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1. introduction.

The intersection type discipline for A-calculus (ITD), defined in [Coppo et 81,1980 b],
is an extension of the classical functionality theory of Curry [Curry et al,,1958] .in Curry
type discipline type schemes are built from type variables using the constructor —
{arrow). In the ITD, type schemes are built from type variables and the type constant w
{the universsl type) using, as constructors, beside the srrow, the intersection (a). The
semantics of a type scheme of the shape u—g is the classicsl one, the semsantics of 8
type scheme of the shape uap is the intersection of the sets representing the mesanings
of ix and g, the sementics of w is the whole semsntic domain. In the ITD every term has
ot least one type scheme, and type sssignment preserves p-convertibility.

in the Curry type discipline, every term X which cen be typed has @ principal type
scheme {pts), from which 811 and only the type schemes deducible for ¥ cen be derived,
by means of substitutions. The problem of computing the pts, if it exists, of 6 term in
the Curry type discipline is decidsble, and algorithms to solve it have been propesed by
Hindley [Hindley,1969] {for terms of Combinstory Logic), snd by Milner [Milner, 1978]
[Milner et 81.,,1982] (for terms of A-calculus). Milner uses this algorithm in the design of
the ML type checker. Both these algorithms sre besed on the classicel unification
algorithm of Robinson [Robinson,1965),
in the ITD each term X, which has & finite set of approximents, has 8 pts in an extended
mesning. More precisely, every type scheme deducible for ¥ is derived from its pts by
means of 8 sequence of suitsble operations, namely the substitution, the expension snd
the rise [Ronchi et 81.,1984].

In this psper the unificstion problem for intersection type scheme is studied. This
problem is semi-decidable. The semi-algorithm UNIFY solving it is presented, snd it is
proved thet ,in the cese & solution exists, it finds the more genersl one. While UNIFY
uses slso operetions different from substitution, it is conservetive with respect to
Robinson’s unificetion algorithm. Moreover s semi-slgorithm PP is presented, using
UNIFY as essential tool, which, given s term X, if X is strongly normealizing compules its
pts .Since there is & one-one correspondence hetween & term and its pts {if it exists),
PP can be viewed also 8s 8 reduction machine,using an innermost reduction strategy. The
use of unification between type schemes instead of g-reduction in computing the normsl
form of 8 term avoids the necessity of e-conversions,
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2.The intersection type discipline.

The reader is supposed to have some scquaintance with A-celculus; in any case he can
refer to [Barendregt,1984], whose notations we will use.
Definition 1. 1) The set T of inlarsection lype schemesis inductively defined by:
¢q.94-€T (120} (type varishles)

weT {type constant)

6,T€T = (8=1)eT (6aT)eT.

ii) A sielementis of the form 6x with 6€T and x is a verisble. x is the sufjeciend 6
the prediceieot sM. A besis scheme is o (possibly infinite) set of statements .

The notion of subtype of @ given type scheme is obtsined in & straightforward way
from  Definition 1i). 6y»6p—>.-6, —T i en  sbbrevistion for

61—*{62—&63—1.”{5“—41}“.}} end  GyABpA..ABy ig  en sbbrevistion for
(5 ]A(ﬁ 2!&...(6n_‘f'~.5n)...”.

The simpie semantics(for the definition of simple semantics see [Hindley, 1983]) for T
can be given in the following way:

Definition 2. Let A<D, [1> be 8 A-model . “

i) Let NeA; if t is o valustion of verisbles in D, then EN]!EeD is the interpretstion of N
in ffvis &

ii)Let PD={XIXcD} and V:{yly is 8 type veriable}-PD. Then the interpretation of ¢&T in /7
¥ia V, notation !lsl'f;ePD, is defined as follows:

Em]l';f#)
K@E@V(&p) y
is -a'tﬁ?#de!}i%ee&sBﬁd-eehﬁv}

l[sm]ﬁ‘fﬂsﬁnﬁﬂ”\f.

This semantics induces naturslly s pre-order relation < on T, whose intended meaning
is: 65t & ¥AV. Islycltly.

pefinition 3. The relstion < {and ~} on T is inductively defined by

i) 1T, TLW, WLW—0, TLTAT, TABLE, TAGLT, (6-p)al6-T)SE-+{pAT),
SATLp = 64p, 6<6'andTLT6ATLE AT, 626 ond TLT' = 6-TL6 T
ii)g~T & 6<146.

