
A FULLY OBSERVATIONAL MODEL FOR INFINI'IE BEHAVIOURS

OF COMMUNICATING SYSTEMS

Ph. Darondeau *, B. Gamatie*

Abstr@~ This paper is concerned with the relation of abstraction between operational and

observational models for linear time semantics of C.C.S. We construct a compositional and

fully abstract model for CCS under infinite (program defined} experiments which gfve maximal

power of separation. The construction is in two stages:

In the first stage, we use a uniform procedure to translate structural inferential semantics

into denotational semantics; terms and operators are interpreted by sets of transition

sequences and operators on sets of transition sequences.

In the second stage, we derive the observational model from the operational model through

an adequate homomorphism. The morphic images of transition sequences, or observations, are

pairs <w,R> or <W, CO>, where R is a ready set and w (rasp ~ , is the visible trace of a

finite (rasp infinite} sequence of transitions.

The observational meanings of programs coincide with the associated set of maximal

observations for the order <w, RCYR'> C <w,R> C <w, ~> .

I..~TRODUCTION

This paper is concerned with the relation of abstraction between operational
and observational models for 'linear' semantics of 'CCS' transition systems

[26] [23]. Observational models mean here 'fully abstract' models for

equivalences or preorders induced by (CCS) program defined experiments, such

as 'tests' [22] [13,14]. The observational models are naturally homomorphic

images of the operational models, but it is not so easy to find out the
homomorphism induced by a family of experiments. Indeed, observational models
cannot be defined by arbitrary homomorphisms !
A 'concrete' linear model for CCS is the operational model in which programs

are rendered by sets of finite and infinite computations. An 'abstract' linear
model for CCS is the observational model in which programs are identified if
and only if no CCS experiment distinguishes between them. In spite of the

effort on models for testing preorders [13,20], that very sensitive model has

not yet been worked out, for it has been shown in [10] that some infinite

experiments are strictly more sharp than any family of binary tests (finite or
infinite). There lays the motivation for the present paper, where we produce
the expected model for the full version of pure CCS.

Let us proceed to a rapid review of some existing approaches on the side of
abstract models, independently of the homomorphisms which induce them as
quotients. First of all, one can distinguish between implicit quotient models

and explicit models where explicit representations are dealt with [6] . Further

separation may be observed between two classes of explicit models, namely the
class of purely order theoretic models and the class of mixed space and order

theoretic models. Classic ~-algebraic domains are most commonly used in models

of the first class [7,13,19,20,24]. For the second class of models, the order

relation is the reverse inclusion between closed subsets in some metric

completion of languages, trees or tree-languages [11,18,27], and since the

considered spaces have denumerable bases, the resulting complete partial

(*) rR ;gA - Camp, . ,s a e r~ea.uL~eu _ F 3 5 o 4 z RENNES C E D E K

154

orders are again ~-algebraic.

In the framework of explicit models, it is usually assumed that each element
or open set of the denumerable base represents a property that may be tested

under finite experiments [i] , i.e. under experiments which either succeed in

finite time or fail [13]. Therefore, identical meanings are necessarily

assigned to CCS programs which differ by their ~-traces[10]. Notice that this

situation is less frequent under the assumption of fairness, since fairness

intensifies the separation power of tests, but it arises nevertheless. A

possible way out is to work within the bounds of 'uniform' concurrency [12] :

behaviours are then closed sets, and isomorphic semantics are obtained from

infinite streams and from finite observations respectively [ii]. In

particular, that property holds for the finite state subset of CCS, obtained

by forbidding the parallel composition and renaming of open terms[8].

There arises from the above review that no well known method is available
for associating CCS programs with their compositional meanings under infinite

experiments. We think of experimenting on program u as running a maximal

computation from the parallel system (t ~C[u]) for some testing program t and

program context C. This definition, though adequate to de Nicola and
Hennessy's notion of testing, departs from it in the definition of the result

of experiments. For us, the result of an experiment is the sequence of

transitions of the testing program (along that experiment). On that basis, we
equip programs with an 'implementation' preorder as follows: u is an
implementation of v if and only if no finite or infinite experiment on u

tells that it is not v [9,16,21]. The abstract model which we are looking for

is the fully abstract model for this implementation preorder. Moreover, we
argue that programs identified in that model must be identified in any other

observational model, as soon as it relies on the above stated observation

principles.
Our approach towards the abstract model is progressive and rests entirely on

the concrete model which we establish in a preliminary stage. The first stage
is to discover the homomorphism which induces the abstract model. The second
stage is to construct that model. The first stage amounts essentially to

transfer the implementation preorder from programs to sets of computations and

then to represent the latters by sets of pairs <w,~> or <w,R> where w is a

'trace' and R is a 'ready set'. On that way, we define an ordered algebra of

abstract computations and prove that the abstract meaning of a program is the

set of maximal representations of its concrete computations. The second stage
amounts to supply a fixpoint characterisation of the abstract meanings of

programs in the power algebra of abstract computations. Special difficulties

are encountered here, for the 'suitable' fixed points are neither least nor
greatest nor optimal fixed points. A plausible explanation for that misfit is
the apparent contradiction between two opposite requirements imposed by full

abstraction : inobservable actions (e.g.~) must be ignored in the domain of

meanings, but they must be accounted for in the fixed point characterization

of sets of infinitary traces. To solve the difficulty, we suggest to compute
the 'suitable' fixed points as combinations of a least fixed point in the

power algebra of abstract computations and of a greatest fixed point in the

power algebra of coarse traces (with explicit ~'s). That method has the

default to split the meanings of open terms in two completely disjoint
functions, but full abstraction is obtained at the level of closed terms which
are given an ordinary compositional meaning in a single domain. The paper
contains nothing about the proof theory for the equivalence in the resulting

model. That issue will be considered in forthcoming papers.

