
An unification semi-algorithm for intersection type schemes

Simona Ronchi Della Rocca
Dipartimento di Informatica - Universita' di Torino

corse Svizzera 185 - 10149 Torino

I. Introduction.
The intersection type discipline for ~,-calculus (ITD), defined in [Coppo et ai.,1980 b],

is an extension of the classical functionality theory of Curry [Curry et 81.,1958] .In Curry
type discipline type schemes are built from type variables using the constructor -~
(arrow). In the ITD, type schemes are built from type variables and the type constant
(the universal type) using, as constructors, beside the arrow, the intersection (^). The

semantics of a type scheme of the shape ~-~ is the classical one, the semantics of a
type scheme of the shape ~^B is the intersection of the sets representing the meanings

of c~ and ~, the semantics of ~ is the whole semantic domain. In the ITD every term has
at least one type scheme, and type assignment preserves B-convertibility.

In the Curry type discipline, every term X which can be typed has a principal type

scheme (pts), from which all and only the type schemes deducible for X can be derived,

by means of substitutions. The problem of computing the pts, if it exists, of a term in
the Curry type discipline is decidable, and algorithms to solve it have been proposed by
Hindley [Hindley,1969] (for terms of Combinatory Logic), and by Milner [Milner, 1978]

[Milner et 81.,1982] (for terms of },-calculus). Milner uses this algorithm in the design of
the ML type checker. Both these algorithms are based on the classical unification
algorithm of Robinson [Robinson,1965].

In the ITD each term X, which has a finite set of 8pproximants, has a pts in an extended

meaning. More precisely, every type scheme deducible for X is derived from its pts by
means of a sequence of suitable operations, namely the substitution, the expansion and
the rise [Ronchi et ai.,1984].

In this paper the unification problem for intersection type scheme is studied. This
problem is semi-decidable. The semi-algorithm UNIFY solving it is presented, and it is
proved that ,in the case 8 solution exists, it finds the more general one. While UNIFY
uses also operations different from substitution, it is conservative with respect to
Robinson's unification algorithm. Moreover a semi-algorithm PP is presented, using
UNIFY as essential tool, which, given 8 term X, if X is strongly normalizing computes its

pts .Since there is a one-one correspondence between a term and its pts (if it exists),

PP can be viewed 81so as a reduction machine,using an innermost reduction strategy. The
use of unification between type schemes instead of p-reduction in computing the normal
form of a term avoids the necessity of ~-conversions.

38

2.Tile interse~ti~, type ~Iis~ipli,e.
The reader is supposed to have some acquaintance with k-calculus; in any case he c~n

refer to [Barendregt,1984], whose notations we will use.
D~filIitiml I. i) The set T of intersection type schemesis inductively defined by:

~i,?i,...~T (i~O) (type variables)

s~T (type constant)
6,-~T ~ (~-~'~)~T,(6h~)eT.
ii) A statementis of the form 6x with 6aT and x is a variable, x is the subjectand 6
the predicateof 6M. A basis scheme is a (possibly infinite) set of ststements.

The notion of subtype of a given type scheme is obtained in 8 straightforward way

from Definition I.i). 6 i-~62-~...-~6n -~I; is an abbreviation for

6 i-~(62-~(63-t..(6 n-.~d)...)) and 6 i^62h...^6 n is on abbreviation for

(6 ih(62h_.(6n_lh6n)...)).

The simple semantics(for the definition of simple semantics see [Hindley, 1983]) for T

can be given in the following way:
I)etinitian 2. Let/~<D,-,I[I> be 8 k-model.
i) Let N6A; if l~ is a valuation of variables in D, then ~N~D is the interpretation of N

in Mvia ~.
ii)Let PD={XIXcD} and V:{~I~ is a type variable}-+PD. Then the interpretation of 6aT in M

via V, notation [6~v~PD, is defined as follows:

Io~=D

~v=V(~)
• ~' J6

II6-~'~'~={deDjYee~6 ~v.d.eelh;~ V }

This semantics induces naturally 8 pre-order relation ~ on T, whose intended meaning

is: 6<~ 4=> YMV. ~6~vC_K B V.
Definition 3. The relation < (and ~) on T is inductively defined by:
i) ~<'~, ~o, o~w-~, ~<~h~, ~h6~6, ~h6<~, (6-~Q)h(6-~)<6-*(Qh~),

6~'d~ ~ 6~[~, 6~6'8nd~C~1;'~6h~6'^~ ', 616' and ~'6' ~ 6-~6'-~,'C.

ii)6~'I: <=> 6.(~_(6.
II)efiiiitilm 4. Type scheme assignment rules
Let B be a basis scheme, ond let A be the set of type free k-terms.

(~)) BI-oX for all XeA (var) BU{6x}I-6x

(hl) BI-6X BI-~X (hE) BI-6h~X BI-6A'CX

BI-6^'CX 6X ~6X

3g

(~I) BU~6x~*I-~;X' ~ (-~E) BI-6-~X BI-6Y

BI-~-,~;~,x.X BI-'dXY

* where 6x is the unique statement of B ,whose subject is x,used to

deduce ~;X.