Definition 4. 7ype schame assignment ruies

Let B he s basis scheme, snd let A be the setl of type free A-terms.
(@) BwX  for il XeA (ver) BU{sx}-6x

(Al BeX BRTH (AE) B6ATH BreaTX

BHEATH 6% TX
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(1) BUlBR} X (wf) Bro—TX  BreY
BH6—TARX BR-TXY
* where 6x is the unique stotement of B ,whose subject is x,used to
deduce TX.
(¢ Brex 6<T
BtX

Note that the rule {aE) is redundent, since it can be directly derived from rule ().
Notation. Let <Z,W,2> be a triple of either two type schemes and s type verisble, or
two terms snd o verisble. 2[z/W] denote the type scheme {term) obtsined from Z by
simultaneous replscing each free occurrence of z with W. If 2 is 8 {type) varisble ,
2Hz/z'1 is sn insiancenf 1.

Let ~g denote the p-reducibility, ie.,
C[(Ax.M)N]—aEC[HIxz‘NH ( where C[ ] is any context)

iff N is substitutible for x in M {note that & term N can always become substitutible
for 8 given veriable in 8 term M, by means of 8 rensming of bound varisbles in M).Let "6

denote g-convertibility, i.e, the transitive and reflexive closure of g-reducibility.
We recall that a term X is in marma? farnniff 3. x—;gx; and it is in Aead parimal 7o

iff X=Ax(Xo. X, LXKy Xy (n,m20), where { is any varisble and X;eA {1gi<m). X hes 8
normal form (8 head normal form) iff x—»*gx' snd X'is in normal form (hesd normsi

form).
The following theorem holds:
Theorem 1 ([Berendregt et a1,19811i) Let X=B

i1} 3B,T=0.BITX & ¥ hss s head norma! form.
i11}38,T.B+T¥ and w does not occur neither in B nor in T & X has a normal form.

X' Then B-tX & Br1X"

O
Without iess of generslity, we cen restrict ourselves to consider only finite basis
schemes.
Definition 5.i) A p&ir <B, 0>, where B is o basis scheme and T is & type scheme is
suitehiefor XeA, iff there exists s deduction D such thet
D:B-TX
ii) = will denote the synctactical identity between type schemes, basis schemes and
psirs.
iit) The equvelence relstion ~ between pairs is so defined:
B, V~<B, 1> T~ ond, if, ¥x 6;x  (1<i<m) and 04¥ {1<j<n) are the all snd only

statements whose subject is x belonging respectively to B and B8 1A ABp~pA. AR,

Now, we will define two operations on pairs, which preserve suitsbie pairs, namely
the substitution and the expansion.
Definition 6. A substitvtion s is o finite set of pairs <p;,u;> (1i<n), where pj are



40

distinct type varisbles snd y; are type schemes. Then, for every pair <B,t>
i) s{T)=the; /11, s(B)={s(s)x|sxeB}
ii)s{<B,T>)=¢s{B) s{TD.

Clesrly, if D:Bl-t¥ end s is any substitution,3D":s(B)i-s(t). D" is obtained from D simply
applying s to every basis snd type scheme occurring in D.
Notation. Let L be an ordered list. Then L«a will denote the grdered insertion of 5 into
L, and L»s will denote the extraction of the meximum alement of L, whose name is 5.
pefinition 7. An aypansiane is 8 monuple <@>, where |1 15 8 type scheme.
i) Let LB(B,x) a list of type scheme,ordered by number of symbols (when two type
schemes have the ssme number of symbols their mutus! order is unimportant). L8(B,7)
is built in the following way:
-L&(B, ey
-if 6eL8(B,7), and § is & proper subtype of 6, L8(B, T)«8.
-for each type scheme ¢, such that 6 is 8 subtype of either Tor o predicote in B:
~if either G=v-+8 or 6=v—({8ax) and 5eL8(B,T),then L(B, 1)«6.
iilLet 1={y;ly; is 8 type variable occurring in LE(B, ).
Let s;={<p;.p;?| pi€ly; is o fresh variable} {15i<2}).
iii}¥6€T, els) is obteined from 8 by mesns of the fallowing procedure:
while LB(B,1) #e {¢ is the empty list) do begin
LE{B, TIny
il y occurs in 6 then replace y in 6 by sy{y)as,ly)

end
ivie{Bi={e{s xlgxebB).
yie{<B,T>}=<e(B),e{T).

