ON PORAMETRIC ALGEBRAIC SPECIFICATIONS WITH CLEAN ERRDR HANDLING

martin gogolla
Informatik B, TU Braunschweig

Pogstfach 3329, D-3300 Braunschweig

ABSTRACT

Usual algebraic specification techniques can be extended to treat
partially ordered sorts., This allows the introduction of sub- and
supersorts as well as overloaded operators, while pleasant fea—
tures (e.g. existence of initial algebras and equivalence of
algebraic and operational semantics) of the equational specifica-
tion method are preserved. {n this basis error and exception
handling is studied. For each sort am ok and an error subsort is
introduced and clean algebras (i.2e. algebras which are ok/error—
consistent and ok/error-complete) are considered. This new ap-—
proach allows to prove an extension lemma for persistent parame—

tric gpecifications which permit error handling.

1. INTRODUCTION

During the last years algebraic specifications proved to be a
promising method for the specification of abstract data types in
programming languages and software engineering. There are many
approaches and philosophies for the algebraic semantics of such
specifications. Among them are initial C[ADJ 746, ADJ 81, EKMP 82,
Kl 843, +inal [Wa 79, WPFPDB 83, Ga B3] and observational seman—
tics ([BGM 74, 5T 85]. Research in the field led to the devel-
opment of specification languages like OBJ L[FGJIM 853, ACT ONE
[EFH 831, ASL (SW 831 and many others.

Partially ordered sorts first introduced in [Go 781 have been
treated in a series of papers [(Bo 83, Fo B4, GM 84, GBJIM 85,
etc. 1. They are the basis for our approach to error and exception

handling, a topic which is studied extensively in the literature

82

LADS 76, Bo 77, Bo 7B, BGP 82, GDLE 82, Bi 84, Po 84, BBC 84,
etec. 1. The fundamental new notions introduced here are that of
clean algebras and clean specifications, where clean refers to
ok/error-consistency and ok/error—completeness. This approach
allows the use of pure error variables, which was not possible
before. In the literature only [Fo 841 considers parametric
specifications in connection with error handling, which is quite
important becsuse special problems arise here. [FPo 841 works with
non persistent specifications, whereas we carry over persistency
to the exception handling case. By this we can apply the R-
extension lemma of L[Eh 811 and use it for our clean algebra
approach, guaranteeing the well definedness of the application of

parametric specifications.

The paper is organized as follows. Chapter 2 introduces the basic
ideas by means of some examples. Chapter 3 reviews the fundamen-—
tal definitions and facts concerning subsorts in algebraic speci-
fications. Chapter 4 treats clean algebras and clean specifica-
tions. Chapter 5§ discusses parametrization and our extension
lemma. Chapter & gives some short concluding remarks. Due to

space limitations all proofs are omitted.

2. THE BABIC IDEA

Our main new concept for error and exception handling is that of
a clean algebra. This means that our algebras have two subsorts
far the ok and error part of each sort and the carriers are
ok/error-consistent (there is no element which is hoth ok and
error) and ok/error-complete (every element is either ok or
error). The approach is explained best by an example. Here is our
specification of the natural numbers,
spec NaturalNumbersWithErrarHandling =

sorts Nat

opns O : -> Nat-Ok

Suce * Nat-0Ok -> Nat-Ok

Error : —> Nat-Error

83

Sucec, Pred @ Nat -* Nat

Flus, Times : Nat Nat —~> Nat
vars niNat n+,m+:Nat-0k n-:Nat-Error
egns Succ(n-) = n-

Fred(Q) = Error

Pred(Succ(n+)) = n+

Pred(n-} = n-—
Plus(Oyn+) = n+
Plus (Succ{n+) ,m+} = Succ(Plus(n+,m+))
Plus(n—,n) = Plus(n,n-} = n-
Times(O,n+) = O
Times (Succ (n+) ,m+) = Plus(Times (n+,m+) ,m+)
Times{n—yn) = Timesi{nn—) = n-—
end spec