(<) BI--6x 6,<%

BI-~X

Note that the rule (^E) is redundant, since it can be directly derived from rule (<).

I~otati~n. Let <Z,W,z> be a triple of either two type schemes and a type variable, or

two terms and a variable. Z[z/W] denote the type scheme (term) obtained from Z by

simultaneous replacing each free occurrence of z with W. If z' is 8 (type) variable,

Z[zlz'] is an instenceof Z.

Let -~tB denote the B-reducibility, i.e.,

C[(~,x.M)N]-~C[M[x/N]J (where C[] is any context)

iff N is substitutible for x in M (note that a term N can always become substitutible

for a given variable in a term M, by means of a renaming of bound variables in M).Let =

denote i~-convertibility, i.e., the transitive and reflexive closure of i~-reducibiMty.

We recall that a term X is in normal formiff ~X'. X-,~X', and it is in headnormal form

iff X=%XlX2...Xn.~XiX2...X m (n,m>O), where ~ is any variable and XiEA (1<i<m). X has a

normal form (a head normal form) iff X-~*~X' and X'is in normal form (head normal

form).

The following theorem holds:

TI~eorem I ([Barendregt et ai,1981].i) Let X--~X'.Then BI-~;X ~=> BI-I;X'.

ii) ~B,~.BI-I;X ~ X has a head normal form.

iii)~B,s;.BI-~:X and ~ does not occur neither in B nor in I; 4=> X has a normal form.
[]

Without less of generality, we can restrict ourselves to consider only finite basis

schemes.

I)efinition 5.i) A pair<B,%>, where 8 is a basis scheme and % is a type scheme is

suitablefor XEA, iff there exists a deduction D such that
D:BI-~X.

ii) ~ will denote the synctactical identity between type schemes, basis schemes and
pairs.

iii) The equvalence relation ~ between pairs is so defined:

<B,~;>~<B',~;'>~=>~;~~;' and, if, Yx. 6ix (1<i<m) and ~jx (1<j~n) are the all and only

statements whose subject is x belonging respectively to B and B',61^...^6m~~1^...^~n.

Now, we will define two operations on pairs, which preserve suitable pairs, namely
the substitution and the expansion.

I)efinition 6. A substitution s is a finite set of pairs <~i,~li > (1<i<n), where ~i are

40

distinct type variables and ~I i are type schemes. Then, for every pair <B,~;>:

i) s(~)--~;[~ilPi], s(B)={s(6)xI6x~B}

ii)e(<B,~;>)--<s(B),s(~)>.

Clearly, if D:BI-~;X and s is any substitution,-'ID':s(B)I-s(~;). D' is obtained from D simply

applying s to every basis and type scheme occurring in D.
Nototion. Let L be ~n ordered list. Then L<<o will denote the ordered insertion of o into
L, and L>>e will denote the extraction of the meximum element of L, whose name is a.

Definition 7. An expansione is e monuple <i~>, where ~t is a type scheme.
i) Let Le(B,-d) a list of type scheme,ordered by number of symbols (when two type

schemes have the same number of symbols their mutual order is unimportant). Le(B,I;)

is built in the following way:
-Le(B,~)~t
-if 6~Le(B,~), end 8 is e proper subtype of 5, Le(B,~;)<<$.
-for each type scheme 6, such that 6 is a subtype of either ~d or o predicate in B:

-if either 6=v-~8 or 6--v-~(8^c() and 8~Le(B,~;),then Le(B,%)<<6.

ii)Let I--{~iI~i is e type varieble occurring in Le(8,~;)}.

Let si={<~i,?i>I ~i~I,~i is ~ fresh wriable} (I<i<2).

iii)¥6~T, e(6) is obteined from ~ by meens of the following procedure:

while Le(B,'d) ~ (~ is the empty list) do begin
Le(B,~;)>>~ -

iv)e(B)--{e(~)xI6x~B}-
v)e(<B,~;>)--<e(B),e('c)>.

if ~" occurs in 6 then replece ~ in 6 by s1(~')^s2(¥)

end

An expansion e will be called totalwith respect to e type scheme 6 iff e(6)=e'(6),

where e'--<6>.
Let D:BI-~;X. Then, if e is 8n expansion, there exists 8 deduction D':e(B)I-e(~;)X, and D' is
obtmned from D by dupliceting some subdeductions of D end by odjoining some

applications of the rule (^I), as can be seen in the following:
Exomple I. Let B--{(~-,~)-~y}.Then <B,~> is 8 suitable pair for the term y(~,x.x). In

fact we can show the deduction D:

(-~I) BU{~x}I-~x

(-~E) BI-(~-~)-~ocy BI-~-~x.x

BI-~y(~,x.x).