155

2...~N OPERATIONAL SEMANTICS.~OR PURE CCS

We present here a slightly augmented version of Milner's 'pure' calculus of

communicating systems [13,19,23]. The extensions affect unguarded recursion and

non deterministic choice. As regards syntax, programs are the closed terms of

a recursive term algebra. As regards semantics, the operational meanings of

programs are sets of transition sequences, defined by a logical system a la

Plotkin [25].

2. I. A syntax of programs

We assume given a set X (ranged over by x) of variables, and two disjoint

sets A and ~ of complementary action names, linked by reciprocal bijections ~:

{(1)= [and ~(~)= ~. Throughout the paper, we let k rasp. ~ rasp. 9 range over

A =A u ~ rasp. M = Au{z} resp. N = M~ {~}, where ~ (~ A) is the invisible

action and ~ (~M) is the inaction. We call a renaming function any one-one

partial function p from N to N such that p(9)=D almost every-where, Q(~)=~,

p(z)=z, and p(~)= ~(p(~)) unless both entities are undefined.

The signature of our recursive term algebra is ~ = ~0 u ~I ~ ~ ' where the

Z i (ranged over by oPi) are the following sets of i-ary symbols :

~0 = {NIL },

Z 1 = {~ / ~e M} u {p / p is a renaming function},

= {I, +, e}.

Binary operators I, +, ~ are the usual asynchronous composition, external

choice and internal choice. The binary operators are used in infixed form, the

guarding operators (~) are prefixed, and the renaming operators (p) are

postfixed.
Our set of recursive open terms is the set TERM with typical elements t as

follows :

t = x Iop i (tl,---t i) I t wh (x i = tl,.., x n = t n).

In the above line, (xl=t I ,... Xn=t n) stands for a 'declaration', i.e.for a

function D with finite domain dom(D)={Xlt..~x n } (c X) and corresponding

valuations D(xi)= t i (6 TERM).

The operation (.) wh D, when applied to term t, binds the free occurences of

the x i to the t i in t and in the tj. Recursive open terms are defined up to

the G-conversion of their bound variables. For all terms, we shall assume

throughout the paper that any two declarations have disjoint domains and that

no conflict arises between free variables and bound variables. Owing to that

convention, the set theoretic union (D u D') of two declarations occuring in a

given term is always a declaration. Terms without free variables (i.e. closed

terms) are called programs. The meta variables s, t, u, v will be used to

denote general terms, and in particular programs (e PROG). We are mainly

interested in programs and in their computations.

156

2 . 2 . An operational semantics for programs

A computation is a finite or infinite sequence of transitions ti-Vi-gti+l

between programs. Transitions are either steps of evolution resulting from

visible or invisible actions (l or ~), or self-transformations of programs

with no action involved. In the last case, label ~ appears as a witness for

the flow of time.
According to Plotkin's method of structural inferential semantics,

transitions are defined by a finite family of schemes of axioms and rules of

inference for relations u _v_~ v in PROG x N x PROG. The set T of transitions

is the least subset of PROG x N x PROG closed under logical inference in the

following system, stated in Gentzen like style.

AX I OM$.

~t -~-~ t

t @ u -~-9 t , t @ u -$-) u

NIL wh D -~-~ NIL

x W~ D _C_+ D (x) w_h D for D (x) defined

(~t) wh D -(;-+ ~(t wh D)

(tp) wh D -(;--> (t wh D)

(top 2 u) W_h D -(~-9 (t W_h D) oP2 (u ~th D)

(t wh D) wh D' -~-~ t W/l (D u D')

RULES

(t -~-+ t')

(t -~-~ t')

((t-~-~ t') ,

(t -~-~ t')

(t -~-~ t')

(t+u -~-~ t') , (u+t -~-~ t')

(tlu -~-+ t'{u) , (ult -~-~ ult')

(u _l_+ u')) ~ (tlu -z-+ t'tu')

(tp _p(D)_~ t'p) i_~ p(~) defined

(t oP2 u -~-) t'oP2 u), (u oP2 t -(~-9 u oP2 t')

Except for the axioms of internal choice, all the axioms and rules for

u-transitions are meant to give an operational flavour to the notion of

divergence due to unguarded recursivity : infinite sequences of u-transitions

are the characteristic mark of unguarded divergence.

2 .3 . A concrete linear model

A denotational model where programs are interpreted by sets of infinitary

computations can be derived from the above definitions (this is achieved in

the full version of the paper) . Such a model is a bridge between the

operational definition and the observational model which we are looking for,

since the latter is nothing but a morphic image of the former. For the sake of

conciseness, the presentation of the operational model is reduced here to the

necessary description of the corresponding domain of interpretation.

We define *T (resp.~) as the set of sequences s t or (ti-Di-~ti+l)i<y such

that y6 .IN (resp. yE ~u {~}) and Vi< y, (ti-Di-~ ti+l) e T.

The finitary resp. infinitary meanings of programs are given by the following

functions, where t -)t means t = £t or t = (t -~-~ t')t':

157

[I I] op : PROG -~ P (*T) : [I t I] op = {re *T / t -+ t },
~o

[I I] ~Op : PROG -+ P (~) : [I t I] op = {t e ~/ t-> ~ }.

