = 1~1 = 0 and ~ = 1 - p  12 - p  22 . Hence by Lemma 1 and straightforward computations we find 

En = ]~(-1)k 2 1- -p~--pk  
k=2 

The generalization for V >2 is simple but need some additional computations. For other applications of ( t )  see 

[31 - [81, [131, [141. 
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Asymptotic approximation 

From the practical view point it is important to know asymptotic approximation of  d ~ , I , ,  E n , etc. How- 

ever, instead of  computing the approximation for each of  the above quantifies we may equivalently determine the 

asymptotic approximation of  the following: 

S ( n , r c n )  = ]~(-1)* k r ' (6a) 

k ~  (1 - E p~)'~ 
i=1 

where r : 1,2 . . . . .  B and o~ is a parameter. ( Note that S ( n  ,r Ca ) is the sum in (2) if a ,  : [n] ~. ). The 

application of  (6a) to the evaluation of  l~, I .  and E~ is straightforward. For example, the m-th factorial moment, 

12. is expressed in terms o f S ( n  ,r ,m) as follows 

b 

l ~ - I  = 

V 

where ~ =  l'IPJs'. 
S=l  

To evaluate (6a) we may use either Rice's method [6], [7] or Mellin transform technique [6], [7], [9], [13], 

[16]. We apply here the latter method. We proved in [14] that S ( n + r . r . m ) = T ( n + r , r a n ) + O ( 1 ) ,  where 

n+r 
T(n+r) ,r )  = (-1) r ~ ~[l+O(n-1)] 

F(z ) (n  ct) r - l - '  
S ,, 

('~ - tz-,~+) (1 - ] ~ p : - ' ) "  
i=1 

az, (6b) 

c + i ~  

and F(z) is the gamma function [16], a + = min{0,a} and the integral notation 5 f ( ' )  stands for 1 

The line of  integration is either ( - 3 / 2 -  i ,~,-3~2 + ioo) for r=0, or ( - 1 / 2 -  i ~ , - 1 / 2  + ioo) for r= l  or 

(1/2 - io*, 1/2 + ioo) for r > l .  

The evaluation of  the counter integral in (6b) is routine: one goes from (c, - iN1) to (c, iN 1) to (N2,/N1) 

to (N2, - iN1) to (c, - i N 1 )  in a negative sense, where c = ½ - [2-r]  +. F o r N t  ---) ~ the horizontal parts o f  t~he 

integral vanish since F(t + iN1) = O (1 + / N  I I~-"~e -t - ~,/2) [I6]. while the vertical component over (1¥2, - iN1) 

decays due to the factor n r-i-z [12], [16]. Hence the required integral is minus the sum of residuals of the func- 

tion under the integral to the right of  the vertical line fixed at point c = ½ - [2-r]]  +. The details may be found 

in [14]. 

For m = 1 a closed form expression for S (n ,r, 1) as n tends to infinity is available. Let us define 

Y 

hn = ( - 1 y  ]~Pi fn" pi, n > 0 .  
i = t  

and h o = 0. Then 

PROPOSITION 2. For any n and r the following holds 
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S(n,0,1)) = n c¢{ ln(na) + y--1 h2 
hi + 2h 2 + f ( n a ) } + O ( 1 )  

S(n ,1,1) = ha{ ln(n-1)a+T h2 
hi + 2h21 - f ( ( n - 1 ) a ) } + o ( 1 )  

n a { (r-Z)! 
S(n,r,1) = (-1) r 7 .  ~ +f((n-r)cO} + O(I) r >2 

where -/=0.573 is the Euler constant, and f (n) is a fluctuating function with a very small amplitude [ 12], [8], [6]. 

( In practise, the function f (n) may be savely ignored ). 

Proof: The proof may be found in [13]. 
[] 

In particular, using the above we immediately obtain an asymptotic approximation for the average number of 

internal nodes, In. We find that 

I~ =h-~{[ b 1 1 - ] ~  ] + f  (n)}+O(l)  
r = 2  x 

On the other hand, the average number of nodes with beth sons external nodes is given by 

~-p?-p~ 
E n =n ( l + f ( n ) ) + O ( 1 )  

2h~ 

To evaluate d~ for large n we need the asymptotic approximation of S ( n,r,m ) for m > 1. This is more 

difficult, however, we can prove that 

PROPOSITION 3. For any m, and n large enough 

I inrn n + ~ inrn_ln[7 + m h2 dnm-= h'-'~ hi n T ~-1 - (rn-t)hl - H b - I - h ] n  F(n)] +O(llzrn-2n) 

where Hb-1 is the (b-1)-st harmonic number [t2], and F(n) is a fluctuating function with a very small ampli- 

tude. 

