
PARAMETERIZED HORN CLAUSE SPECIFICATIONS:

PROOF THEORY AND CORRECTNESS

M. Navarre

Informatika Fakultatea

Euskal-Herdko Unibertsitatea

San Sebastian, SPAIN

F. Orejas

Facultat d'lnform&tica

Universitat Polit~cnica de Catalunya

Barcelona, SPAIN

Recently, "algebraic" equational Horn clause specifications (or, in some sense, conditional specifications)

have been advocated by several authors as the solution to some of the problems of Prolog [see, for

instance, 11]. Most of the work done in this field has been dealing only with the operational aspects of such

specifications (e.g. rewriting, narrowing, etc.), perhaps assuming that other kind of results will be direct

generalizations of those obtained for the equational case.

However, there is an aspect that hinders, in many cases, this generalization: working with a (so-called)

boolean constraint, i.e. having as admissible models for specifications algebras satisfying that a boolean

sort contains only two values: true and false. Specifically, constructions that are almost trivial in the

standard framework have to be approached with new techniques.

In this paper we study two aspects of parameterized specifications, proof theory and correctness. We

characterize the inductive theory of a parameterized specification generalizing some results obtained by P.

Padawitz in [15] (in particular some restrictions have been removed, for instance the need to have equality

operators explicitly defined for every sort, or the need for persistency: we only ask for

"bool-persistency"). Then, we obtain a proof theoretical characterization of three conditions related to the

correctness of a parameterized specification: bool~persistency, (i.e. the property that ensures that the

booleans are not "destroyed" by the parameterization), persistency (i.e. protection of the actual

parameter) and passing compatibility (i.e. the property that assures the compatibility of the functorial and

pushout semantics for parameter passing).

203

Other previous work related with our results is [8,5,16,14]. In [8] Ganzinger obtained the

proof-theoretical characterization of persistency for the equational case. The characterizations of

bool-persistency and persistency presented here are strongly inspired in his, indeed, the only-if part of our

proofs is a direct generalization of his, but the if part presented the kind of problems mentioned above.

In [5] Ehrig dealt with parameterized specifications with arbitrary constraints (thus his work is more

general), some of his results have been used in this paper, however his approach was model-theoretical due

to the generality of his framework.

In [16] Padawitz obtained conditions for checking persistency of parameterized equational specifications

with a boolean constraint. Although the similarity of the framework, the results are quite different, he was

mainly involved in obtaining sufficient conditions for persistency that were easily checkable using rewriting

techniques.

With respect to [14], the characterization of passing compatibility presented here is a straightforward

generalization of the one presented there, once the new techniques used in the previous results are applied.

The organization of this paper is as follows: In section 1, we introduce briefly the basic concepts. In section

two, we characterize the inductive theory defined by a parameterized specification. Finally, in section 3 we

obtain the characterization of boot-persistency, persistency and passing compatibility.

ACKNOWLEDGEMENTS

The authors would like to thank P. Padawitz for showing us in [I5] the use of the Ultrafilter Theorem. This

work has been partially supported by Comisi6n Asesora de Investigaci6n (ref. 2704-83)

1. Prel iminar ies

Familiarity with the usual notions concerning (parameterized) algebraic specifications is assumed (for

detail, see [7]).

Given a set of sorts S, an S-sorted signat~r~ ~ is an indexed family of sets of operation symbols, ~ =

{~v,s}w*~ S,s~ S"

A z-algebra A consists of a family of sets (carriers or data domains) {As}seS, and a family of operations

204

~A:AslX...xAsn--->As for every c in Zsl_.sn,s A ;~-homQmQr0hism h: A ---> B, where A and B are

~-atgebras is a family of functions {hs: A s ---> Bs}sc S which commute with the operations. ~-algebras

together with their homomorphisms form the category Alga:, having as initial object (up to isomorphism) the

term algebra T~:. Tz(X) stands for the _algebra of terms with variables in X, i.e. the free ~:-algebra

generated by X. Given an assignment a: X ---> A, there is a unique z;-homomorphism a: T:~(X) ---> A,

extending a.