In the sequel,we let t range over ~, and we let Q range over P (~°T) .

The set oc~ may be ordered by. the prefix order on sequences ; it may also be

considered as a complete metric space, under the metric topology induced by

the ultrametrio distance of [5].Limits in the Scott topology induced by the

order prefix coincide indeed with limits in that metric topology. Now, for t

in PROG, [ItN~op is prefix closed and topologically closed, and [Itl]*op is equal

to [Itl]~op c~ *T, whence [Itl]~op is the topological closure of [Itl]*op-

The interpretations 9/~ k : P(*T) k-) P(*T) and ~k : p(~)k _> p(~) for the

Z-operators are the union additive extensions of 'elementary* operators D_ll k :

(*T) k -~ P(*T) and ~k : (~)k_+p(~) (so they are continuous w.r.t, c_ in the

complete lattices P(*T) and P(~)).
In the sequel, we make heavy use of the convention that functions and

operators are implicitly extended, whenever necessary, along union additive

extensions. However there is an exception in the case of the 'funny

concatenation' denoted ",", an operation which has a central importance in our

model and which is defined as follows : • : T x c~]. __~ p(o~]r) :

(u-~-~v)" ~t = {~u' (u-~-+v) }'

(U-D--)V)" (ti-Di--)ti+l)i<y = {£u" (U-~3-gV) }U{ (U-D-->V) (ti-~)i--gti+ !) i<~ / (V=to' ~<Y) }"

For the extended operation • :T xP(~T) -+P(~), and in the special case Q = O,

we set : (u-D-~v) "Q = {~u' (u-D-+v) }"

The infinitary operations ~k :(~)k +p(~]-) are strongly dependent on the

finitary operations 9-1~k : (*T) k _9 P(*T), for they are defined as the

continuous extensions of the latter. The precise statement of the dependence

is as follows, letting CL(Q) and Pref(t) mean respectively the topological

closure of Q and the set of finite prefixes of t :

°P---k (~i' " " "~) = CL(DIZk (Pref (ti) Pref (~))) .

The finitary operations 9~ k : (*T) k_+p(,][) are defined by six families DI-D6

of inductive relations (drawn from the operationaldefinition of (2.2)).

These relations are also valid for the infinitary operations ~k, although

they do not define them. For that reason, the underlining or surlining of

operator symbols is omitted from the following table. To keep reasonable

notations, we let t s = (s-9-et)t t and t u = (u- -~v) t v everywhere in the

definitions, with t-+t t and v-->t v. The notation "[cond, QI, Q2]" reads as : 'if

cond then Q1 else Q2'"

THE INTERPRETATI_Q~ OF E IN *T ~;D~

NIL = {~NIL)

D_2 z(t t) = (~t -~ t). t t

D-~ (~t)p = {£tp],

(ts) p = [D~ dom(p), {~sp}~ (sp _p(D)_~ tp) • (tt) p]

D-{ ~t + ev = {~t+v } '

158

t s + 8 v = [D~$, (S+v _D_) t), t t , (S+V-~]-gt+v)'(tt + £v)],

£t + tu = [D' #~, (t + u _D'_~ v)" tv, (t+u _D'_~ t+v)°(Et + tv)] '

t s + t u = [D#~, (s + u _D_~ t)tt ' (s+u _D_~ t+u)°(t t + tu)]

u [~'~,(s + u -~'-~ v) t v, is+u -~'-~ s+v)-(t s + tv)]

D~ £t (9 gv = {Etev" (t(gv-~-9 t), (t(gv -~-~ v)),

is(9 ~v = {(s (9 v -~ v}u is (9 v -~ s)ot s

U[~ = ~, (s (9 v -~-~ t (9 v)'(~t(9 £v)' O],

St (9 ~U = { (t (9 u -(~-~ t)} <9 (t (9 u -~-~ u)°t u

U[D' = ~, (t

t s (9 t u = (s (9 u -O-~ s)° t s U (s

U[D = C,

U [D' = ~,

u -co t • v).iete tv), 0],

• u -~ u). t u

(s @ u -c~te u).(t t • tu), 0]

(s • u -~ s • v)o(t s G tv), O]

D6 ~t le v = {etl v},

ts [~v = ((s[vl -~ itlv)).(ttJ~v~,

E t I t s = ((tlu) -%)'-') (tlv))'(E t I tv),

tSl t u = ((S[U) _D__> (tIu))'(tt[tU))

u [~'=~eA, (is[u) -~-~ it[v)).(tt[tv),O]

The following propositions hold :

proposition V oPk e ~ , V ti6 PROG ,

[[oPk(tl,--- tk)I]*op = 9/2k([I tl l]*op [I tk I]*op)-

DrODositiQn V OPk e ~k, Vti 6 PROG ,

[[oPk(tl tk)l]~op = ~k([l tl l]~op [[tk l]~op) •

3. AN OBSERVATIONAL PREORDER_WITH HIQH pOWER OF SEPARATION

Our foretold objective was to develop for CCS a model in which programs are

identified if and only if no (CCS) program defined experiment makes the

difference between them. In fact, we construct a model for an 'implementation'

preorder between programs, where u is said to be an implementation of v if and

only if no finite or infinite experiment on u tells that it is not v. We think

of 'experimenting' on program u as running a maximal computation on the

parallel system (t ~C[u]), for some testing program t and context C[?]. The

result of the experiment is the sequence of transitions of the testing program

(along that experiment). The introduction of infinitary results, as opposed to

the binary results of "classical" tests, is motivated by the fact that

159

infinitary results yield a strictly higher power of separation, and indeed the

highest possible power of separation as regards CCS-programmed experiments.