The semantics of the gpecification is an algebra having as car-—
riers for Nat-0k the natural numbers and for Nat-Error one dis-—
tinguished error constant. There are some peculiarities in the
specification above worth to be mentioned. (1) The sort Nat has
implicitly the subsorits Nat-0k and Nat-Error. {2} The Ffunction
Succ is declared twice in the signature. The first occurrence
assures that Succ yields an pk valus when applied to such one.
The second occcurrence indicates that Succ may also be applied to
a1l Nat values, but makes no statement about the nature of the
result. (3) Three different kinds of variables corresponding to
the three sorts and subsorts are used. (4) It is important to use
arn ok variable in the axiom Times(Q,n+) = 0, otherwise this axiom
would cause an error recovery. {5) The functions can bs classi-
fied into constructors (line 1-3 of the ppns-part) and derived
functions (line 4-3 of the opns-~part). (&) The error variable in
Succ(n-} = n- assures error propagation for the function Succ.
The use of pure error variables is essential for parametric
specifications, as the next example shows.

spec ParametricBinaryTrees =

arm sorts Entry
opns NoEntry : -> Entry~Error
body sorts Tree
opns Leaf : Entry-0k -> Tree-0Ok

84

Node : Tree-0Ok Tree-Dk -» Tree-0Ok

NoTree 3 - Tree—Error

Leaf : Entry -> Tree

Node : Tree Tree —» Tree

GetEntry : Tree —> Entry

GetRight, GetlLeft z Tree —-> Tree

vars e+:Entry-~0k e-:Entry-Error t:Tree tl+,t2+:Tree-Dk
eqns Leaf({e-) = NoTree

Node (NoTree,t) = Node{t,NoTree) = NoTree

GetEntry{lLeaf {e+)) = e+

GetEntry{Node(t1+,t2+)) = NoEntry

GatEntry(NoTree) = NoEntry

GetRight (Leaf (e+)) = GetlLeft(lLeaf(e+)) = NoTree

BetRight (Node(ti1+,t2+)) = GetlLeft (Node (t2+,t1+)) = {2+

GetRight (NoTree) = GetlLeft(NoTree) = NoTree
and spec
The specification builds binary trees with given entries at the
leaves when it is applied. The given parameter sort Entry per-—
sists in the resulting specification, especially because the
function GetEntry is well defined. This can only be achieved by
the use of the error variable e~ in the axiom Leaf(e~) = NoTree.
I¥f one would specify only Leaf (NoEntry) = NoTree, then the con-—
struction would not be persistent for parameter algebras having
more exceptions than the single error NeoEntry. Again, lines 1-3
of the opns-part can be considered as the signature specification
for the constructors and lines 4-7 for the derived functions. The
ideas sketched above are now made precise in the following chap-

ters.

3. REVIEW OF ALGEBRAIC SPECIFICATIONS WITH SUBSORTS

The +ollowing remarks review the fundamental definitions and
facts and ouwr notation concerning algebraic specifications and
subsorts. Readers familar with ([8o 78, Go 83, Po 84, GM 84,

etc.] will find many common details.

85

3.1 Definition (Signature, Algsbra, Morphism)
A signature (5,5,I) consists of (1) a set 5 of sorts, (2} a

partial order £ on 8 and (3} a family I=<I >w55*,ses of sets of

WS
function symbols such that (4) dg:w—->s, viw and rzs implies

giv->r. Name(I) = {dw’stdsiw 5} denotes the function names and
3

Symb (L) = {didezw 5} the function symbols of L.
1

& I-—algebra (A,F) consists of (1) a family A=<As>558 of sets such

that (2) s<r implies A_EA_ and (3) a family Fa<az’5}dw,sENamE(z)

of functions with dz’S:AH~>AS such that, (4) if diw->s, drv=>r

and aeﬁwnﬁv, then dz’s(a)=dz’r(a).