A ~:-algebra A satisfies a (conditional) eauation.A I= XX.t=t' i f t l = t l ' & ... & tn=tn', with

t,t',tl,tl ',...,tn,tn' in Tz.(X), iff for every assignment a: X ---> A, if for every i (l_<i_<n) a(ti)=a(ti') then

a(t)=a(t'). A satisfies a set of eauations E iff it satisfies every equation in E.

A specification SP is a triple (S, z. ,E) formed by a set of sorts, a signature and a set of (conditional)

equations.

Given a specification SP = (S,~;,E), a ~>algebra satisfying E is called a SP-alaebra. SP-algebras together

with their homomorphisms form the category Algsp with initial object TSp = T~/=- E, where ~-E stands for

the congruence generated by E.

Given a specification SP = (S,z,,E), a combination of SP and SP0 = (S0,~:0,E0), denoted SP+SP0, is defined:

SP+SP0 = (S+S0,~;+:T..0,E+E0)

where + denotes disjoint union. Note that SP0 does not need to be a specification (for instance, there may be

a c~ in ~0w, s with ws in (S+S0)+-S0 +, but SP+SP0 does.

A.specification morDhism h: SP1 ---> SP2 consists of a function h:S1--->S2 and a family of functions

{hw,s:~;lw,s--->~;2h,(w),h(s)}w, S,seS (where h*(sl-.sn) denotes h(sl)...h(sn)), such that E2 ~_ h(E1),

i.e. every equation in E1 when translated through h belongs to E2. Specifications together with their

morphisms form the category CATSP.

Every specification morphism h: SP1 ---> SP2 induces a functor Uh: AIgsP2---> Algsp 1 called the

forgetful functor associated to h, defined Uh(A2)=A1 iff

vseSt A1 s = A2h(s)

VceZlw,s dA1 = (hw,s(•))A2

205

U h has a left adjoint Fh: AIgsp 1 ~-> AIgsp 2, called the free functor associated to h.

From now on, we shall assume that every specification contains, as a subspecification, the boolean

specification. Also, we will not allow non boolean operations having boolean parameters, i.e. if

~E:Se, bool-Z.BOOL, then wE(S-{bool})*. That is, we are considering booleans as special values: we may

define boolean-valued functions (predicates) but they may not be parameters.

Moreover, we shall assume that equations take the form ~.X.t=t' if C where C is a Z.(X)-condition, i.e. a

z(X)-term of boolean sort. Though the abuse of notation, conditions may denote, as above, boolean sorted

equations of the kind: C=true. Equations of the kind:

;~X.t=t' if true

will often be abreviated to:

XX.t=t'

Given a specification SP, the category LOGALG(SP) shall denote the full subcategory of Algsp, whose

objects are algebras A satisfying that Ubool(A) = B (where bool is the inclusion morphism from the boolean

specification BOOL to SP and B is the boolean algebra of two elements).

In [13] two proof systems, t- and I-L, were given satisfying:

SP t- ;~.X.t=t' if C iff vAeAIgsp A i= ;~.X.t=f if C

SP I-L ~.X.t=t' if C iff vAe LOGALG(SP) A I= ~.X.t=t' if C

1- is just a generalization to the many sorted case of a proof system given by Selman in [17] using the

technique devised by Goguen and Meseguer in [10] to deai with many-sorts. I-L is an adaptation of another

proof system given by Selman in the same paper adding rules to cope with the boolean constraint.

Note that SP I- ~.X.t=t' implies SP I-L xX.t=t' but the converse is not true, even if the terms tl and t2

206

contain no variables. For instance, if SP contains the equations:

~.X.t=t' if C

~.X.t=t' if not(C)

then SP I-L ~.X.t=t' but not necessarily SP I- ~.X.t=t'.