$o, any observational model <based on CCS-experiments) is necessarily a

quotient (by some equivalence) of the model which we are looking for. In the

present section, we give a precise definition of the relation of

implementation between programs, and then show how that relation may be

transferred from programs to their associated sets of computations.

We introduce in this alinea precise terminology about computations. Let t

denote some computation (u i -Di-) Ui+l)i< ~ in ~T. The coarse trace of t (denoted

trN(t) is the word (Di)i< ? of N ~, and the refined trace of t (denoted trA(t))

is the projection ~A(trN(~), where N A is the usual morphism projecting N ~

on A ~. If trA(t) is £ (the empty trace), then computation t is said to be

silent. For t in PROG, we let MSC(t) be the family of Maximal Sileni

Commutations from t, that is to say, the set of computations which are maximal

w.rot. ~ (the order prefix) in {t / t e [It l]~op A trA(t) = ~}. For ~6 MSC(ulv),

a pair of computations (tu~ v) is a parallel decomposition of ~ if it is

minimal (w.r.t. <2) in the set {(~u, tv) ~rE (tult v)). (For the ease of

notation, the operations ~k : (~T) k -~ P(~T), and their union additive

extensions, are given the simpler notation oPk in the present section). For tE

MSC (ulv), we let R2(~) denote the set of computations t v which are the second

projecti~/l of some parallel decomposition (tu,tv) of t. Finally, we let

Twincomp be the set of parallel decompositions of maximal silent computations.

definition Let u, v e PROG.

Program u is observatienallv le~_ than program v (u ~< v) iff ~ t e PROG, ~2

(MSC(ult)) ~ H 2 (MSC(vlt)) .

Program u is an implementation Q~ program v (u~v) iff C[u] ~ C[v] for all

program contexts C[?] , where a program context is a closed term with

possible occurences of the dummy constant "?".

Examples The reader can convince himself that: u~u • v, u~ ~ u,

• (u+v)~ ~u + ~v, ~v+u~(u+v) + ~v, (x w_hh x = ~x) ~ (x w__hh x = x).

A natural way to find out a fully abstract model for_~< is to transfer that

preorder from programs to sets of computations and then to analyse the

resulting equivalence of sets of computations : the canonical morphism induced

by the equivalence yields the fully abstract model. This program is undertaken

in the next series of statements.

definition Let t, t' e ~.

Computation t is observa%ionallv_~ than computation t'

if kft"e ~]-, (t,t") 6 Twincomp ~ (t',t") E Twincomp.

(t~< t') if and only

160

We let~< denote also the Hoare like extension of.~< to P(~°T) x P(~T), that is

the binary relation QI~ Q2 ¢~ (Vt 16 QI, 3 t 2e Q2, tl ~t2)-

oo
proposition 1 V u,v e PROG : u,~< v <=> [I u I] op ~< [I v H~°op

definition Let t be the computation (ui-~]i-gui+l)i<?. Then t has the

property of stabilitv (Stable(t)) if it is finite (It 1 = ~#£0) and cannot be

extended by any silent transition (for all (u-D-+v) e T, u = uy ~ De A). If

t is stable, then ~ has a residue Res(t), defined as the ready set of u~{ r i.e.

as the set of labels {}~6A /(3 v, (u?-l-)v) e T)).

proposition 2 V t, t' e ~,

~< t ' iff the following relations hold :

- trA(t) = trA(~'),

(Stable(t) A It' I ~£0) ~ (Stable(~') ^ Res(t')c_ Res(t)) .

The interest of propositions 1 and 2 is to suggest an abstract model for CCS,

and a way to derive the semantics in that model from the operational semantics

studied in section 2. In fact, the observational preorder~< on programs is not

preserved by all context operations and differs from the implementation

preorder ~(of course, the discrepancy between ~ and~stems from the operation

of sum (+)). In order to cope with the problem, we shall now try to guess the

adequate transposition of the implementation preorder (from programs) to

computations and sets of computations.

definition Let t, t' 6°~[.

(~£t') if and only if the following relations hold :

- t~<t',

- (Stable(t) A Stable(t') A trA(t) = £) ~ (Hz(trN(~')) = £ [Iz (trN (t)) = ~).

We let ~ denote also the Hoare like extension of ~ to P(~T)x P(=T), that is

the binary relation QI~Q2 ¢~ (Vile QI, 3 t2e Q2, tl~) •

proposition 3 V u, v e PROG : u ~v ~ [I u I]~op ~ [I v l]~op .

One of the main goals of the next section is to establish the reverse

proposition, i.e. the implication : [I u l]~op~ [I v I]~op ~ u~v. Anticipating

that result, we conclude the present section on a short remark: the

implementation preorder studied here coincides with a variant of that of [17]

(see also [15] for a stronger form), where the inclusion betweenfinitary

trace languages is replaced by an inclusion between infinitary trace

languages. The variation concerns the phenomenon of divergence. More precisely,

the congruence relation induced by the preorder of [17] ~eparates

unguardedness of recursive definitions from "pure" divergence, i.e. the

presence of infinite sequences of internal actions. This separation

corresponds to a further extended notion of testing where termination can be

observed.