A E-morphism f:6->B between I-—-algebras A and B is a family
WeS

<f_>geg Of mappings such that (1) f_(dp (a))=ag*5<fw<a>> for

aaAw and (2) aEAEnAt implies fﬁia)=5t(a).

3.2 Definition (Term algebra?}

The I—term algebra (TE,FZ) has as carriers the least family

<T5>ses of gsets satisfying (1) g:->s implies ¢ET5 and (2) 4 =
sl...sn—-»s and tieTsi implies d(tl...tn)ETs and the functions
<d¥’s}6“’EeName(E) are determined by (3) d%’s==d for d:->s and

(4) o3lr=+SMS 4y, . tn)i=c(tl...tn) for gisl...sn->s and tieT ;.

3.3 Fact (Initiality of the term algebra)
The I-term algebra TE ig initial in the category ALGE aof all k-

algebras with all I-morphisms between them.

3.4 Definition (Congruence, Guotient)

A I-congruence = on a L-algebra A is a family <Es>se8 af rela—

tions =_ on Ag such that (1) = = [EEQ n AsxAs] and {(2) ai Eep bi

= &
implies a2l *5M1S (a1, an) spg o2l U bt bRy for aibi e
Asinﬂui’ g:sl...sn-»s and s:ul...un~>, where Eep is the equiva-

lence on S:sﬂs generated by =.

The quotient A/= of a I-algebra A by a I~congruence & has (1) the
i = = = b =

carriers A/=_ {LaliasA 2}, where [al {be_ P lasgphl, and ()

eName (p) With a3iz<SM'S(ra13.. . ranD):=

(bl...bn)1, where [ai]eﬂ/ssi, Lail=fbil and bieﬁsi.

the functions <dz;§>dw,5
s8l...8n,s
EGA *

86

3.5 Pefinition (Eguation, Batisfaction, Specification)

A I-equation L=R is a pair of L(V)-terms, where L(V) is the
signature ¥ having additionally the variables V as constants. A
I-algebra A gatisfies L=R, if all evaluations of L. and R coin-
cide. A specification (L,E) consists of a signature ¥ and a set E

of E-equations.

3.4 Fact (Induced Congruence)
A set of L-equations E induces uniquely a set of constant equa-
tions E(T:), which again induces a least congruence Z on Tz

containing E(TZ).

"3.7 Fact (Initiality of the guotient term algebra)
The quotient term algebra TszE is initial in the category ALGE £
1
of all (I,E)-~algebras satisfying the equations E.

3.8 Example (Bitstrings avoiding error handling)
The following lines define bitstrings of arbitrary length (sort
String*) having as subsorts non empty bitstrings (sort String+)
and single bits (sort Bits.
spec BitStringsAvoidingErrorHandling =
sorts Bit < String® < String”
opns 0,1 § —> Bit
X : -> String®
= le 2 String* String* -2 String*
.1. : Bit String™ -»> String*
.1. & String”™ Bit -> String’
First, Last : String+ -» Bit
vars b:Bit s,s1,s52,83:5tring®
egns silis2is3) = (s1is2)1s3
slA = Als = s
First(bis) = Last(sib) = b
end spec
Flease note that the specification part between the key words
sorts and vars has not really to be a signature, but it uniquely
determines a signature in the sense of our definition. Further—

more the functions First and Last returning the first respective-—

87

ly last bit are well defined, because all applications syntacti-

cally allowed by the signature either vyield 0 or 1.

3.9 Remark (Declarations)

One can also use so called declarations in specifications [Bo 78,
Go 83]1. A declaration consists of a term and a sort, assuring
that the term will always evaluate to an element of the given

sort (e.g. i*izNonNegative, where i is a variable of sort int).