A set of conditions COND is non contradictina with respect to a set of equations E iff

E+COND*I-/L true=false

where COND* is the same as COND, but considering its variables as constants. From now on, although the

abuse of notation and if there is no possible confusion, we will not distinguish between COND and COND*.

A parameterized data type PDT is a triple (PAR,BODY,H), where PAR = (SPAR,~;PAR,EPAR) is the

p~.r~.meter declaration. BODY = (SBODY,:~BODY,EBODY) = PAR + (S2,z2,E2) is called the taraet

specification and H is a functor, H: LOGALG(PAR) ---> LOGALG(BODY) (we assume H equipped with a natural

family of homomorphisms IA: A ---> Ui(H(A)), where i is the inclusion morphism from PAR to BODY). H is

persistent (stronalv oersistent/iff for every A in LOGALG(PAR), I A is an isomorphism (the identity).

A paramet~rized specification PSP is a pair (PAR,BODY), where PAR and BODY are as in the previous

definition and satisfy bool-oersistency, i.e. for every A in LOGALG(PAR), Ubooi(Fi(A))= B, where F i is the

free functor associated to the inclusion morphism from PAR to BODY. The semantics of PSP is considered to

be the parameterized data type (PAR,BODY,Fi). We shall say that PSP is persistent if F i is persistent or

strongly persistent.

Often, parameterized (conditional) specifications are not persistent if we consider as admissible parameter

any PAR-algebra, although they are persistent when we do restrict to LOGALG(PAR). This happens with the

following example:

Example 1.1

Let PAR be the following specification:

PAR = BOOL + sorts data

ops eq: data x data ---> bool

207

eqns 1) ~.x. eq(x,x) = true

2) X{x,y}.x=y if eq(x,y)

and let BODY be:

BODY = PAR + sorts set

ops empty: set

insert: set x data ---> set

is in: set x data ---> bool

eqns 3) ;qs,x,y}. insert(insert(s,x),y)=insert(insert(s,y),x)

4) x{s,x}, insert(insert(s,x),x)= insert(s,x)

5) Xx.is_in(empty,x)=false

6) ;qs,x}.is_in(insert(s,x),x)=true

7) ;~{s,x,y}.is_in(insert(s,x),y)=is_in(s,y) if not(eq(x,y))

This parameterization, as we shall see Jater, works perfectly well (it is persistent) if we restrict

admissible parameters to those in LOGALG(PAR), i.e. those in which the boolean values are {true,false} and

eq is equality, but is not persistent (it may add "junk" to the parameter) if we do not restrict the class of

admissible parameters. Changing the specification (for instance, adding more equations) would not help to

solve the problem. •

Now, we may define standard parameter passing at the specification level: given a parameterized

specification PSP = (PAR,BODY), with PAR = (SPAR,zPAR,EPAR) and BODY = (SBODY,~.BODY,EBODY) =

PAR + ($2,~;2,E2), a specification ACT = (SACT,~:ACT,EACT) called actual parameter sDecificafion and a

morphism hl : PAR ---> ACT, called oarameter passing morohism, the mechanism of psrameter passing may

be described by the following pushout diagram:

i l
PAR # B3E)Y

ACT ~ VAL
i2

208

where i l is the inclusion morphism. VAL is called the value soecification. More concretely, VAL =

(SVAL,~VAL,EVAL) = ACT + ($4,~:4,E4), with S4 = $2, ,7_.4. = h2(~:2) and E4 = h2(E2), i2 is the inclusion

morphism and h2 is defined:

h2(s) = if seS2 then s else hl(s)

h2w,s(~) = if ce;~2 then c else hlw,s(C)

Parameter passing is correct iff the following two conditions hold, for every A in LOGALG(ACT):

1) Actual oarameter orotection: Ui2(Fi2(A)) = A

2) Passina comoatibility: Fil (Uhl (A) = Uh2 (Fi2(A))

A parameterized specification is correct (resp. satisfies passing compatibility) if for all possible actual

parameter specifications (and parameter passing morphisms) parameter passing is correct (resp. satisfies

passing compatibility). In [5] it is proved that PSP is correct iff it is persistent.