An expansion e will be called 76?87 with respect to & type scheme 6 iff e{sl=e’(e),
where e'=<g>,

Let D:BT¥. Then, if e is an expansion, there exists 8 deduction D:e(B)l-e(T)¥, and D' is
obtained from D by dupliceting some subdeductions of D ond by adjoining some
spplications of the rule (al), as can be seen in the following:

Example 1. Let B={{y—¢)}-oay} Then <B,o> is » suitsble pair for the term ylAxx). In
fact we can show the deduction It

{= BU{EPXH—'»PX
(—E) Bi-{p-rp)—ay Bl-p—pARX

BRorylAr.x)
Let e=<y>. 8(<B,00)={{p ¢ Ialyy=yol)-uylo> is 8 suitable pair for y(Axx). in fact

there exists s deduction D"
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(-1) BUpRIbgx () By pxitg oK
fald (Bl g Ay e(BM-po—rpodux

{~E) 8BI-Up 29 alpy—psll-ny e(B)-(p -9 Jalgs—polAxx
e(BI& y{Ax.x)

The notion of instance cen be naturally extended to substitutions and expansions; we
will say that 8 substitution s={<«,pi,6]'>} is an instance of s'={<kp'i‘.b"i>} iff 6; is an
instance of 6‘}-, and sn expsnsion e=<y> is an instance of &=’ iff | is an instance of
.

Definition 8.1} A ohainc is 8 finite sequence of gperations of substitutions snd
expsnhsions,
i} Two cheins tyendc, are aguivaient (notation cl==r:2) iff:

- gy fp aﬂi<}4;>,.,.}<fx’m> are alland omby the intersections occurring

res'lnwtivd\j M ¢y and Cz)f‘-.t"'”"}‘n i an wmsTance 019 F;A...AH'M,

- if 84,8, and s',,..,s'm sre all and only the substitutions occurring
respectively in €y and s, Uisisn &; is an instance of Ufss‘sm s
Note that cy==C, does not imply ¢{<B,T>)=C,{<B,T>).
Notation. Let op; be an operation of expension or substitution {1£isn}. We will denote
with 0py.0p,...0p, the chein ¢ such that c(g)=op,lop,_{.{op,(6))..)) and with £y.Cp the
chain which is the concatenation of the two chains ¢y and ¢,, 1.8, c{8)=c,(c(s)).

Theorem 2.{[Ronchi et 81.,1984]).1) Let ¢ be any chain, If <B,T> is & suitable pair for ¥,
then c{<B, 1>} is also & suitable pair for ¥
iijLet c be & chain, such that c{<B,&>)=<B' 8", where g =jiav. Then 3¢" such thet: ¢'=ec”,
where e=<6> , '(<B,8>)=<B",8"> and c==¢".

0
It is possibie to see the operstion of expension os gperstion only on type schemes, not
necesssry on pairs. The expansion e=<y>, applied on the type scheme <, is defined as in
Definition 7.ii1), with L%(B,7) replaced by L%(&,1), where & is the empty set. In what
follows we will use "expsnsion” to denole indifferently the two opersations, since the
meaning will be clear from the context.

3.The unification semi-algorithm.

The unification problem for type schemes belonging te T could be stated in the
foliowing "syntactic” way:
- Given 6,TeT, find, if it exists, a chain c (of expansions end substitutions), such thet
c{g)=c{t).
But in this formulation of the problem the psriicular role of the universal type scheme
@ 1s not teken into sccount. In fact, it is nstursl to impose that w con be unified with
any type scheme.Then, we can give 8 "sementic” version of the problem:
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- Given 6,T€T, find, if it exists, a chain ¢ sych thet cig)~c{1}
But this formulation is too general, and it exels our aims. So, we will define & new
equivalence relation between type schemes:
Definition 9.1} 4 w-type scheme is a type scheme in which only the symbol @ occurs.
i1} = is inductively defined as follows:

x,g w-type schemes = nxp

0N=p = 0P
o= prp D A—pEN B HABSN AR
{Note that aagfpan).

we can now try to give a third formulation of the unificetion probiem:.

-Given 6,7€T, find, if it exists, 8 chain ¢ such that cl{glxc{T).

But now the problem hes slways 8 solution,the trivisl one c(g)=c{T)~w. The correct
formulation of the unification problem must impose that the trivial solution can be
choosen only in the case no other solution exists.

Then the final formulation of the problem is:

-Given s,1eT find, if it exists, a chain ¢ such that c{s)~c{T)#u.

This problem is semi-decidable. In fact, in the following section it will be possible to
see that it is equivelent to the problem:

-3<B, > B-Td?

which is clearly semi-decideble {by Theorem 1.i).

The semi-algorithm UNIFY we will show solves the problem in the most general way,
i.e, it finds the most general unifying chain, if it exists, otherwise it does not stop, &8s
will be proved in Theorem 3.