Proof: We use extensively (6b). Algebra may be found in [14]. 
[] 

Two moments play usually an important role in tries analysis, namely: the average and the variance, c~ 2, of the 

depth of insertion. Using the above approach we obtain immediately 

PROPOSITION 4. (i) The average depth of a leaf is given by 
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1 h2 
d, =-~1 In n + [~'+ 2 - ' ~ ' t - H b - i ] - F ( n ) + O ( n - l )  (7) 

(ii) The variance, c 2, of the depth is 

where 

and 

h 2 - h  2 

h~ 
In n +C +F(n)+O(n-1) ,  

_ ~ 2"I hz 2Hb-1 h2 "[ 2eb-1 
C -ZCC-~-l-~-~-12"~'--~l (1 h~ hi )+ h ~  - +  

-~1 112 Hb-t T h2 Hb-1 . 
( 4 2h12 hi )(1 hi 2h? t - ~ )  

1 rc z ?a 3h2 2 ~th2 h3 
~= ~-~? I ~ + T  + - : ~ - +  - 4hl hi 3hi 

(8) 

b nr_l  n 
and eb is defined as eb = ~ - - 7 -  ( o=0. and eo=O ). F(n) is a fluctuating function with a small arnplimde. Ln 

r = l  

particular, for V-ary symmetric tries h. =In" V hence (8) implies 

x 2 1 H~-I + ~ + F ( n ) + O ( n  -1) (9) 
c " z = ~  + 12 In2V In V 

(iii) The variance of the extemal path length ~ is equal to 

oL =n c~ 

so it is O (n In n ) for asymmetric tries, and O (n) for symmetric tries. 

B 
Proof: Equation (7) follows immediately from l~-= ~ (-1) TM r $(n ,r,1), and Proposition 2. To compute c~ note 

r= l  
b 

that c~=12 + lnL-[lnl-]2/n, and 12= ]~ (-1) r+l r S (n ,r,2), 
r=l 

[] 

The table below shows the variance of the depth, c~, for symmetric V-ary b -tries. ( see (9)). Note that by 

(7) the influence orb  on the average depth is of order O(1), and for small values ofb  it may be safely ignored in 

practise. However, the variance critically depends on b,  and for larger b we obtain more balanced tries. For 

example, for V=2 the variance c ,  z decreases from 3.507 for b=l  to 0.6741 for b=4. But there is a trade-off 

between b and the average searching time. Note that bigger b implies larger searching time in the sequential file 

of the external node. The total average searching time is dn+ (b-1)/2, where d, is given by (7). Hence, the 

searching time is minimized for b optimal equal to boe~ = 1/(2h 1) + 1. 
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Table. Variance of  the depth for symmetric b-tries 

V 

2 

3 

4 

5 

6 

I 
b = l  

3.5070 

1 A462 

0.9393 

0.7183 

0.5957 

I b = 2  b = 3  b = 4  

1.4256 0.9053 0.6741 

0.6177 0.4105 0.3184 

0.4189 0.2888 0.2310 

0.3323 0.2358 0.1929 

0.2842 0.2063 0.1717 

3. APPLICATIONS AND DISCUSSION 

In this section we show some of the possible applications of the above results. In particular, we offer the 

average complexity of  the improved texicographical sorting algorithm proposed recently by Paige and tarjan 

[17]. 

Optimization problems. 

Let us consider d 2  as a function of p = (Pl, P2 . . . . .  Pv). Then a question arises what is an optimal 

choice of p? It is intuitively clear that the average depth of insertion is minimized for the symmetric case. How- 

ever, using Proposition 1 it is easy to notice that t~  and d 2  are minimized for all n and m if the trie is a sym- 

metrical one, that is, p ~ = P2 = . . . .  Pv = t/V. Naturally, the bigger the V is, the smaller the average depth of 

insertion is, however, the data structure becomes more complicated. Moreover, formula (7) shows that the 

bigger the b is, the smaller the average depth of insertion is, however, the impact of b is of the secondary impor- 

tance since the leading factor in (7) does not depend on b.  

A measure of  balance for a tree. 

The variance of  the depth of  insertion might be considered as a measure of how welt a tree is balanced. In 

the height-balanced trees the depth of  a leaf is the same ( or almost the same ) for all leaves. Then, the variance 

of the depth is equal to zero. For other trees the depth is a random variable, however, the smaller the variance is, 

the more balanced the tree is. Indeed, by Tchebyshev inequality, we know that Pr{[Dn - d~ [ > 5} < o~/82. 