Let e--<~>, e(<B,o~>)=<{((~1-~1)^(~2-~2))-~o(Y},~ > is o suitable pair for y(~x.x). In fact

there exists e deduction D':

41

(-~I) e(B)U!~IX}I-~1 x (-~I)e(B)U{~2x}I-~2x

(^I) e(B)I-~1-*~1 ~'x'x e(B)I-~2-*~2 ~x-x

(-,E) e(B)I-((~1-*~ I)^(~°2-~Z))-*c~y e(B)I-(~ I-~ I)^(~2-%°2)~xx

e(B)I-~ y(>,x.x).

The notion of instance can be naturally extended to substitutions and expansions; we

will say that e substitution s={<~i,6i>} is an instance of s'={<~'i..d'i >} iff 6 i is an

instance of 6' i, and an expansion e=<~> is an instance of e'--%I'> iff ~ is an instance of

Definition 8.i) A chain c is e finite sequence of operations of substitutions and
expansions.

ii) Two chains c I and c 2 are equivalent(notation cl==c 2) if f:

- 1~ ~ -

- i f Sl,...,s n and S'l,..,s' m ere all end only the substitutions occurring

respectively in c I and c 2, Ut<I< n s i is en instance of Ul~;i.~ m s" i.

Note that Cl==C 2 does not imply Cl(<B,~:>)=c2(<B,~C>).

Netat ien. Let op i be an operation of expansion or substitution (l<i~n). We wi l l denote

with OPl.OP2....OPn the chain c such that c(6)=OPn(OPn_t(...(oPt(6))...)) and with Cl.C 2 the

chain which is the concatenation of the two chains c t and c2, i.e., c(6)=c2(c1(6)).

Theorem 2.([Ronchi et a1.,1984]).i) Let c be any chain. If <B,-C> is a suitable pair for X,
then c(<B,%>) is also e suitable pair for X.
i i)Let c be a chain, such that c(<B,6>)=<B',6'>, where 5' =l~^v. Then -~c' such that: c'=e.c",
where e=<6>, c'(<B,6>)=<B',6"> and c==c'.

C]
It is possible to see the operation of expansion as operation only on type schemes, not
necessary on pairs. The expansion e=<p>, applied on the type scheme 1;, is defined ~s in
Definition 7.i i i), wi th Le(B,%) replaced by Le(~,%), where ~ is the empty set. In what
fol lows we wi l l use "expansion" to denote indif ferently the two operations, since the
meaning will be clear from the context.

3.The unification semi-algorithm.
The unification problem for type schemes belonging to T could be stated in the

following "syntactic" way:

- Given 6,1~T, find, if it exists, a chain c (of expansions and substitutions), such that
c(6)=c('~).
But in this formulation of the problem the particular role of the universal type scheme

is not taken into account. In fact, it is natural to impose that o can be unified with
any type scheme.Then, we can give a "semantic" version of the problem:

42

- Given 5,~eT, find, if it exists, a chein c such that c(6)~c(~;).

But this formulation is too generel, ~nd it exels our 8ires. So, we will define e new

equiwlence relation between type schemes:

Definition 9.i) A (~-type scheme is a type scheme in which only the symbol ~ occurs.

ii) ~ is inductively defined as follows:

~,t~ ~-type schemes ~ ~i~

(Note that o~^B~t~A~).

We can now try to give a third formulation of the unification problem:,

-Given 6,s;eT, find, if it exists, a chain c such that c(6)~c('d).

But now the problem has always a solution,the trivial one c(6)~c(i;)~. The correct

formulstion of the unification problem must impose thet the trivial solution csn be

choosen only in the case no other solution exists.

Then the final formuletion of the problem is:

-Given 6,1;eT,find, if it exists, 8 ch6in c such that c(6)~c(I;)~.

This problem is semi-decidsble. In fsct, in the following section it will be possible to

see that it is equivslent to the problem:

-~<B,'~>.BI-~;X?

which is clearly semi-decidable (by Theorem I.i).

The semi-~Igorithm UNIFY we will show solves the problem in the most generel way,

i.e., it finds the most general unifying chein, if it exists, otherwise it does not stop, es

will be proved in Theorem 3.

Seml-olgoritflm UNIFY
UNIFY(6,1;)=U(6,6,~;,~), where U(6,6,~;,~')--c (if defined) ,.where:

I. if 6 is a type variable then if ~--6 then s--~ else

if 6 occurs in ~ then c'--s, where s--{<tp,~>,<6,o>I~p occurs in ~}

else c'=s,where s={<6,1;>};
2.if 6-- ~ then c'=s, where s={<~,~>I~ occurs in'(;};

3. if 6--61-,62 then

3.1. if "d is a verisble then

if I; occurs in 6 then c'=s, where s={<~,~>,<1;,~>I~ occurs in 6}

else c'--s, where s--{<I;,6>}
3.2. if %=o then c'--s, where s=(<~p,w>I~p occurs in ~}

3.3. if ~--~:i-~I;2 then

if ci=U(61,6",%1,1;') end c2--U(cI(52),cI(6"),cI(~2),ci(~'))

then c'=cl.c 2

3.4.ifI;~i;I^~ 2 then

let e=<6>, then if c1=U(e(6'),e(6"),e(Ic?),e(~'))

then c'--e.c I

43

4. if 6:6 i^62 then:

4.1. [identical'to point 3.1]
4.2. [identical to point 3.2]

4.3. if 1;:%1-~%2 then

let e,.<1;> then if c l-U(e(5'),e(6'),e(1;'),e(1;'))

then c':e.c I

4.4. if I;:%1^%2 then

if ci:U(61,6',1;i,%') and ifc2:U(c1(62),c1(6'),c1(%2),c1(%'))

then c'-cl.c 2.