Semi-algerithm UNIFY
UNIFY{s,T)=U{(8,5,7,T) , where U(s,6",¢,U)=c {if defined) ,where;
1.if 6 is a type varisbie then if T=6 then s=% glse
if 6 occurs in T then c'=s, where s={<yp,w> <6,wyp occurs in 1}
else c'=s,where s={<5,>};
2.if 6=w then c'=s, where s={<p wly occurs int};
3.if 6=81-62 then
3.1.f ©is a varisble then
_if T occurs in 5 then ¢'=s, where s={<y,w>,<T,wlyp occurs in 6}
else ¢'=g, where s={<T{,6%}
3.2. if T=w then c'=5, where s={<y,w>p occurs in 6}
33.1f T=1,-1T, then

__j_f_CfU(ﬁ 1,6‘,'171,'5') and CQ’*‘U(C}{ﬁ 2),31(6':’,81(“52:‘,8 ;(‘fj}

then c'=cy.co
3.4ifT=1 a1, then
1et e=<6> , then if cy=Ule(s"),els"),e(17),e{T})

R iiit g

then C'=E-'.£‘
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4 if 6=6 1)‘\52 then:

4.1. [ identicsl to point 3.1}

42, [ identicel to point 3.2}

43.if 1=t~ then
let e=<> then if cy=Ufe(s'},e{6"),e("),e(T))
then c'=e.c,

4.4, if T=14AT, hen
Af 4=U(84,8", 74,7} and if co=Uic,(80).04(87),c4(T o) cy{TD
then c'=cy.cp.

Exemple 2. Lat o,p,y,8,1,v be type variables.
i) If Gmor2w-p ond T=(x=8)={—v)—y, UNIFY(G,T)=Ccms 5593, where:

§y={<ex, > <8,07}, 8,={¢, 0> <v,w}, 85={¢p >}, nd clE)xc{TIzw-0-y.

ii) If 6=0xa{u—g) and T={ual—v)}-v, UNIFY(6,7) does not stop. in fact:
UNIFY(s,T)=UNIFY(e(6),e(T)) (where e=<T>)=UNIFY(6,T'AT") (where T' and T" are
instences of T)=UNIFY{s(x—g},s(1")) (where s={<x,1>})=
=UNIFY{T' =g, T )=UNIFY¥{T'>8,6'=v) {(where 6" is an instance of § and v' i5 & new type
yarisble) = if c=UNIFY{7',6") then UNIFY{c{g),c{v'))

and this function is undefined since v’ and 6" are instences of ¢ and t.

To prove thset this semi-sigorithm is correct and {in some sense) complete, we need &
further definition
Definition 10.i) Let §,7€T,ond let 6" and T be subtypes respectively of 8 and . Two
occurrences of 6° and T’ in 6 and T are carrespandingiftf:
-6=6" and T=1"
~g=0(—p ond T=&'=g' (6=0Ap and T=a'Ap’) and the occurrences of 6' and '
sre corresponding either incond o’ or ingond g
i1) Let c=0p,...0p, be & chain such thst c(g)=c(T). ¢ is o praper chafmunifying 6 and T

iff %1 (1<ign). there exist no two corresponding eccurrences of subtypes of 091....00,-(6)
and opy..0p;(T} (s8y &; end ;) such thet:
81,170 and 3)>i . 0py.0p;(6;)¥0p;..0p;(1j)=0.

Roughtly spesking, a proper chain unifying two given type schemes is & chain in which s
substitution of e type verisble with the constent @ is used only in order teo unify two
subtypes one of which is 0.

Then we are able {0 prove:

Theorem 3.i) (Correctness) If UNIFY{s,T)=c, then c{g)=c{T).

i1) (Completeness) Let 6,T€T be such thst there exists s proper chain c unifying 6 and
1. Then UNIFY(s,t)=c’, where ¢’ is & proper chain unifying s end © , end c==c'c” for
some c"(i.e., ¢’ is the mwime/ chein unifying 6 end T.in the sense that every other
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some ¢"{i.e., ¢’ is the m#nims/ chein unifying 6 and T,in the sense that every other
proper chain unifuing 6 and T must contain (an instance of) every operstion occurring
inc').

Proof. i) Easy, by induction on the lenght of c.

ii} By induction on the pair <i{c),n(6,t)> (we assume the lexicographical order between
pairs), where:

- Hc) is the lenght of ¢, i.e., the sum of the number of expansions occurring in ¢ and the
cardinality of the union of all the substitutions occurring in c.

- n{s,T) is the total number of symbols occurring in 6 and €.

The case H{c)=o and Hc)=1 are obvious.