161

4. ABSTRACT COMPUTATIONS

The section prepares the construction of a model for the implementation

preorder on programs. We define 'abstract computations', which represent
actual computations by pairs encoding their properties w.r.t, preorder ~. We

then construct an ordered Z-algebra of abstract computations and lift the

operators to the power algebra• We show the monotony of the lifted operators,

and study some properties of the resulting Z-interpretation. We then turn

ourselves to establish a connection between the operational interpretation

(P(~), {~k}, E~) and the abstract interpretation, and settle a morphic

connection between the two ordered Z-interpretations.

~efinition An 'abstract computation' is a pair <w,R> of one of the forms <Z,~>

or <z,S> or <z,i> or <~,S> where Z 6 A ~, z e A* and S is a finite subset of A.

The set (A, ~) of abstract computations is partially ordered by the least

order relation satisfying the following axioms, for z • A* and S"c S'c S ~ A

<z,±> E <z,S> ~ <z,S'> E <z,~>,

. <£,S'>E<~,S'>~<~,S">E<£,~>.

The intentions behind that definition are made completely clear in the
following statement.

proposition 1 (Vt, t' e ~T) tc~' ¢~ #(t)c @(t'), for ~ :~T-+ A defined as

follows :

Itl = 0) ~ $(t) = <trA(t), (0>

Itl ~(0 A ~Stable(t) ~ @(t) = <trA(t), i>

(Stable(t) ^ (trA(t) ~g v ~(trN(t)) = £))

(Stable(t) A trA(t) = g m ~%(trN(~)) ~£))

~(t) = <trA(t),Res(t)>

(~(t) = <%Res(t)>

PrOO[. The verification is straightforward, and we leave it to the reader as a
useful exercise for a full understanding of the above definition•

In all the sequel, we let a (resp. A) denote abstract computations (resp.
sets of abstract computations). We also use c to denote the Hoare extension of

on P(A), i.e. the relation A I~A 2 ¢~ (Vale AI, 3a 2e A2, a l~a2). Our next

goal is to introduce a series of elementary operations oPk : Ak--~ P(A), for

OPk6E. Before the corresponding definitions are given, we need still

introducing an auxiliary operator on words, namely the 'parallel composition'

(Q) which we define as follows•

Let N = (N × (£}) k2 ({~} × N) <J {(l,~) / ~ eA }. The parallel composition

@ : N~x N ~ -+ P(N ~) is the function w'Ow" = {w / (w',w") 6•2(•i-I(w)) }

for ~/i : N~ -9 N°° and V2 : N~ -~ N~x N~ defined as the continuous extensions oI

morphisms ~;i :N*--}N* and ~/2 :N*-) N*X~* as follows :

• ~2(n) = n for n e N,

162

~2(nn') = (n]n'irn2n'2) for ~;2(n)=(nl,n2} and ~2(n')=(n'irn'2)

The elementary operations oPk : A k --> P(A) are given by the following table

of statements, where set brackets are omitted from singleton sets.

INTERPRETATION OF _~ IN

D'I NIL = <~,~>,

D'2 ~<w~R> = [~ E A, <g, {~}>, <g,l>] k) ~ (R 6 {±,C0} v w ~ {g,~})

~hen [~t = ~, <w,R>, <~w,R>]

[~ =t, <~,R>, <~,R>],

D'~ <w,R>p = /d[w ~ (dom(p)) ~ then O else

[R 6 {±,0)}, <p(w),R>, <p(w), p(R • dom(p))>],

<w,R> + <w',R'> = [(w ~e v R = CO), <w,R> , [R = i, <e,±> , 0]] u

[{w' ~£ v R' = ~), <w',R'>, [R' = ±, <e,±>, ~]] <J

[(w = £ A W' = £ A {R,R'}C~ {3_,(0} = ~), <g, R <J R'>, ~],

D'5 <w,R> (9 <w',R'> = {<E,I>, <w,R>, <w',R'>},

D'~ <w,R>] <w',R'> = ~ (R = CO v R' = (0) Lhen {<w", co> / w" elJA(W O w')

else if (R = I v R' = I v 3%, le R A ~e R')

then {<w",l> / w" e[I A (w O w') }

else {<h(w"), R kJ R'> / w" ellA(W 6) w~)}~

letting h(w") = [IIA(W")#£, II A (w"), [IIg(w")#£, g, el].

In order to construct the interpretation of the fully abstract model in

prospect, we lift the above definitions to sets. However, we put special

restrictions on the lifting process, for we care to obtain a complete partial

order with monotone and continuous operations. Definitions follow.

Our domain of interpretation /) is the set of subsets of ~ with pairwise

incomparable elements, i.e.

D= {A 6 P(~)/ (Val,a 2 6 A) (al~_a 2 ~ a I = a 2) }.

Thus, /) is the image of P(~) through function 'roof' :P(A) -~'-+ D :

= {a E A / (Va'£ A)(ac_a' ~ a'=a) }.

The interpretations oPk : ~k __>i] of operators in ~ are given by the generic

formula : oPk(Al,...Ak) = if (3i, A i = O) ~ ~3

else. roof ((<S,±>) u (L9 oPk (al,...a k) / a i e Ai)) .

Some properties of the resulting Z-interpretation are stated below.

p~oposition 2 (~, c, O) is a complete upper semi-lattice, with the least upper

bound of subsets given by ~ D = roof(k)A / A e D).

pToof It is enough to establish the simpler proposition :

(kfA' 6 D) (A' roof(U A / A e D)). Let's suppose it is false; then the only

possibility is that, for some a e A', there is in (LJA/A e D) a strictly

increasing O)-ehain of abstract computations (a i) with a o = a. But no such

chain can exist by the definition of -= on A.