4. CLEAN SPECIFICATIONS

4.1 Defipition (Clean, ok/error—consistent, ok/error-complets)

A signature (5,£,F) is called (ok/error-lclean, if B8=5-MAINu

S~-0KUS—-ERROR, S-0K={s~-0k |se8-MAIN}, &S-ERROR={s-Error|{seS-MAIN}
and S={s{s|sebBiui{s-Okis,s-ErroriselseS-MAIN}. A L-algebra A with L

a clean signature is called (1) ok/error-consistent, if As—Dk n

= @, (2) ok/error—-complete, if A u B A

Qs—Errar s—0k s—Error s?
and (3) clean, if A is ok/error-consistent and ok/error-complete.
A specification (L,E) is called clean, if the initial (L,E)~
algebra is clean. A set E of equations is called clean, 1if
xT

et (Ty) implies either eaTE_Dksz_Dk or eeT for a

s—Error” s-Error
suitable sart s. ALGZ,E,CLEAN denotes the category of all clean

{L,E)—-algebras with all morphisms betweesn them.

4.2 Characterisation (Specifications with clean term algebras)

Given a specification (L,E) with a clean term algebra TZ’ then
the specification (L,E) is clean, if and only if the set E of

equations is elean.

4.3 Characterisation (Clean specifications)

A specification (I,E} is clean, if and only if

(1) TE,E is ok/error—-consistent and

(2} there is a subspecification (IG,EGIE(LE) with

{a) LG containing all sorts and subsorts and all operations with
ok or error result sorts and

(b) EBG containing all clean sguations of E and

88

(c) there is a wnique surjective morphism f:TtE EG—>UE~>EE{TE E)'
¥ L]

4.4 Remark (Surjective morphism in {(c) above)

If the morphism f is also injective, then (L,E) is an enrichment
¥ (EGLEBG) = T i ic. it i

o s £G,EB and UE—>EG(TE,E) are isomorphic. If it is not
injective, then there are terms tl and t2 both ok or both error
such that TZG,EG F Lt11#0t21 and TZ,E B [t13={t21. But EG is a
maximal set of equations applicable to ok and error terms, so the
agditional identification in TZ E is done via a term t3 neither

k 4

ok nor error : tSETs—(Ts~DkUT5—EPrar)’ t1=t3 and t3=t2. This
identification can alsoc be done choosing different equations
involving only ok or error terms. It is also much smoother to
rule out this case from a methodoleogical point of view and to

establish a clear distinction between ok and error constructors

and derived functions.

4.5 Cancept (Pragmatics for clean specifications)

A clean specification (I, E} should have a subspecification
(EG,EG) with TtG and EG clean such that (L,;E) is an enrichment of
(L6 ,EG).

4.6 Example (Bitstrings with error handling)
This clean specification defines bitstrings of arbitrary length.
Errors are introduced by the functions Head and Tail when applied
to the empty string.
spec BitBtrings =
sorts Bit, String
cons 0,1 : -> Bit-Ok
NoHead @ —-> Bit-Error
A ~> Btring-0Ok
vie t Btring-0Ok Bit-0Ok -> String-0k
NaTail 3 —» String-Error
funcs .{. @ String Bit -> Btring
Head : String -> Bit
Tail Btring -> Btring
vars s:String s+:8tring-0k b:Bit b+,bil+,b2+:Bit-0k
NoTailib = siNoHead = NoTail

88

Head(s+|bl+[b2+) = Head(s+ibl+)

Head (Aib+) = b+

Head (A) = Head{NoTail! = NoHead

Tail(s+ibi+{b2+) = Tail(s+ibl+)ib2+

Tail (Aib+) = A

Tail()) = Tail(NoTail) = NoTail
end spec
The parts for the ok and error constructors and for the derived
functions are indicated by the keywords cons and funcs. In
general there will be an equation part for the constructors as
well. For the subsorts the following equations hold : TZ,E,Bit—Ok
20,12, Tp ¢ pi-grror®NoHead?, Ty poopr sy & (0,1 % and

TZ,E,String—Errcrg{NDTal1}' On this basis the functions Head and

Tail are defined such that the subsorts are respected.