Let H{c)>1.in the case 6 is & type varisble, we must distinguish two cases, according to
T contsins or not occurrences of 6. In the first cese obviously there is no & proper
chain unifying 8 and T. Otherwise, UNIFY makes the substitution s={<6,t>}. Obviously
this is the minimal between all the proper unifying cheins composed only of
substitutions { see [Robinson, 1965]). It essy to see thet every proper chein unifying s
and t in which some operations of expansion occur is at least of length 2 (it must
contain at least one substitution, since the expansion generstes new type verisbles)
and 1t is always equivelent to a chein composed by 8 single substitution.

In the cese 6=w, UNIFY(,T)=s, where s={<y,w>|y occurs in T}. Obviously s is the
minimal chain, since every chain unifying 6 and T is such that c{g)=c{T)=w.

In the cese 6=6,A8, 8nd T=T AT, the proof follows directly from the induction

hypothesis.
in the cese 6=6y-8, 8nd T=T;=T,if ¢ is such thst c(s)=c(51}—>c{52} and

c{T)=c{Ty)-clT,), the proof follows directly from the induction hypothesis. In the
case c{g)=c{T)map, by Theorem 2.ii), there exists cy=e.co,where e=<AT>, such that
cy{6)=c (T} end c==c{. S0 ¢, is a proper unifying chsin for e{g) snd e}, snd, by
induction (since 1{c,Ki(cy)), UNIFY{e(s),e(t))=c’and c,==c'c”, for some c”. So
ty==e.c’c"==C, and the proof is given, since UNIFY(5,T)=e.c’

Consider now the cese 6=6a6, and T=Ty>T,.

If there exists a proper chain ¢ unifying € and T, c must contein en operation of total
expansion with respect fo ©. Let e=<t>; by TheoremZ2.ii} there exisis ¢y such thet

cy=e.c, and c{6)=c (T} and cq==c. Then ¢, is 8 proper chain unifying e(s) and e(t), and
1{c,X<I{c). So, by induction hypothesis, UNIFY(e(s),e(t))=c’, where c,==c'.c".for some c”
snd c==cy==e.c’c". Then the proof is given, since UNIFY{6,T)=eC".

o
Moreover, the semi-slgorithm UNIFY is conservetive with respect te Robinson’s
unification algorithm R. More precisely:
Property 1. Let 6,7 be type schemes without occurrences of the symbols A and w. If

R{g,T)=s, where s is some substitution, then UNIFY(s,T)==5; if R(g,7T) fails, then
UNIF¥{s,T)==s5, where s contains only pairsof the shape:<y;,w>, 50 s(6)=s(T)~w.
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Proof. Easy.

4 Principsl] pairs.
Lat us introduce the notion of arincips/ peir 8s defined in [Ronchi et
81,1984]. First of all, the notion of epproximsant of & term must be introduced.
Definition 11.i) The set ¥ of anpraximete narmel formsis defined from the set of
variables plus a new constant symbol @ in the following wey:
~ ReA xe ¥for sll variable X
- if % is @ verisble and Ac #(A=Q), then AX.Ac W
- if % is 8 variable and Al,...,Ape;V(p::O), then xAi...Ape;‘l{
i) Let X be o term snd AcH A is an saoraximent of X (Ack) iff 3)('=$X such thet A

motches ¥ excepl at occurrences of Q@ in A
iii) AX)={AlAcK).
iv) the type assignment rules of Definition 4 are genersalized to elements of # simply
by adjoining the following rule:
{u') Brua for all Ac ¥

The following theorem holds:
Theorem 4.[Ronchi et 81,,1984]. <B,t> is 8 suitable peir for MeA iff <B,1> is 8 suitable
pair for some Ae M)
we can define, for an spproximste normsl form A, 8 unique grincipsi peir (pplA))
{modulo the relstion ~) 8s follows:
Definition 12_Let Ac /¥
iYif A=Q , then pp(A)~<E,w> (& is the empty set)
ii) if A=x, then pp{A)~<{ypx},p>, where y is & type verisble
i} if A=ax.A’, ond pp{&’)~<B, 7>, then:

1) if % ocours in &', ppla)~<B'-{gx},6-»1'>,where 6 is the intersection

of the predicates of B' whase subject is x

2} otherwise, pp{A)~<B',u-7"

W) 11 A=xA (. A, and pplA;)~<B;, ;> {i<i<n) (we choose 8 trivial verisnt of them such

thst they sre peirwise disjoint), then pplA)~<U; ¢; (nBiUIT = =T —¢lp>, where o is
8 type variable which does not occurs in Bi,ﬂi(msn),

The compenents of pp{A} are celled respectively the grincipsl besis scheme and the
principsl iype schemeaof A,

Note that the princips] peir is defined moadulo nemes of type varisbles.