2. The inductive theory of, e,,, pere, meteri.zed soecification

Given a specification SP, the theory defined by this specification consists of all the equations deducible

from SP, which (if the proof system is sound and complete) coincide with the set of equations satisfied by

all models of SP.

However, often we are not interested in ~ models satisfying SPo For instance if the specification is not

parameterized we may be interested only in finitely generated models, or if it is parameterized on models

finitely generated from the actual parameter. The set of equations satisfied by all models finitely generated

(from the actual parameter) satisfying a (parameterized) specification is called the inductive theory defined

by the specification:

Definition 2.1
Given a parameterized specification PSP=(PAR,BODY), we define the inductive equational theory defined by

PSP:

IND(PSP) = { XX.t=t'/vAe LOGALG(PAR) F(A)I = ;~X.t=t'}

In Theorem 2.4 we will characterize IND(PSP) in terms of the (non-conditional) equations satisfied by

209

certain free algebras, but before that we have to see two lemmas:

NOTE From now on, given two z(X)-terms t l , t2 and a z.(X)-condition C, we shall say that Et-L tl=t2 if C

(instead of EI-L ~.X.tl=t2 if C) if from E we may deduce this equation considering the variables as

constants, i.e. considering tl and t2 as ground terms and C as a ground condition.

Lemma 2.2

Given SP = (S,T_.,E) and a set of :~(X)-conditions COND such that COND is non contradicting w.r.t. E, then

there is a set of bool-sorted equations E(COND) such that Tz(X)/---E+E(COND) satisfies every condition in

COND and belongs to LOGALG(SP).

Proof

Let A = T:s(X)/~-Der(E), where Der(E) denotes the set of equations t=t' such that E I-L ;,~X.t=t'. Obviously,

UBooI(A) is a boolean algebra. Let COND' be COND U {not(C)/SPI-L true=false if C}, COND' denotes a set of

values in UBooI(A) satisfying the finite intersection property (i.e. the conjunction of any finite subset of

boolean values is not equal to false) since COND is non contradicting w.r.t. E, then, according to a corollary

of the Ultrafilter Theorem (cf. [2]). there is an ultrafilter U containing all the vaiues denoted by COND'.

Finally, we define E(COND) as {t l=true/tl denote a value inside U} U {tl=false/tl denote a value outside

U}. By construction, Tz.(X)/-=E+E(COND) satisfies every C in COND and belongs to LOGALG(SP) since, on one

hand, by construction in UbooI(T~,(X)/-~E+E(COND)) there wilt be at most two elements, true and false, and,

on the other hand they are different because it may be proved that for any pair of boolean sorted terms, t l

and t2 in T~,(X), T:~(X)/~E+E(COND)I= tl=t2 iff there is a ~:PAR(X)-condition C such that El- L xX.tl=t2 if C

and <C=true>e E(COND). But if Et-L ~.X.true=false if C then, by construction, only <not(C)=true> and

<C=fatse> belong to E(COND). •

Lemma 2.3

Given SP = (~:,E), a set of ~:(X)-conditions COND and two ,~(X)-terms tl and t2 such that SP+COND*~/L

tl =t2, there is a set of bool-sorted equations E.(COND,tl,t2) such that A=T:~(X)/-=E+E(COND,t 1 ,t2) belongs

to LOGALG(SP), A lCtl=t2 and A satisfies every C in COND.

Proof

Let COND' be COND U {not(C)/SPI-Ltl=t2 if C}, by assumption COND' is not contradicting w.r.t. SP, thus

210

applying lemma 2.2, there is a set of equations E(COND') such that A=Tz(X)/~E+E(COND,) satisfies every C

in COND' (and, thus, in COND) and belongs to LOGALG(SP). On the other hand A I~tl=t2, since otherwise a

condition in COND' would be false in A, contradicting one of the two previous statements. •

Theorem 2.4

Let PSP be the parameterized specification (PAR,BODY) and let XpA R be an (SPAR-{bool})-sorted

denumerable set of variables then:

~.X.tl=t2 e IND(PSP) iff TzBODy(XpAR)/-_-Der(EBODY) I= ~.X.tl=t2.