Example 2. Let o~,[~,~',S,(4,v be type variables.
i) If (~-(x-,~-~[~ and ~;-(~-,6)-*(14-~v)--~¥, UNIFY(~,%)-C-Sl.S2.S 3, where:

s1={<ix,~>,<8,o>), Sz:{<14,(~>,<v,(~>}, s3={<~,~'>}, and c(6)~c(%)~(~-~(~-~'.

ii) If 6:C~A(~-*I3) end 1;:((JL^(t4-~v))-~v, UNIFY(6,1;) does not stop. In fact:
UNIFY(6,%):UNIFY(e(6),e(%)) (where e:<%>):UNIFY(6,%'A%") (where %' and %" are
instances of %):UNIFY(s(oc-~[B),s(%")) (where s--(<(z,%'>}):
:UNIFY(1;'-~t~,%"):UNIFY(I;'-~t~,6"-~v') (where ~" is an instance of 6 and v' is a new type
variable) : if c:UNIFY(%',6 ") then UNIFY(c(#),c(v'))
and this function is undefined since %' and 6' are instances of 6 and %.

To prove that this semi-algorithm is correct and (in some sense) complete, we need a
further definition:
I)efinitIoI~ lO.i) Let 6,1;~T,and let 6" and %' be subtypes respectively of 6 and %. Two
occurrences of 6' and I;' in 6 end % are corre~cpandingiff:
-6--6' and %--%'
-6-~-,t3 and %-~'-~' (6-~^t~ and %-c~'^[s') and the accurrences of ~' end %'
are corresponding either in o~ and ~' or in t~ and is'.

ii) Let c--oPl....op n be a chain such that c(6)~,c(%), c is a praper chainunifying 6 and %

iff ¥i (1~i~n). there exist no two corresponding occurrences of subtypes of OPl....oPi(6)

and oPl...oPi(%) (say 6 i and "~i) such that:

6i,%i-~(~ and 3j>i. OPl..Opj(6i)~OPl...opj(%i)~(~.

Roughtly speaking, a proper chain unifying two given type schemes is a chain in which a
substitution of a type variable with the constant ~ is used only in order to unify two
subtypes one of which is ~.
Then we are able to prove:
Theorem 3.i) (Correctness) If UNIFY(6,'(;)=c, then c(6)~c(I;).
ii) (Completeness) Let 6,%ET be such that there exists a proper chain c unifying 6 and
I;. Then UNIFY(6,%)~c', where c' is a proper chain unifying 6 and 1;, and cs~c'.c" for

some c"(i.e., c' is the minimalchain unifying 6 and %,in the sense that every other

44

some c"(i.e., c' is the minimalchain unifying 6 and ~;,in the sense that every other
proper chain unifuing 6 and i; must contain (an instance of) every operation occurring
inc').
Proof. i) Easy, by induction on the lenght of c.

ii) By induction on the pair <l(c),n(6,1;)> (we assume the lexicographical order between
pairs), where:

- l(c) is the lenght of c, i.e., the sum of the number of expansions occurring in c and the
cardinality of the union of all the substitutions occurring in c.

- n(6,~;) is the total number of symbols occurring in 6 and "C.
The case l(c)=o and I(c)=I are obvious.

Let l(c)>1.1n the case 6 is a type variable, we must distinguish two cases, according to
~: contains or not occurrences of 6. In the first case obviously there is no a proper
chain unifying 6 and ~;. Otherwise, UNIFY makes the substitution s={<6,~c>}. Obviously
this is the minimal between all the proper unifying chains composed only of

substitutions (see [Robinson, 1965]). It easy to see that every proper chain unifying 6
and "d in which some operations of expansion occur is at least of length 2 (it must
contain at least one substitution, since the expansion generates new type variables)

and it is always equivalent to a chain composed by a single substitution.
In the case 6~, UNIFY(d,~;)=s, where s={<k~,~>I~ occurs in "c}. Obviously s is the
minimal chain, since every chain unifying 6 and I: is such that c(6)=c(~)~.

In the case 6=61^6 2 and ~;=s;i^I;2, the proof follows directly from the induction

hypothesis.