163

p/Lqp_~sition 3 (D, E ,{oPk}) is a continuous E-algebra.

proo~ The lemma given afterwards shows that operations OPk are monotone.

Continuity follows by the implication : aeoP2(~D, A') ~ 3 Ae D, aeoP2(A,A')

and variants of it.

lemma For any oPk in Z, for any ai, a' i in A, and for any a in oPk (al,..a k) :

(a ~ <£,~) A (Vi, a i ~ a' i) ~ (3a' e opk(a'l,...a'k) , a ~ a').

proof by systematic examination of all the possible cases (left to the reader).

We finally establish the morphic connection between the operational

E-interpretation of section 2 and the abstract Z-interpretation of the present

section.

proposition. 4 Let P~(~T) denote the set of prefix closed subsets of

computations, and let ~ : P<(~T) -~ D be the function:

~(Q)= roof(U{#(~)/t • Q}) . Then $ acts like a morphism between structures

(P<(~T), {~k / OPk e Z}, ~) and (D, {oPk}, ~) .

5. FULL ABSTRACTION AND TRACE_SS

Our present goal is to establish full abstractness (w.r.t. the observational
A

preorder ~<) of the function [l.l]ob s : PROG -~ D : NtNobs = ~ [Itl]'op-

We recall from [22] that full abstractness is expressed by the logical
equivalence

• -a) [lUl]obs c [IVl]ob~ ~ V c[?], C[u] £ C[v].

Due to propositions 3.1, 3.3 and 4.1, FA follows easily from the following
property of monotonv:

~ON) V c[?], [lUJ]ob ~ =_ NVl]ob~ ~ [IC[u]i]ob S m [IC[v]1]ob~-

Indeed, the general version of MON follows from the specialized version given
below for declaration contexts D[?] :

A A ~ A

(MON-D) V D[?], ~[lul]~op c_ ~[]v Hop ~ ~[I x wh D[u] l]~op _~ ~[[x W]l D[v] []~op"

In the operational model sketched in (2.3), [Ix wh D[u] l]~op turns out to be

the projection along the x-component of the greatest solution of a

parameterized system Gu(~) of Z-equations in P(~T) n. The parameter of that

system is Nu I] op and the interpretation of E is according to the definition

given in (2.3). Now, MON-D is a direct consequence of the following two
implications, where l.f.p. (g.f.p.) is the combinator of least (greatest)

fixed point in (P(~T),_c) n, I] x is the projection along x, and k is the

componentwise difference between vectors of sets :

A A A A
(MON-LFP) ~[~UN~op C ~[Iv~]~op ~ ¢(l]x(l.f. p. ~U(~)))C ~(l]x(l.f. p. Gv(~))),

A A

(MON-GFP) ~[lul]'op m ~[Ivi]~op

$(l]x(g.f.p.Gu(~) k 1.f.p. ~u(~_))) c_ ~(l]x(g.f. p. ~v(~{))).

184

Relation MON-LEP follows easily from the usual properties of monotony of least

fixed points (of continuous operators) : the trick is to shift ~ on the right

of the l.f.p, eombinator (using the morphic properties of ~ w.r.t. ~) .

Relation MON-GFP is not so easily proved. The remaining of the section is

devoted to that task.

Tra~s

We introduce a Z power algebra of ~races (P(N~)r {~k}, ~)" The construction

is the same as for the Z power algebra of computations, bu{ with program

states omitted. As regards continuity and fixed points, all the properties

which are valid for computations remain valid in the new framework. The

operations ~k : (N ~)k _) p(N ~) are the extensions of finitary operations

Omk: (N*)k -) P (N*), according to the formula ~k (Wl Wk) =

CL(9~Zk(Pref(wl),... Pref(wk))).

The finitary operations 9/I k are defined by the following inductive relations,

also valid for the infinitary operations~ k, where • : N x P(N ~) ~ P(N ~) is

the function: DoB = {£,D} u (~B) U (DPref(B)).

THE INTERPRETATION OF Z IN N* AND N ~

D"I NIL = (g}

D"2 B(w) = Bo{w}

D"3 (e) p = {e},

(Dw) p = [D £ dom(p) , {g}, p(~)-(w)p]

D/Li £ + e = {£},

Dw + S = De{w} = £ + 1]w,

9w + D'w' = [n=$,$e(w+D'w'), n°w] U [D'=G, ~°(gw+w')t 9'°w']

D " 5 E ~ £ = { e , G } ,

~w @S = Co{gw} = ~gw,

9w ~9'w' = ~0 {gw} u ~°{D'w'}

u [~ = c, ~-(w@~'w'), 0]

u [9' = ~, ~°(9 w @ w'), 0]

aZl ~ I E= {~),

~w!~'w' = ~.(wI~'w') u ~'.(~wlw')

U [~ =D'eA, ~°(wlw'), ~]

IZ-VeCS and substitutions
We introduce a countable set of variables I, with typical element i. We

denote respectively by Z ~ the set of finite and infinite Z-trees, and by Z~(1)

the set of finite and infinite trees on Z~I. A tree is called a good tree if

it has an infinite number of operators G on each infinite branch. We use T<~T'

to indicate that T is a finite approximation of T', which means that T is

finite and is less than T' in the usual syntactic order, where ~ is identified

with NIL. A tree T in Z~ may be interpreted by a corresponding set of words

[ITI] in N ~. The interpretation of finite trees is defined as follows :

165

[! NIL I] = {e},

[E ~T i] = ~'[l T l],

[I oPk(T1 Tk) I] = 9/~k([} T1 I], . o . [I Tk i])-

The interpretation of infinite trees is defined by continuous extension of the

finitary interpretation : HTH = CL(k9 [IT'I] / T'<~T).