Proof

=>) Suppose T~BODy(XpAR)/=-Der(EBODY) Is a(tl)=a(t2) for a given assignment a: X-->, T;~:BODy(XpAR)

then, according to the previous lemma there is a set of bool-sorted equations E(o,a(tt),a(t2)) such that

A=T~BODy(XpAR)/-~E+E(o,a(tl),a(t2)) belongs to LOGALG(BODY) and A Is a(tl)=a(t2). Let U(A) be the

PAR-algebra obtained after applying the forgetful functor to A. Obviously, U(A) is in LOGALG(PAR),

moreover F(U(A)) Is a(tl)=a(t2) since otherwise a(tl) and a(t2) would be equal in A. Note, however, that

we do not need F to be persistent (although, it is assumed to be bool-persistent).

<=) If T~:BODy(XpAR)/~-Der(E) I=tl=t2, then for every algebra A in LOGALG(PAR) and every assignment h:

X ---> F(A) there is a (unique) homomorphism h : TzBODy(XpAR)/~Der(E) ---> F(A), thus F(A) I=tl=t2. ,

3. Correctness of parameterized specifications

As we have seen in the preliminaries, three conditions are asked for the correctness of parameterized

specifications: boot-persistency, actual parameter protection (persistency [5]), and passing compatibility.

In this section we are going to characterize proof-theoretically bool-persistency (Theorem 3.1) and

persistency (Theorem 3.3) in terms of consistency and completeness conditions. After, we will

characterize passing compatibility in terms of persistency (Theorem 3.4).

Theorem 3.1
PSP = (PAR,BODY) is bool-persistent iff PSP satisfies the following two properties:

1. Bool-consistencv: BODY I~ true=false

211

2. B0oi-comptetene$$: For every t in T~:BODy(XpAR) of boolean sort there are t l ,...,tn in T~:PAR(XpAR) and

~:PAR(X)-conditions C1 Cn, such that BODYI- L ~.X.t=ti if Ci (for every i, l_i_<n), and PARI- L ~.X.C1 v...vCn

= true.

Proof

=>) If PSP is not boot-consistent, obviously, PSP is not persistent w.r.t booleans. Assume PSP is not

bool-complete, let t be the boolean sorted ~.BODY(X)-term for which there is not a finite set of terms

t l tn and ~:PAR(X)-conditions C1 Cn such that BODYJ- L ;LX.t-ti if Ci (for every i, l_<i<n), and PAR I-L

~.X.Clv...vCn = true. Let COND be {not(C)/C is a :~PAR(X)-condition and 3t' in T~:PAR(X) PSP J'L ~.X.t=t' if

C}, by assumption COND is non contradicting w.r.t EPAR thus according to lemma 2.2 A =

TzPAR(X)/---EPAR+E(COND) is in LOGALG(PAR) and every not(C) in COND is true in A (i.e. every C is false in

A). Clearly, in F(A) t is not congruent neither with true nor with false, ~ince otherwise a condition in COND

would be false in F(A).

<=) Let A be in LOGALG(PAR), for every t in T:~BODy(A)bool, since A is a LOGALG(PAR)-algebra and SP is

bool-complete, there is a t i in TZ:PAR(A) and a ~PAR(A)-condition C i such that:

(*) SP I-L t=ti if C i and Af= Ci=true.

This implies F(A)I= t=t i.