In the case 6=61-~6 2 and ~=~:1-~:2,if c is such that c(6)=c(61)-~c(62) and

c(I;)=c(%1)-~c(I;2), the proof follows directly from the induction hypothesis. In the

case c(6)=c(~;)=B^~, by Theorem 2.ii), there exists Cl--e.c2,where e=<6^I;>, such that

ci(6)=ci(I;) and c==c I. So c 2 is e proper unifying chain for e(6) and e('~), and, by

induction (since I(c2)<I(ci)), UNIFY(e(6),e(~))=c',and c2==c'.c", for some c". So

c1==e.c'.c"==c, and the proof is given, since UNIFY(6,1;)=e.c '.

Consider now the case 6=61^62 and ~;=I;i-~I; 2.

If there exists a proper chain c unifying 6 and "~, c must contain an operation of total

expansion with respect to %. Let e=<~;>; by Theorem2.ii) there exists c I such that

c1=e.c 2 end cI(6)=cI(~) and c1==c. Then c 2 is e proper chain unifying e(6) and e(-c), and

l(c2)<l(c). So, by induction hypothesis, UNIFY(e(6),e(I;))=c', where c2==c'.c",for some c"

and c==c1==e.c'.c". Then the proof is given, since UNIFY(6,1;)=e.c ".

[3
Moreover, the semi-algorithm UNIFY is conservative with respect to Robinson's
unification algorithm R. More precisely:
Property I. Let 6,'c be type schemes without occurrences of the symbols ^ and e. If
R(6,~;)=s, where s is some substitution, then UNIFY(6,'C)==s; if R(6,~) fails, then
UNIFY(6,~)==s, where s contains only pair~of the shape:<~pi,~> , so s(6)~s(1;)~,(a.

Proof. Easy

45

[]

4.Principal pairs.
Let us introduce the notion of principalpair,as defined in [Ronchi et.

aI,1984]. First of all, the notion of approximant of a term must be introduced.
Definition 112)The set N of approximate normal formsis defined from the set of
variables plus a new constant symbol ~ in the following way:
- ~N, x~Nfor all variable x

- if x is a variable and A~N(A~), then ~x.A~N

- if x is a variable and A I Ap~N(p~O), then xAI...Ap~N

ii) Let X be a term and AEN A is on epproxirnant of X (A_~X) iff ~X'=pX such that A

matches X" except at occurrences of Q in A.

iii) A~X)={AIA_~X}.
iv) the type assignment rules of Definition 4 are generalized to elements of N simply

by adjoining the following rule:
(~') BI-~A for all A~N

The following theorem holds:
Theorem 4.[Ronchi et ei.,1984]. <B,~;> is e suitable peir for MEA iff <B,~;> is 6 suiteble

pair for some A~ACM)

We con define, for an approximate normal form A, o unique princ.ipalpair (pp(A))
(modulo the relation ~) as follows:

Definition 12. Let A~N
i) if A=~, then pp(A)~<g~,~o> (zp is the empty set)
ii) if A=x, then pp(A)~<{~x},~p>, where ~ is 8 type variable
iii) if A=~,x.A', end pp(A')~<B',If'>, then:

I) if x occurs in A', pp(A)~<B'-{6x},6-~f'>,where ~ is the intersection
of the predicates of B' whose subject is x

2) otherwise, pp(A)~<B',~--,If'>

Iv) if A=xAI...A n and pp(Ai)~<Bi,~i> (i~i_~n) (we choose a trivial variant of them such

that they are pairwise disjoint), then pp(A)~<U1~i~nBiU{~f1-~...-,~fn-~p},~>, where ~ is

a type variable which does not occurs in Bi6fi(1_<i<n).

The components of pp(A) are called respectively the principal basis ~c.hemeand the
principal type schemeof A.

Note thet the principal pair is defined modulo names of type variables.
The principal pair of an approximate normal form A has the property that if <B,6> is
suitable for A ,then there exists a chain c of operations of substitution, expansion and
rise, such that <B,6>~c(pp(A)), where the operation of rise is defined as follows:

Definition 13.A riser is 8 pair of pairs <<B1,B2>,<~1,~2>>, where ~i~2 and B 2 is such

46

that, for every 6x~B I, there exists 6'xEB 2 with 6"~6. Then:

i) r(~;) = if ~;~~I then ~2 else

r(B)= if Yx.6ix~B (1~i~n) and "Cjx~B I (1~j~m) ~ 61^...^6n~~;1^...'Cm , then

82 else B

ii) r(<B,-d>)-~<r(B),r(~;)>.

In [Ronchi et ai.,1984] it is proved thet the operation of rise preserves suitable pairs:
namely, if <B,I;> is such that there exists D:BI-'~X, and r is any rise, there exists a
deduction D':r(B)I-r('~), and D" is obtained from D by adjoining to D some applications of

rule (~).
Let II(X)--{<B,~>I3AEA~X).<B6f>~pp(A)}, and ,~{<B,If>I3A~N<B,~f>~pp(A)}.
On Pis possible to define the following preorder relation:

<B6f>E_~<B',Tf'> <=> 3~i...~n. <B,~f>=<B'[~l/W,~..,~n/~],T~'[~i/~,...,~nl~].
Property 2.P,_~ is a meet semilattice isomorphic to N_~.