The princips] pair of sn spproximste normal form A has the property thet if <B,6> is
suitable for A ,then there exists & chain ¢ of operations of substitution, expsnsion and
rise, such that <B,s>~c{pp{A}}, where the operation of rise is defined ss follows:
Definition 13.A r/ser is o pair of pairs <«<By,B5>,<pq,05>>, where py<p, and B, is such
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that, for every 6xeB,, there exists 5‘3682 with 6°<s. Then:
iy r{t)=if T~py thenpyelse T
r{B)= if ¥x.6;x€B (1<i<n) and T;xeB, (1£j<m) = 6 A..AB~T A Ty, then
52 else B
i1} (B, t>)=<riB),rith.

In[Ronchi et 81.,1984] it is proved thet the operation of rise preserves suitable pairs:
namely, if <B,1> is such thst there exists D:Bf-1X, snd r is any rise, there exists s
deduction Dr{B)-r(t), end D' is obtsined from D by sdjoining to D some applications of
rule ().

Let TI{¥}={<B, m>13Ae AX) <B,m>~pp(A)}, ond A{KB, 134 AKB,m>~pp{Al}.

On Fis possible to define the following preorder relation:

<B, WL B, & Igy.p, - BW=Blp/0,., /0l Tlp/0,. pp 0l

Property 2.Fc,, is & meet semilettice isomorphic to Ac.

Then TI{X) is an idesl in F snd therefore if T{¥) is finite there exists a pair
<B,m>=LITI(X), where <B,w>e ~ then <B,1> is the pp of X. Otherwise, LiTI(X} does not exist
in ~ and then X hes an infinite set of pp's, as shown in the following:
Theorem 5.i)4¥%) is finite. <B,w>=UT(X) i5 such thet, if <B", 1> is suitable for X, then
there exists 8 chain ¢ such thet <B,To~c{<B,1>).
1)) is infinite. For every <B',T> suitable for X there exists <B,m>€M(X) such that
<B", T>~c{<B, 1>}, for some chain c.

0
In order to compute the principal pair of 8 term X, if it exists, the semi-algorithm PP
will be shown. PP uses the unification semi-slgorithm UNIFY, defined in the preceding
section. In this semi-slgorithm, the operation ¥V between basis schemes, with at lesst
one statement on every subject, is used. V is so defined:
BYB'={6 8%l 6xeB and 6'xeB}U{sxl{sxeB and B has no a statement on x} or {6x€B and
B hes no 8 statement on x3}.

Semi-algorithm PP_
PP(%)=<B,m> (if defined), where:
1) if ¥ is 8 varisble_then <B,w>=<{yX},p> where ¢ is a fresh type verisble.
2)if ¥=Ax.X" then
if PP({)=<B',w>_then
if B' contains a premise on x,1et 6x, then <B m>=<B'-{sxl,6»1">_glse
__ B u-u"
3) if ¥=X,X, then

it PP(X])=<B1,‘H’]> and PP(}{Q):(ﬁQ,ﬂ'Q} then
if UNIF?(ﬂl,ﬂz-anpﬁc {y is 8 fresh vorieble) then
<B,m>=<c(B()Vc(B,y),cly).
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Remember thol a term X is called sirongly narméelizingi1l X, end every ils subterm,
possess a nhormal form.
Theorem 6.FP(X)=<B,m> & X is strongly normelizing and pp{X)~<B,7>.

The proof will be given in the following section.
It is possible to define & set of unificetion sigorithms UNIFY; (i20), esch one unifying

with w, st every step, all the subtypes occurring at depth 2i, where the depth of an
sccurrence of a subtype in 8 type scheme is defined as follows.
Definition 14. Let 6€T. The derf4sdin{t) 5] of an occurrence o{T) of T in 6is:
1) if T does not eccurs in 6 then d{o{t},6}is undefined
i1} if s=1 then d{o(T),5)=0
iii) if either 6=6{—6, Or 6=6A6, then
if d{o{),64)=1 then d{o{1),8)=i+1
if a{n{%),6,)=i then dio(T},6)=i+1.

Algorithms UHIFVi.
UNIFY;(8,7)=U;(8,6,7,7,0) where
Ui(s,ﬁ',tﬁ:’,j%c where

Jf j2i then c=Ww,6" 0,1 else
1.if either ¢ or T are either & type verisble or w then c=U{s,6',7,7’)
2.if 6=6y—6, then

2.1 if T=T{~=T, then let cy=U;_4{6,,6",7,7"j+1) and
02=U1_1(01{52),c1(6'),c1('t2),01('z:'},j+1) then c=¢ ¢,
2.2. i T=TyaT, then
1et e=<6>, then let cy=U;{e(c),e{6"),e{1"},e(1),0)
then c=e.cy
3.if 6=64AG, then
3.1 1f T=T=Ty then
let e=<T>, then let c,=U;(e(s") e{6),e({T),e(7),0)
then c=e.c,
3.2.if T=T,AT, then
Tet cy=U;_{6,87, Ty, T, j+1)8nd Co=ll;_4(cq(8.9),04(87),c4{Tp).c4(T), J41)
then c=cq.cy.