5. CLEAN PARAMETRIC SPECIFICATIONS

S.1 Definition (Signature morphism, specification morphism)

A signature morphism f:E£1->22 between signatures (51,$51,21) and

(82,$52,22) consists of mappings +f:81->82 and f:8ymb (1) ~>

Symb(E2) such that 5551r implies f(s)gszf(r) and dell implies

WS
f(d)e£24(w)'f(s). A signature morphism ¥ is called strict, if
S4gq,r implies fs)<gflr). A signature morphism ¥ induces a
forgetful {functor U¥=ALBEZ"}ALGEI' A signature morphism + is

called specification morphism from (£1,E1) to (E2,E2), if every

equation of El, when translated by +, belnnés to E2 1 F{(E1)EEZ. A
specification morphism is called simple, if 8S1ES2, Symb{(Il)E&

Symb(X2) and f:51->82 and f:Symb{I1)->Symb(E2) are inclusions.

5.2 Definition (Parametric specification, persistent)

A parametric specification consists of a parameter specification

(YP,EP} and a body specification (IB,EB) such that EIPEIB and
EFEEB. The semantics of a parametric specification is the free
construction F:ALBEP'EP—>ALGZB’EB LADJ 78, Po B41. A parametric
specification is rcalled persistent, if A and U(F(A)) are "natu-

rally” L[WE 851 isomorphic for all (IP,EP)~algebras A, where U is

90

the forgetful functor U=ALGEB—>ALBEP induced by the signatures IP
arnd LB.

5.3 Definition (Application of a parametric specification)

The result of applying a parametric specification with parameter
(Xf,EF) and body (IB,EB) to an actual specification (XA;EA) by
means of a specification morphism h: (ZP,EF)~>(LA,EA} 1is the
specification (IR,ER}), where IR=LA+hR(EB), ER=EA+hR(EB), hR{s) =
IF seSP THEN hi{s) ELSE s FI and hR(g) = IF geSymb(EP) THEN h(g}
ELBE g FI.

(CP,EP) —~—-Bes (£B,EB)
| |
I]

h : : hR
Y \

(£A,EA) ————gg——> (IR,ER)

The result specification is the pushout of the actual specifica-
tion <(IA,EA) and the body specification (IB,EB) with respect to
the parameter (LF,EP) and the specification morphisms h and s,
where s is the simple spescification morphism induced by the

inclusion of the parameter in the body.

5.4 Definition (Clean parametric specification)

4 parametric specification with parameter (IZP,EF) and bady

(IB,EB) is called clean, if the signatures P and TB are clean,
t ti F i i t LG d th

the Ffree construction is persistent on A £P,EP,CLEAN an e

free construction F preserves cleanness 31 A & ALBZP,EP CLEAN
1

implies F(A) e ALGyp g CLEAN®

5.5 Extension Lemma (for clean parametric specifications)

Let there be given a clean parametric specification with parame-

ter (LP,EF) and body (LB,EB), an actual clean specification

(LAEAY, a strict specification morphism h: (EPLEP)->(EA,EA) and

the result specification {(IR,ER) as defined above.

(1) The resulting parametric specification with paramester (IA,EA)
and body (EIR,ER) is clean: FR is persistent on ALGEA,ER,CLE&N

and it preserves cleanness.

91

(2 F o Uh = UhR a FR.

ALGrp ep,cLEAN ~7TTTTTT 7 ALBrp ER,CLEAN
' '
Un | i Ynr
| |
i i
ALBra.Ea,CcLEAN ~TTTFRT> PLBrR ER,CLEAN

5.4 Remark (cancerning the esxtension lemma)

The proof of our extension lemma applies the R-extension lemma of
LEhRh B813. The restriction of ALGZP,EP to clean algebras can be
esxpressed as predicate formula requirements. This restriction to
ciean algebras is essential for the underlying specification
method, because one does not want to care about slements being
neither ok nor error. The strictness of the parameter passing
morphism h implies that ok or error operations of the formal
parameter will also be ok or error operations in the actual

parameter.