Assume F(A)J= t=t', with t,t' in TzPAR(A), this means that there is a sequence of terms t 1 t n such that

t=t 1 , t'=t n, and for every i (l<i<n) t i<-->BODY+E A t i+ l , we will define a sequence of r.PAR(A)-terms

t l',.,.,tn', (with t l '=t 1 and tn'=tn) and of %PAR(A)-conditions C 1 C n such that for every m (0_m <n):

a) BODY I-L tm=tm' if Cm

b) EA 1 l Cm=true

c) EA I-L tm'=tm+l '

it should be clear that if such sequences of terms and ~PAR(A)-conditions exist then AJ= t=t'.

212

In the definition of ti+ 1' and Ci+ 1 we have two cases:

case 1: BODY I-L t i=t i+l if C i' and BODY+EA i-L Ci'=true- By booI completeness, there are

~:PAR(A)-conditions Cil,Cil',...,Cik,Cik', such that BODY IL Ci'=Cij if Cij' for every j (l<j _<k) and PAR

t-L Ci l ' v ... v Cik'=true. This means that there is a j such that BODY I-L ti=ti+l if Cij&Cij' and A t= Cij

&Cij'=true. Now, using (*) above, there is a ~:PAR(A)-term ti+ 1' and a z:PAR(A)-condition'Ci+ 1 such that:

BODY I'L t i+ l=t i+ l ' if Ci+ 1 and AI= Ci+ 1=true, By construction conditions a) and b) hold trivially, let us

see that c) also hoids: By induction, we know that BODY I-L ti=ti' if C i, we also have BODY t-L ti=ti+1 if Cij

& Cij' and BODY]-L t i+ l=t i+ l ' if Ci+ 1 hence, by transitivity, BODY !-L ti '=ti+l' if Ci&Cij&Cij'&Ci+ 1 , but,

by consistency, this means that PAR I-L t i '=t i+l ' if C i&Ci j&Ci j '&Ci+ 1, that is AI= ti'=ti+ 1' since

Ci,Cij,Cij' and Ci+ 1 are true in A.

case 2: EA I-L ti=ti+l. This means that there are terms I,r ETa:PAR(A) and tET:F_.BODy(AU{x}) such that

<l=r>eEA, f l(t)=t i and f2(t)=ti+ 1, where fl and f2 substitute, respectively, x by I and x by r. Now, by

sufficient completeness, there is a z;PAR(AU{x})-term t' and a :~PAR(AU{x})-condition C' such that BODY I-L

t=t' if C' and AI= fl(C'). Let ti+ 1' and Ci+ 1 be, respectively, f2(t') and f2(C'), obviously BODY I-L

ti+ l= t i+ l ' if Ci+ 1 and A[= Ci+l=true, moreover, AI= ti'=ti+ 1' since, by transitivity, BODY+EA I-L ti'=ti+l'

if Ci&Ci+ 1 , and thus, by consistency, PAR+EA I'L ti '=ti+l' if Ci&Ci+ 1 . •

Example 3.2
It should be clear that the specification of example 1.1 is bool-consistent, let us see that it is also

bool-complete.

Every term t in T ~ : B O D y (X p A R) b o o l - Tz. P A R (X p A R) is of the form:

is_in(insert(.._(insert(empty,xl),...),xn),y). We will proceed by induction:

case n=0 Trivial: BODY t-L ~.x.is in(empty,x)=false

case n=k+l On one hand we have:

BODY I'L ~.{s,x,y}.is_in(insert(s,x),y)=is_in(s,y) if not(eq(x,y))

On the other using equation 2) and substitutivity:

BODY I'L ;qs,x,y}.is_in(insert(s,x),y)= is in(insert(s,x),x) if eq(x,y)

213

and by equation 6) and transitivity:

BODY IL ~{s,x,y}.is_in(insert(s,x),y)=true if eq(x,y)

Finally, tr ivially:

PAR I-L ~,{x,y} eq(x,y) v not(eq(x,y)= true

Theorem 3.3

PSP = (PAR,BODY) is persistent in LOGALG(PAR) iff PSP satisfies the following two properties:

t..O.9..Q~s'~ency: For every t l ,t2 in T}:PAR(X) and every ~;PAR(X)-condition C we have PAR l-L ;LX.tl =t2 if C

iff BODY I'L ~X.t l=t2 if C.