Then l](X) is an ideal in P and therefore if If(X) is finite there exists 8 pair
<B,~f>--I Ill(X), where <B6f>~P: then <B6f> is the pp of X. Otherwise, LIll(X) does not exist

in P, and then X hes an infinite set of pp's, as shown in the following:
Theorem 5.i)A[X) is finite. <B,IT>--LII'I(X) is such that, if <B',I;> is suitable for X, then

there exists a chain c such that <B','c>~c(<B,Tf>).
ii)A(X) is infinite. For ever U <B',%> suitable for X there exists <B,IT>~II(X) such that

<B',~>~c(<B,~>), for some chain c.
[]

In order to compute the principal pair of a term X, if it exists, the semi-algorithm PP
will be shown. PP uses the unification semi-algorithm UNIFY, defined in the preceding
section. In this semi-algorithm, the operation ~ between basis schemes, with at least

one statement on every subject, is used. ~ is so defined:
B~B'={~A6'xl 6x~B ~nd 6'x~B'}U{6xI(6x~_B and B' has no a statement on x) or (6x~B" and

B has no a statement on x)}.

Semi-algorithm PP.
PP(X)=<B,IT> (if defined), where:
I) if X is a variable then <B,~f>--<{~X},~> where ~ is a fresh type variable.

2) if X--~,x.X' the..n
if PP(X')=<B'6f'> then
if B' contains a premise on x,let 6x, then <B,IT>--<B'-{6X},6-+IT'> else

_ <B',f~-~If'>.

3) if X--XIX 2 then

if PP(X1)~-<B16f1> and PP(X2)--<B2,'~2 > ~hen

if UNIFY(If16f2-+~)--c (~ is a fresh variable) then

<B6f>--<c(B 1)~c(B2),c(~)>

47

Remember that e term X is called s~'~ronglynormalizingiff X, and every its subterm,
possess a normal form.
Theorem 6.PP(X)=<B6f> ~ X is strongly normalizing and pp(X)~<B,~'>.

The proof will be given in the following section.
It is possible to define e set of unification algorithms UNIFY i (i;~O), each one unifying

with o, st every step, ell the subtypes occurring at depth 2i, where the depth of an

occurrence of a subtype in a type scheme is defined as follows.
Definition 14. Let 6eT. The depthd(o(~),5) of an occurrence o(I;) of I; in 6is:
i) if ~; does not occurs in 5 then d(o(~:),6)is undefined

ii) if 6--~ then d(o(1;),6)~-O

iii) if either 6~-61-~6 2 or 6---6 i^62 then

if d(o(~),d i)--i then d(o(~;),6)--i+1

if d(o(%),62)=i then d(o(~:),6)--i+1.

Algorithms UNIFY i.

UNIFYi(6,1;)=Ui(6,6,~,~;,O) where

Ui(6,6",1;,1;',j)--c where

i_!f j >i then c--U(~,6',~,~;') el.se
I. if either ~ or I; 8re either a type variable or ~ then c--U(6,6',~,'I;')

2. if 6--6 i-+62 then

2.1. if "C -- I; i -+ "c 2 then let Cl--Ui_1(~ 1,6",~i,1;',j+I) and

c2--Ui_1(c1(62),c1(6'),c1(~;2),c1(~;'),j+1) then C=Cl.C 2

2.2. ifs;--~;1^~; 2 then

let e=<6> then let Cl--Ui~ (6),e(6),e(~;),e(~;),0)

then c=e.c I

3. if 6--EII^6 2 then

3.1. if "d=~;1-~; 2 then

let e--<1;>, then let Cl--Ui(e(6"),e(6"),e(1;'),e('C'),O)

then c=e.c I

3.2. if'c='c;1^~; 2 then

let ci=Ui_i(61,6",~:I,'C',j+I) and c2=Ui_1(c1(62),c1(6'),c1(1;2).c1(~'),j+1)

then c--cl.c 2.

Let PPi be the 81gorithm obtained from PP by replacing UNIFY with UNIFY i (i>O). The

following theorem holds:

48

Theorem 7.i) PPi(X)=<B6f> ~ <B,~>~II(X).

ii) <B6f>~ll(X) ~ ~i.PPi(X)=<Bi,~Ti> 8nd <B,~>_~<Bi,~fi>.

Proof_ Immediste from Theorem 5 8nd from the definition of the 8pproximsnts of
term.

[]

4.Proof of Theorem 6.