5.7 Concept (Pragmatics for clean parametric specifications)
fnalogously to the case without parameters a clear distinction
between ok and error constructors and derived functions should be
established. Therefore a clean parametric specification with
parameter (IP,EF) and body (IB,EB) should have a subspecification
{(LPLEP)Y & (EB,EG) & (IB,EB) with Tyg¢A) and EG clean such that G
is persistent on ALGZP,EP,CLEAN and F{(A) is an enrichment of G(A)
for all AEALBiP,EP,CLEAN’ where G is the free construction in-
duced by the parametric specificetion with parameter (LP,EP) and
body (LG.EG).

5.8 Example (Parametric strings with error handling)
This clean parametric specification defines strings over an arbi-
trary parameter sort Char. Again errors are introduced by the
functions Head and Tail when applied to the empty string.
spec ParametricBtrings =

parm gorts Char

opns NoHead @ -> Char-Error

92

body sorts String
cons A @ -» String-Ok
« . 2 Btring-0k Char-0k -> String—-0k
NoTail : ~> St?ing-Error
funcs «{. : String Char -> String
HMead : String —-> Char
Tail : String -> 8tring
vars s:8tring s+:String-0k
c:Char c+,cl+,c2+:Char-0k c~:Char—Ertror
egns NoTaillc = sic- = NoTail

Head({s+[cl+|c2+) = Head{(s+|ici+)

Head (Ajc+) = c+
Head (A) = Head(NoTail) = NoHead
Tail(s+icl+ic2+) = Tail(s+|cl+)|c2+

Tail (Ale+) = X
Tail (X)) = Tail(NoTail) = NoTail
end spec
The parts for the parameter and the body are indicated by the
keywords parm and body. In general there will be an equation part
for the parameter and the constructors as well. Please note that
it ‘iz essential for persistency to use the variable c- of sort
Char~Error in the equation sjic~ = NaTail. If a clean parameter
algebra A with sets AChar—Gk and AChar—Errur is given, then the
resulting algebra F(A) will have the following carriers :
F(A)

Char—Error g AChar—Err'or’
{NoTail}. Fur-—

FiMlppar-ok ¥ Pchar-ok®

~ * =
F‘“’String—Dk = <AChar—0k) and F‘A)String—Errur =
thermore the corresponding free construction is not persistent on

ALG s if no restriction to clean algebras is made.
LF,EP

5.9 Remark (Pointed algebras and specifications)

All considerations presented here can be specialized to pointed
algebras [Go 861, where there is only one error element for each
sart. In this case error recovery is not supported too well, but

especially error propagation can be done automatically.

93

6. CONCLUSION

The notion of a clean algebra is just a special case of an
algebra satisfying certain sort equations which especially make
sense in the context of partially ordered sorts and which can be
considered as ancother construct for algebraic specification lan-
guages. For example in clean algebras the sort equations

-0k n s—Error = @ and

s~-0Ok v s-Error s

are valid for all sorts s. A sort equation consists of a pair of
sort terms built over the given set of sorts and set operations
like union, intersection, difference, complement and empty set.
An algebra satisfies a sort eguation, if the set theoretic eval-
uations of the two expressions with respect to the given algebra

coincide. This topic is subject to future research.

7. REFERENCES

ADd 7é& J.A.Goguen/J.W. Thatcher /E.G. Wagner : An initial algebra
approach to the specification, correctness and implemen—
tation of abstract data types. Current trends in pro-
gramming methodology, Vol.IV, R.T.yeh (ed), Prentice
Hall, Englewood Cliffs 1978, pp.B0-149.

ADI 78 J.W.Thatcher /E.G.Wagner /J.B.Wright : Data type specifi-
cation : Parametrization and the power of specification
technigques. Proc. 10th S7T0OC, 1978, San Diego.

ADJ 81 H.Ehrig / H.—-Jd.Kreowski / J.W.Thatcher / E.G.Wagner /
J.B.Wright 1@ .Farameter passing in algebraic specifica-—
tion languages. LNCE 134, Berlin 1982, pp.322-36%.