We call ~ubstitution a mapping S from I to N =. For T in Z~(I), Sub(T,S)

denotes the result of applying substitution S to tree T.

Towards a proof of MON-GFP
The following property of the projection operator I]A:P(N ~)-~P(A ~) is useful:

proposition 1 For any finite tree T and for any substitution St

~A[ISub (T, S)l] = I]A[ISub (T, I]AoS)I].

We state afterwards two other propositions which entail MON-GFP.

proposition 2 Let T be a good tree, and let S and S' be substitutions

satisfying I]AoS(i) = S'(i) for all i 6 I. Then for any word w 6 [[Sub(T,S)]],

either we [ISub(T',S)H for some finite approximation T' of T, or [IA(W) = IIA(W')

for some infinite word w' in NSub(T,S')[].

proposition 3 Let T be a good tree, and let S and S' be substitutions

satisfying S(i) = I]AoS'(i) for all i e I. Then for any infinite word w in

[ISub (T, S) l], [IA(W) = ~A(W') for some infinite word w' in [[Sub(T,S')I].

6. H E F U L L Y OBSERVATIONAL MODEL

The declared objective of the paper was to supply CCS with a fully abstract

model, where the gauge for the comparison of programs is the largest possible

family of CCSexperiments with infinitary results. The full abstractness of

function [I.l]obs: PROG -+D, stated in section 5, allows us to assert that the

continuous algebra (D, c {oPk}) is the interpretation of such a model
A

Further, the relation [[tHob s = #[ItN~op suggests us a method for the explicit

construction of the abstract model. The method amounts to a transposition of

the operational model through the abstraction morphism ~. The result of the

transposition is a meaning function Vobs : TERM --> (ENV -9 D), where ENV =

(X-9 D) . A simple optimization of the transposition, namely the uniform

replacement of Vobs[It wh ~I] (e) by V obs[Itl] (e) yields the following definition.

I.

2.

THE S~ECIF!CATION OF Vob s

Vob s [~ x l](e) = e(x),

Vob s [I oPk(tl,---tk) ~](e) = op k(Vobs[~ t I ~(e),...Vobs[Itkl](e)),

166

3. If D = (x I = Vl,... x n = Vn) '

Let ~ = (Xl,...Xn), ~ = (Xl,...Xn), • = (FI,...F n)

For X i• D and F i : ENV -9 D given by

F i (e) = Vobs[~Vi~ (e) , then Vobs[It wh DI] (e) =

VobsNtl] (e[fixD-r(e[~/~])/=]).

~{rk: The specification remains correct if <w,l> is converted into

everywhere in the definition of D and the related operations.

There remains to give the right definition for the fixed point combinator

fix D , where the notation indicates a possible dependence on declaration D. The

results presented in section 5 lead us to proceed as follows.

Let roof : P(A) --> D and omega : P(N ~) -9 D be the functions s.t.:

roof(A) = {a e A / Va'e A, a Ea' ~ a' = a} and

omega(B) = {<w,~> / w= ~A(W') for some w' 6 B~ N~].

- For open declarations D, we state :

fixD.~(~) = 1.f.p.F(~).

- For closed declarations D, we state :

fixD.~(X)= ~OOF(I.f.p. F(X) %~ O~GA (g.f.p. ~(~))),

letting ~ = (F~ F~) and F~ : (X --)P(N~)) -+ P(N~): Fq(e) = Vtr[IVil](e)

for Vtr: TERM -~ ((X-9 P(N ~))-9 P(N~)) the auxiliary meaning function defined

afterwards.

Let ~A:D-9 P(N ~) be the 'projection' ~A(A)={~A(W)/W ~w' for some <w',R'> ~A}.

The function Vtr is obtained by a transposition of the operational meaning

function through the abstraction morphism V: (~T)-gN~: ~(ti-Di-gti+l)i<y=(gi)i<7.

However, in the specification of Vtr(t), we let ~A(Vobs(U)) play the role of

~([lul]~op) for all proper subprograms u of t. That replacement agrees with

propositions 5.2 and 5.3. Furthermore, it affords a compositio]l~ expression

of Vob s at the level of programs and closed declarations, even though an

auxiliary meaning function is called for. We also proceed to the optimization

of the transposition by reducing uniformly Vtr[It wh ~I](e) to Vtr[Itl](e).

T~E SPECIFICATION OF Vtr

0. If t6 PROG then Vtr[It~](e) = [IA(Vobs[Itl](e')) for arbitrary e ~ • (X -9 D),

otherwise VtrHtl](e) is defined by relations 1 to 3.

I. Vtr[IXl] (e) = e (x) ,

2. Vtr[~OPk(t 1 tk) l](e) = oPk(Vtr[~tll](e) Vtr[Itkl](e)),

3' .If D is a ¢losed declaration (x I = vl,.., x n = v n),

let HDNob s = (Vobs[IX 1 wh Dl](e') Vobs[IX n wh D] (e')),

for arbitrary e'e (X-+ D), and let ~ = (Xl...Xn), then

Vtr[It W~ D ~](e) = VtrHt~(e[[1A([IDnob s) / =]),

3" .If D is an ~ declaration (x I = Vl,... Xn = Vn),

let -~ = (Xl, ...Xn) , X = (Xl,...Xn), F = (F I, ...F n)

167

for X ie P(N ~) and F i : (X -~ P(N~)) -9 P(N ~)

given by F i (e) = ~,Vtr[IVil] (e) , then

Vtr[It ~h D l](e) = VtrHtl](e[g.f. p. F (e[~ / s]) / ~])

The outcome of the definitions is the following result.