(~)By induction on the structure of ×.
For X vsriable, obvious. For X=;~.x.X' or X=YZ, where Y does not reduce to ~x.Y',for some
Y', the proof follows directly from the induction hypothesis.
For X=(~x.Y)Z, PP(X) =<B,Tf >~PP(;k×.Y)=<B 1,6-~-I;> end PP(Z)=<B2,~f2> and

<B6f>--<c(B1)~c(B2),c(~p)>, where c=UNIFY(6-~6f2~p). It essy too see , by exsmining

the semi-algorithm PP, that, if ~~~-,~ and ~If2-,~ P and UNIFY(~,~)=c',

<B,~f>~<c'(BI)UC'(B2),c'(~)>. Then the proof is given by induction on the normsl forms of

~x.Y and Z, which exist since X is strongly normalizing by hypothesis.
(~) Let B be 8 basis scheme, ~ be 8 type scheme ?g,snd M be 8 ~.- term.
Let us define the predicgte:
P(B,o~,M)C=>PP(M) is defined and 3c.<B,o~>~c(PP(M)) 8rid M is strongly normslizing.
Let x-M denote xMI...M n, for n;~O, 8rid let FV(M) denote the set of vsrisbles occurring free

inM.
Property 3.i) P(B,o~-~,xM) 8nd P(B',oCN) ~ P(SUB',~,xMN).
ii) P(BU{o~x},I~,Mx) 8nd x~FV(M) 8nd B does not contsin premises on x

P(B,oc-~I~,M).
iii) P(B,61^e2,M) ¢ P(B,61,M) 8nd P(B,62,M).

iv) P(B,6,M) 8nd 6<'~ :=> P(B,I;,M).
Proof_ i) Let xi~=xM1...M m. P(B',o~,N)~PP(N)=<B_~',~'> 8rid 3c.<B',oc>~c(PP(N)).

p(8,~-~ts,x~)¢pp(x~)=<{Tf1-~...-~fm-~x}VBiV...VBm,~p>, where ke is 8 fresh wrisble

end PP(Mi)=<Bi,lfi>, and ~c'.<B,~-~B>~c'(PP(x~)) So UNIFY(~p,~f'-+~)--s, where

s={<~,~f'-+~ > } (~t i s fresh),whi ch i mpli e s

pp(xi~N)=<{~f 1-~...-+~fm-+~f'-~?x}~B I~...VBm~IB',~>.Let c"--c.c'.s', where s'--{<$,~>}.

<BUB ,B>-c"(PP(x~N)),smce PP(N) and PP(x~) 8re disjoint, then P(BUB',~,x~N).
ii) P(BU{ccx},~,Mx)~PP(M)=<BI,~fI> ~nd PP(x)=<{~px},~> ~nd UNIFY(~fI,~-+?)=c' end

pp(Mx)=<c'(B1)~7{c'(~p)x},c'(?)> where ~t is fresh and B I does not contsin premises on x,

and moreover ~c.<BU{~×},~>~c(<c'(B1)~{c'(~P)x},c'(~)>.Note thst c' does not contsin any

expansion involving the type v~riable ?.
Then <B,o~-+~s>=c(<c'(B1),c'(~p)-~c'(~)>) (since B I does not contain premises on

49

x)=c(<c'(B1),c'(Ifl)>)=c'.c(<B1,1f1>) , and ~,hen P(B,E-~B,M).

iii) and iv) ere immediate.

Then define by induction on the ~tructure of type 8cheme~ ~, the follo~ing
computability predicate:

Comp(B,~,M) <::> P(B,~,M)
Comp(B,6-)%,M) (=> (Comp(B',6,N)~Comp(BUB',%,MN))
Comp(B,d I^62,M) ~=> Comp(B,61,M) and Comp(B,62,M).

it is easy to prove, by induction on the structure of M, that Comp is invoriont under
B-convertibility.
Lemm8 I. i) P(B,6,xM) ~ Comp(B,~,xM).
ii) Comp(B,6,M) =~ P(B,6,M).

Proof.i) and ii) by simultaneous induction on 6.

6 is a type variable, i) and ii) follow from the definition of Comp.

i) Comp(B',c~,N)~ P(B',E,N) (by induction hypothesis).
P(B,~-~Ie,xM) and P(B',~,N) ~ P(BUB',B,xM-'N) (by Property 3) ~ Comp(BUB',B,xMN) (by
induction hypothesis). Then Comp(B',o~,N) and Comp(BUB',B,x~IN) ~ Comp(B,c(-~B,x~) (by
def. of Comp).
ii) Let x~FV(M) and let {o;x}~BL P(B',~,×) ~ Comp(B',~,x) (by induction).
Comp(B,~-~B,M) and Comp(B',o~,x) ~ Comp(BUB',B,Mx) (by definition) ~ P(BUB',I3,Mx) (by
induction) => P(B,(~-*I~,M) (by Property 3).

6=61^62 .

ii) by definition of Comp ond by induction hypothesis.
i) P(B,61^62,xM) ~ P(B,61,×M) and P(B,62,xM) (by Property 3)0 Comp(B,61,xM) and

Comp(B,62,xM) (by induction) ~Comp(B,61^62,xM) (by definition). EI

Lemmo 2. Let {Xl,...,Xm}DFV(M), and let B be such that {6ixi}~B (1~i~m}.Comp(B',6i,N i)

(1~i<m) and PP(M)=<B_6f> and 3c.<B,%>~c(<B6f>) ~ Comp(BUB',~;,M[xi/Ni]).