BBC 8¢ G.Bernot / M.Pidoit / C.Choppy : Abstract data types
with exception handling : An initial approach based on a
distinction between exceptions and errors. To appear.

Bi B4 M.Bidoit : Algebraic specification of exception handling
and error recovery by means of equations and declara-—
tions. Proc. 1lith ICALP 1984, LNCS 172, pp.95-109.

BGP 82 F.Boisson / G.Buiho / D.Pavot : Multioperator algebras.
L.R.I. Report, Orsay 1982.

Eh 81

EFH 83

EKMP 82

FGJM 835

Ga 83

GEM 76

GDLE 82

Ba 83

Bo Bé

Bao 77

Go 78

GM 84

GJM 85

Kl 84

94

H.Ehrig : Algebraic theory of parametrized specifica-
tions with requirements. Proc. éth CAAP 1981, Genova.
H.Ehrig/W.Fey/H.Hansen : ACT ONE : An algebraic specifi-
cation language with two levels of semantics. Techn.
Repaort No. 83-03, TuU Berlin, 1983.

H.Ehrig/H.~J.Kreowski /B.Mahr/FP.Padawitz : Algebraic im—
plementation of abstract data types. TGS, Vol.20 1982,
K.Futasugi 7/ J.A.Boguen / J.-P.Jouannaud / J.Meseguer :
Principles of 0OBJ2. Proc. POPL 1985, pp.52~&6.
H.Banzinger : Parametrized specification : Parameter
passing and implementation. ACM TOPLAS, Vol.5 1983.
V.Giarratana/F.Gimona/U.Montanari @ Observability con-
cepts in abstract data type specification. Proc. Sth
MFCS 1976, Gdansk, LNCS 45.
M.Gogolla/K.Drosten/U.Lipeck/H.—-D.Ehrich : Algebraic and
operational semantics of specifications allowing excep-
tions and errors. TCS, Vol.34 1984, pp.289-313.
M.Gogolla : Partially ordered sorts in algebraic
specifications. Proc. 9th CAAP 1984, Bordeaux, B. Cour-
celle {(ed), Cambridge University Press, pp.139-133.
M.Gogolla : Uber partiell geordnete Sortenmengen und de-—
ren Anwendung zur Fehlerbehandlung in Abstrakten Daten—
typen. Dissertation, TU Braunschweig, 1986.

J.A.Boguen : Abstract errors for abstract data types.
Proc. Conference on Formal Description of Programming
Concepts 1978, E.J.Neuhold (ed), North Holland.
J.A.Boguen : Order sorted algebras : Exception and error
sorts, coercions and overloaded operators. Semantics and
Theory of Computation Report No.14, UCLA, 1978.
J.A.Boguen/Jd.Meseguer : Order—-sorted algebra I : Partial
and overloaded operators, errors and inheritance. Tech-
nical Report, SRI International, 19B4.
J.A.Boguen/J.—P.Jouannaud/J.Meseguer : Operational se-—
mantics for order—sorted algebra. Proc. 12th ICALP 1985.
H.Klaeren : A& constructive method for abstract algebraic

software specification. TCS, Vol.30, No.2 1984.

Po B4

8T 8%

8SW 83

Wa 79

WE 85

WFPDB 83

95

A.Poigne : Modulerization techniques +For algebraic
specifications with subsorts. Imperial College, London.
D.Sannella/A.Tarlecki : On observational equivalence and
algebraic specification. Proc. 10th CAAP 1985, Berlin.
D.Sannella/M.Wirsing ¢ A kernel language for algebraic
specification and implementation. Proc. FCT 1983.

M.Wand : Final algebra semantics and data type exten~—
sions. JC88, Vol.19, No.1 1979, pp.27-44.
E.B.Wagner/H.Ehrig : Canonical constraints for parame-—
trized data types. Research Report RC 11248, I1BM, 1985,
M. Wirsing/P.Pepper/H.Partsch/W.Dosch/M.Broy ¢ 0On hier~

archies of abstract data types. Acta Informatica 1983.