For example, let 8 = 3~, then P r { I D .  - d.  I > 3o .}  < 1/9, and it says that with probability 0.11 the depth lies 

in the interval (tin - 3o~, d n +  3on), hence the smaller ~ is, the smaller the interval is. This also means that for 

small c the average of  the depth of insertion is a good measure of the actual depth, while for larger 6, it is very 

poor performance issue. Let us apply this to tries. By (8) we see that for symmetric tries h 2 - hx 2 = 0, hence 

~ = O (1) and does not depend on n.  We may claim that symmetric tries are of an order of magnitude better 

balanced than asymmetric tries. Let V = 2, then f o r p  =0 .5  (symmetric trie) o~ -- 3.507, while f o r p  = 0.1 

6~ = t2.64 ha n + O(1) and f o r p  = 0.3 o .  2 = 0.66 In n + O(1). The Tchebyshev inequality implies that with 

probability 0A1 the depth of  insertion for a symmetric trie with V = 2 lies in (am - 5.5, d .  + 5.5), while with 

the same probability the depth is in the interval ( d ~ -  10 ~',t~n, d. + t0 ~q-~-~-n) for p = 0.I and in 
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( d n -  2.4 ~ q - ~ ,  dn + 2.4 ~4-M---n ) for p = 0.3 and large n.  Note also that bigger the b is, more balanced the trie 

is. 

Improved lexicographical sorting 

Paige and Tarjan proposed an improved iexicographical sorting algorithm [17]. It works in two steps. The 

first determines so called significant prefix by building a trie over an alphabet, assuming that the total length of 

all strings is equal to L. The proposed algorithm runs in O(L ' )  time where L '  is the total length of all significant 

prefixes. Aho, Hopcroft and Ullman [1] gave a solution with O ( L )  worst case asymptotic time. Hence, the 

ration LIL" indicates the improvements over the Aho et al algorithm. 

To compute the average complexity of  the improved lexicographical sorting, and compare it with the Aho's 

lexicographical sorting, we first introduce some notations. Let S = {x l, x2 . . . . .  x~} be set of  the finite length 

strings built randomly over an V-ary alphabet U subject to the total length of all strings L (L is fixed). Let also 

L" denote the total length of  all significant prefixes. Note that L '  is a random variable, and it is equivalent to the 

external path length in the appropriate tile. Assuming symmetric alphabet by Proposition 4 we find that the aver- 

age value of the external path length is n lgv n + 0 (1). Note, however, that this does not follow directly from 

our previous results, since in our model we have assumed unlimited strings. Nevertheless, it is easy to show that 

for large n ,  and distinct keys (strings), the above holds. Hence EL" = n lgv n + O(1),  and the improved ratio 

IMP = L/EL" = Ll[n lgv n + O(1)]. Such a formula is not very informative, since there is a relationship 

between L and n.  Indeed, subject to L the number of strings, n ,  might be equal to one, or two or ... or nmax, 

where nmax is the maximum number of finite strings whose total length is L. NaturaLly, n <_ nmax, and if 

n = nm~ (the trie in that case is almost a complete V-ary tree), t h e n L  = n lgv n + O (I), hence LMP = 1 and 

the improved algorithm runs the same time as the Aho's  lexicographical algorithms. The improvement depends 

on the relationship between n and nmax. 

Let us first compute n , ,~ .  We obtain the maximum number of strings packed into L if we take V strings of 

length one, V z strings of tength two . . . . .  V~ strings of  length ~ where ~cis such an integer that 

~+1 
~ l v  ~ <_ L <_ 5", Iv  t. (1o) 
1=I 1=1 

Then, the maximum number of  strings packed into L, nmax, satisfies 

,~+1 
~ V ~ <- n=,,  <- ~ V t. (11) 
g=l t=I  

Note, that by geometric series formula, (10) and (11) are equivalent to 

V ~:V'C+l - (I(+I)V~ + 1 < L <- V (~z+I)V~+2 - 0c+2)VX+l + 1 (12) 
(V - 1) z (V - 1) 2 

V V ~ -  ! V t+l - 1 
• V - 1- < nmax < V - - V - 1  (13) 



But (12) and (13) imply that 

For, by (13) 

and finally we obtain 
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1 I 
~¢a%aax + ~ Oc - nm~) -< L <- OC+I)nmax + -~_lOC + 1 - nmax), 

1 + O(n2~), ~; = tgv nm~ V In V 

1 1 
L = nm~x lgv -nrnax ('-~-~'-~ + - ~ i - )  + O(lgv nmax). 

Let now nma x = ~n, [~ > 1. Then, the ratio of improvement, IMP = L/EL' is given by 

IMP =L/EL'=I][I + lgv~-  l/(V ln V ) -  l / ( V - 1 ) ]  
T, + o ( n %  

Note that for [3 = 1 (15) implies that IMP = 1 as expected. 

(14) 

(15) 
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