Let PP; be the slgorithm obtained from PP by replacing UNIFY with UNIFY; (i20). The
following theorem holds:
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Theorem 7.1} PPi(}(}=<B,m = B, meN{¥).
i1} <B,m>€M(X} = 31 PP{X)=<B;, 7> and <B,W>g By, T

Proof_ immediste fram Theorem 5 and from the definition of the spproximsnis of 8
term.

O
4 Proof of Theorem 6.

{<)By induction on the structure of X.

For ¥ verisble, obvious. For ¥=Ax¥ or ¥=YZ, where ¥ does not reduce to Ax.Y for some
¥, the proof follows directly from the induction hypothesis.

For  ¥=(Ax¥)Z, PP(X) =<B1>3PP{Ax¥)=<B6—1> end PP{Z)=Bjmy> ond

<B,1>=<c{B{)Ve(Bo),clp)>, where c=UNIFY(6—T,mo—yp). It easy too see , by exsmining
the semi-sigorithm PP, that, if p~6-T 8nd 8~p—y¢ and LnIFY{p,8)=c’,
<B,m>~<c'{B4JUc’(Bp),c'(y)>. Then the proof is given by induction on the normal forms of

AxY and Z, which exist since ¥ is strongly normalizing by hypothesis.
{=) Let B be 8 basis scheme, o be 8 type scheme #w,and M be 8 A- term.
et us define the predicate
P{B,xx MICPP(M) is defined and 3c.<B,o>~c(PP(M)) and M is strongly normslizing.
Let xM denate ®My..My, for n20, snd let F¥{M} denote the set of verisbles occurring free
inM.
Property 3.1) P(B,x—g,xM) and P(B",00,N) = P(BUB" g %M.
ii) P(BU{orxh,g,Mx) and x¢F V(M) and B does not contain premises on x =
P(B,0x—g,M.
iii) P(B,6 a6 ,,M) = P(B,6 11y and P(B,5,,M).
iv) P(B, M) and 6<T = P{B, .M.
Proof. 1) Let xﬁ=x¥"f}...ﬁm. P{B o, N}=PP{N}=<B 7> and I8, 0> ~c{PPING).

F(E,a-—>g,xﬁ):???(xﬁ)=<{1r,a...—?ﬁma\px}‘?ﬁ{if‘...'ifﬁm,w, where ¢ is 8 fresh variable
and PP(M;)=<B;,m>, end 3o’ <B,u—p~CPP(xM)) . So UNIFY(yp,m-p)=s, where

s={<p, M 9>} (¢ is fresh), which implies
PP{xﬂN)=<{1r,—>._.—+1rm—>1r'—;qpx}VBIV...VEmﬁ?@‘,q».Let g'=c.c's, where s={k¢p}

<BUB‘,p>~c"(PP(xﬁN)),since PP(N) and PP{xM) sre disjoint, then P{BUB",g,xFIN).
i} P(BU{ux),g Mx)=PP{M)=<By 7> eond PP(#)=<{px},p> and UN!F?(ﬁl,xp—»ykc' and

PP(Hx)=<c‘{B}}v{c‘(xp)x},c‘(?» where ¢ is fresh and B, does not contsin premises on x,
and moreover 3c.<BU{ux}e>~c{<c'(B)V{c(plx}c(y)> Note that ¢ does not contain any

expansion involving the type verisble ¢.
Then <B,x—pr=c(<c’(By),C{p}-C'(yp>) (since By does not contsin premises on
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x)=c(<c(By),c(w P)=c .c{<By, ), and then P(B,o—p,M).
iii} and iv} are immedisie. i8]

Then define, by induction on the structure of type schemes #w, the following
computahility predicate:

Comp(B,p,M) & P(B,p.M)
Comp(B -1 M) & (Comp(B & N}=Comp{BUE" T, MN})
Comp(B,5 ;A8,M) & Comp(B,& (,M) and Comp(B,5,M).

it is easy to prove, by induction on the structure of M, that Comp is inveriant under
g-convertibility.

Lemmsa 1.1i) P(B,s M) = Comp(B,s xM}

ii) Comp(B,8 M) = P{B,8 M.

Proaf.i) and 1i) by simultaneous induction on 6.