ProeLBy induction on M. The only not trivial case is M=~,x.M '.
Then PP(M)=<_8,(~-~{3> => PP(M')~<_BU{Ex},~>,where B does not contain premises on x.
PP(M')~<BU{Ex},{~> and 3c.<BU{6x},~>~c(<BU{o~x},{3>) and Comp(B",6,N) and Comp(B',6i,Ni)

(1.~i<m) => Comp(BU{6 x}UB'UB",~;,M'[x/N,xi/N i) (1~i~m) (by induction) =>

Comp(BU{6x}UB'UB",~;,(;~x.M'[xilNI])N) (since Comp is invoriont under {~-convertibility)

Comp(BUB',d-)~;,~x.M'[xI/Ni]) (by definition).

El
Then let PP(M) be defined, ond let {xl,...,Xm}=FV(M), and let <B,%>~c(PP(M)) and let

{6ix}EB (1<i.~m). Then Comp(B,6i,x i) . By Lemmo 2, this implies Comp(B,~;,M), which

implies P(B,~;,M), by Lemmo 1.ii). El

50

5. The intersection type discipline without ~.

In [Coppo et ei.,1980 a], for the first time 8n intersection type discipline was
introduced, built from 8 set of type variables, without sny constant. More precisely,

the type schemes ere defined as in Definition I ,without the constant ~, end the
assignment rules are as in Definition 4, without the rule (~). The definition of pairs,
equivalence relation ~, and operations of pairs remain unchanged. It is possible to

define a principal pair in this discipline, in the following way:
Definition 15. Let X be e normal form. pp'(X) is so defined:
i)if X=x then pp'(x)~-<{~px},~> where ~ is e fresh type variable
ii) if X--~x.X' end pp'(X')~<B'6f'>, then:

I) if × occurs in X' then pp'(X)~<B'-{6x},6-~f'>,where 6 is the
intersection of the predicates in B' whose subject is x

2) otherwise pp'(X)~<B',~p-~!f'>, where ~ is fresh.

iii) if X=xXI...X n and pp'(Xi)~<Bi,lfi> then pp'(X)~<U1~i~nBiU{~f1-~...-~Ifn->~px},~>, where

is fresh.

The proof that pp'(X) is really the principal pair of X, in the sense that ell and only the

type scheme deducible for X are obtained from pp'(X) by means of chains of

substitutions, expansions and rise, is 8 particular case of the proof that, for A~N,
pp(A) is the prlnclpal pelr of A, given in [Ronchl et ai.,1984]. Moreover an algorithm PP"
can be define, which differs from PP only in the point 2), which must be replaced by:

2) if X=~,x.X' then
if PP'(X')=<B',xf'> then
if B' contains a premise on x, let ~x, then PP'(X)-<B'-{~x},6~r'>

else PP'(X)=<B',~-~If'>, where ~ is e fresh type variable.
Then we obtain, as corollary of Theorem 6, the following:
Theorem 8.1n the intersection type discipline without the constant ~), there exists e

polr suitable for X iff X is strongly normalizing.
[]

This result is stated, but not proved, in [Coppo et el., 1980 o].

Aknoledgments.The author is very grateful to Paolo Busse and Mauro Berta, who gave

an essential contribution in designing end implementing the semi-algorithms UNIFY end

PP.

51

References.

[Borendregt,1984] Berendregt H., The Lambdo Calculus: its syntax and
semantics, North Holland, (Amsterdam).

[Barendregt et ai.,1981] Borendregt H, Coppo M,,Dezeni M., A filter ~,-model
and the completeness of type assignment,Journal of
Symbolic Logic,84,4.

[Coppo et ai.,1980 a] Coppo M., Dezanl M., An extension of the b6sic
FL!nctionality Theory for the L-calculus, Notre Dame Journal
of Formal Logic, 21,4.

[Coppo et ai.,1980 b] Coppo M., Dszani M.,Vonnori B., Principal type scheme
and ~,-celculus semantics,in: J.P.Seldin,J.R.Hindley ads, To

N.B.Curry.Essays on Combinatory Logic, ~-celculus end
Formalism, Academic Press,London,1980,pp 535-560.

[Curry et ai.,1958] Curry H.D., Feys R., Combinetory Logic, vol.1, Nort
Holland (Amsterdam).

[Hindley,1969] HIndley R.,The principal type scheme as an object in
combinatory logic. Trans. Amer. Math. Soc,,146.

INindley,1983] Hindle 9 R.~ The completeness theorem for typing A-terms,
Theoretical Computer Science, 22.

[Milner,1978] Milner R., A theory of type polimorphism in programming,
J. Comput. System Sci.,17.

[Milner et ai.,1982] Milner R., Domes L,Principal type schemes for
functlonal programs, 9-th Syrup. on Prlnciple of
programming languages.

[Robinson,1965] Robinson J.A., A machine oriented logic based on the
resolution principle, Journal of ACM, 12.

[Ronchi et 81.,1984] Ronchi Dell8 Rocce S., Venneri B., Principal type
scheme for en extended type theory, Theoretical Computer

Science, 28.