2heorem. V t e PROG, Vobs[Itl] (e) = #[Itl] op for arbitrary environments e : X -~ ~,

and thus Vob s is a fully abstract model for CCS.

BIBLIOGRAPHY

[i] Abramsky S. Experiments, Power domains, and Fully Abstract Models for
Applicative Multiprogramming FCT 83, Borgholm
Springer-Verlag, LNCS 158 (83) pp. 1-13

[2] Arnold A., Dicky A. An Algebraic Characterization of Transition System
Equivalence, Report 1-8603, Universit@ de Bordeaux {86)

[3] Bekic H. Definable Operations in General Algebras, and the Theory
of Automata and Flowcharts, IBM Laboratory Vienna (69)
also in: Programming Languages and their Definition,

selected papers of H. Beki$, Springer-Verlag LNCS 177(84)

[4] Bergstra J.A., Klop J.W., Olderog E.R.

Readies and Failures in the Algebra of Communicating Processes,
Report CS-R8523, CWI, ~sterdam (85)

[5] Boasson L., Nivat M. Adherences of Languages, JCSS 20 (80) pp. 285 -309

[6] Boudo1 G. Notes on Algebraic Calculi of Processes,
Logics and Models of Concurrent Systems, K. Apt. ed, NATO - ASI -Series,
Springer-Verlag (85) pp. 261 - 304

[7] Brookes S, Roscoe A. W. An Improved Failures Model for Communicating Processes
Seminar on Concurrency, Brookes Roscoe Winskel eds.
Springer-Verlag, LNCS 197(85) pp. 281-305

[8] Darondeau Ph. Kott L. On the Observational Semantics of Fair Parallelism,
ICALP 83, Barcelona, Springer-Verlag LNCS 154 (83) pp. 147 - 159

[9] Darondeau Ph. About Fair Asynchrony, TCS 37 (85) pp. 305 - 336

[i0] " Separating and Testing , STACS 86, Orsay,
Springer-Verlag LNCS 210 (86) pp. 203 - 212

[ii] de Bakker J.W., Meyer J.J.Ch., Olderog E.R.

Infinite Streams and Finite Observations in the Semantics of Uniform Concurrency,
ICALP 85, Naflion, Springer-Verlag LNCS 194 (85) pp. 149 - 157

[12] de Bakker J.W., Meyer J.J.Ch., Olderog E.R., Zucker J.I.
Transition Systems, Infinitary Languages and the Semantics of Uniform Concurrency
17 TM ACM STOC, Providence (85) pp. 252,262

[13] de Nicola R., Hennessy M. Testing Equivalences for Processes
TCS 34 (84) pp. 83-133

168

[14]

[15]

[16]

[17]

[Z8]

[Z9]

[20]

[21]

[22]

[23] "

[24]

[25]

E26]

[27]

de Nicola R. Testing Equivalences and Fully Abstract Models for Communicating

Processes. Ph. D Thesis, University of Edinburgh (85)

Gamatie B.

Observational Congruences of Non Determini'stic and Communicating Finite Processes

RR - 254 - IRISA Rennes (85)

Safe Implementation Equivalence for Asynchronous Non Deterministic Processes

MFCS 86, Bratislava, Springer-Verlag LNCS 233 (86)

Towards Specification and Proof of Asynchronous Systems,

STACS 86, Orsay, Springer-Verlag LNCS 210 (86) pp. 203 - 212

Golson W., Rounds W. C. Connections Between two Theories of Concurrency

Metric Spaces and Synchronization Trees

Information and Control 57 (83) pp.102-124

Hennessy M., Plotkin G. A Term Model for CCS

Springer-Verlag LNCS 88 (80) pp.261-274

Hennessy M. Acceptance Trees, JACM 32 (85) pp. 896 - 928

Jorrand Ph Specification of Communicating Processes and Process Implementation

Correctness, 5 TM Int. Symposium on Programming, Turin

Springer Verlag LNCS 137(82) pp.242-256

Milner R. Fully Abstract Models of Typed lambda-calculi , TCS 4 (77) pp. 1 - 23

A Calculus of Communicating Systems , Springer - Verlag LNCS 92 (80)

Olderog E. R., Hoare C.A.R. Specification Oriented Semantics for Communicating

Processes , Acta Informatica 23,1 (86) pp. 9-86

Plotkin G. A Structural Approach to Operational Semantics,

Rept. DAIMI - FN - 19, Univ. of Aarhus, Computer Science Department (81)

Pnueli A. Linear and Branching Structures in the Semantics and Logics of Reactive

Systems, ICALP 85, Nafplion, Springer - Verlag LNCS 194 (85) pp. 15 - 32

Rounds W. C. On the Relationships Between Scott Domains, Synchronization Trees

and Metric Spaces, Information and Control 66 (85) pp. 6 - 28

[28] Tarski A. A Lattice Theoretic Fixpoint Theorem and its Applications,

Pacific Journal of Mathematics 5 (55) pp. 285 - 309.