6 is @ type verieble. i) and i) follow from the definition of Comp.

G=—g.

i) Comp{(B’,or,N}=> P(B",0c,N) {by induction hgpothems)

P(B,6—p,xM) and P(B,x,N) = P{BUBgxMN) (by Property 3} = Comp(BUB'g, «MN) (by
induction hypothesis). Then Comp{B',x,N} and Comp(BUB' g, sFIN) = Comp(B,x—g,xM) (by
def. of Comp).

i1} Let xeFv{M) end let {oxxieB’ P{B',,x) = Comp(B' &,%) (by induction).

Comp(B,x->g,M) and Comp(B",xx,x} = Comp(BUB' g Mx) (by definition} = P(BUB gMx} (by
induction) = P(B,x—p,M) (by Property 3).

6’:51&52

ii} by definition of Comp and hg induction hgpathes;s

i) P(B,6ABo,xM) = P(B.6y. xM) and P(B, sg,xm (by Property 3)= Comp(B.&,, £M) and

Comp(B,ﬁQ,xM} {by induction) =Comp(B,s lasg,xﬁ) {by definition). 0
Lemma 2. Let {x;,...,xm}:’FV{H), and let B be such that {6,~xi}eB (mgm},Comp(B’,ﬁi,Ni}
(1<i<m) and PP{M)=<B, 1> &nd 3c.<B,T>~c{<B,7>) = Comp(BUB", T Mix;/N;]).

Proof By induction on M. The only not trivisl case is M=ax.IT.
Then PP(M}=<B,x—p> = PP{M)~<BU{rx},p>, where B does not contain premises oh X.
PP{M)~<BU{xx},g> and Jc.<BUIsx},T>~c(<BU{xx},g>) and Comp(B",6,N) and {:nmp(B',ﬁ]-,Ni)

{iigm} = Comp(BU{sxJUB'UB",T,MIx/Nx;/N;}  {I<igm)  (by  induction) =
Camp{BU{ﬁx}UB'UB",‘t,{Ax.M‘Ixi!Ni})N} {since Comp is invariant under g-convertibility)
= Comp(BUB",6 »T,Ax Mx;/N;]) (by definition).

{1
Then let PP(M) be defined, and let {x;,u.,xm}#vtﬂ), and let <B,1>~c(PP{M}) snd lst

{s;x}eB (1<i<m). Then Comp(B,6;.%;} . By Lemma 2, this implies Comp(B,T,M), which
implies P{B,t,M)}, by Lemmsa 1.ii}. i8]
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3. The intersection type discipline withoul o.

In [Coppo et 81,1980 al, for the first time an intersection type discipline was
introduced, built from 8 set of type verisbles, without sny constant. More precisely,
the type schemes sre defined as in Definition 1 ,without the constant w, and the
assignment rules are as in Definition 4, without the rule {w). The definition of peirs,
equivelence relation ~, and operstions of pairs remsin unchenged. It is possible to
define 8 principal psir in this discipline, in the following woy:

Definition 15. Let X be o normsal form. pp'(X) is so defined:
DIf ¥=x then pp'(x)~<{px},p> where g is a8 fresh type varisble
i) if ¥=Ax¥ and pp'{X)~<B 1", then:
1} if o ocours in ¥ then pp{{)~<B'-{6x}, 61> where & is the
intersection of the predicates in B whose subject is &
2) otherwise pp(X)~<B ,p—%">, where y is fresh.
iii) if X=x{; X, end pp'{¥;)~<B;, ;> then pp'(x)»««’.u1ﬁﬁnBiU{ﬁI—e,..—eﬂn-‘wx},w, where

is fresh.

The proof thet pp'{}) is really the principel peir of X, in the sense that 81l end only the
type scheme deducible for X eore obteined from pp'(X) by means of cheins of
substitutions, expansions and rise, is 8 particular case of the proof that, for Ae¥,
pplA) is the principel pair of A, given in [Ronchi et 81,1984] Moreover an algorithm PP’
can be defing, which differs from PP only in the point 2}, which must be repisced by
2} if ¥=Ax.X" then

if PRP{X)=<B", "> then

if B' containg 8 premise on x, let 6x, then PR({)=<B'~{gr}, 61"

glse PP'(X)=<B'p—7">, where g is & fresh type vorisble.
Then we obtain, as corallary of Theorem 6, the following:
Theorem 8.in the intersection type discipline without the constant w, there exists @
pair suiteble for X iff X is strongly normalizing.

|

This result is stated, but not proved, in [Coppa et s, 1980 8.

Aknoledgments The suthor is very grsteful to Paole Busse snd Meuro Berts, who gave
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