2. Suff ic ient comoletengss: For every t in T~ :BODy(XpAR) of sort in PAR, there are t l tn in

T•PAR(XpAR) and]~PAR(X)-conditions C1 Cn, such that BODY I-L ;~X.t=ti if Ci (for every i, l<i<n), and

PAR I-L XX.C1 v ... v Cn = true.

Proof

=>) Assume PSP is not consistent, i.e. there are terms t l , t2 and a ~:PAR(X)-condition C such that BODY J'L

;LX.tl=t2 if C and PAR ~L ~.X.tl=t2 if C. Obviously PAR+C }'/'L t l =t2, since otherwise XX.tl=t2 if C would

be trivially deducible from PAR. Hence, according to lemma 2.3 T~;PAR(X)/_--EPAR+E(C,t 1,t2) is in

LOGALG(PAR), C is true in A and in A I¢ t l=t2. On the other hand, obviously, in F(A) l= t l=t2.

Assume PSP is not sufficiently complete, let t be the ~BODY(X)-term for which there is not a finite set of

terms t l tn and ~:PAR(X)-conditions C1 Cn such that BODY I'L ;LX.t=ti if Ci (for every i, 1-<i~n), and

PAR]-L ~.X.C1 v ... v Cn = true. Let COND be {not(C)/C is a "rPAR(X)-condition and 3t' in T~:PAR(X) PSP t'L

~.X.t=t' i f C}, by assumption COND is non contradicting w.r.t EPAR thus according to lemma 2.2 A =

T~PAR(X)/-=EPAR+E(COND) is in LOGALG(PAR) and every not(C) in COND is true in A (i.e. every C is false in

A). Now, in F(A) t is not congruent to any vatue of A.

<=) Similar to the same part of theorem 3.1.

214

In [14] it was proved that for the equational case passing compatibility was almost persistency

(persistency or trivial inconsistency), here, using similar techniques, we are going to prove that

persistency is exactly passing compatibility. The reason is that we are assuming bool-persistency and,

thus, avoiding trivial inconsistency.

Theorem 3.4

PSP satisfies passing compatibility for every logical parameter iff PSP is persistent.

Proof

=>) Assume PSP is not consistent (but remeber that PSP is assumed to be bool-persistent), then there are

two Y.PAR(X)s-terms t l and t2 and a ~:PAR(X)-condition C such that PAR ~L ;~X.tl=t2 if C and BODY I-L

~.X.tl=t2 if C. Let SP' be the specification PAR+(~,~:',E'), where ~;' consists of X (taken as constants of

appropriate sorts) plus an operation c: s --> bool, and E" consists of the equations:

c(tl) = true

c(t2) = false

Clearly, C is non contradicting w.r.t. EPAR+E', then, according to Lemma 2.2, there is a set of equations

E(C) such that A = T~:PAR+~:,/~-EPAR+E,+E(C) is in LOGALG(SP), AI= C=true and AI~ tl=t2 (otherwise A

would not be in LOGALG(SP').

Now, let ACT be SP'+(o, o,E(C)), let the parameter passing morphism hl be the inclusion morphism, then in

Fi2(A) true is equal to false, but not in Fil(Uhl(A)).

Assume PSP is not sufficiently complete, let t be the ~BODY(X)-term for which there is not a finite set of

terms t l tn and ~:PAR(X)-conditions C1 Cn such that BODY I-L ~.X.t=ti if Ci (for every i, l_<i_<n), and

PAR I'L ~.X.Ct v ... v Cn = true. Let SP' be the specification PAR+(SPAR',z;',E'), where SPAR' is a copy of

SPAR excluding bool (i.e. SPAR'= {sY seSPAR-{bool}}), ~' consists of X (taken as constants of appropriate

sorts) plus two operations Cs: s --> s' and Us: s' --> s, for every s in SPAR-{bool}, and E" consists of the

equations:

UsCs(t) = t

for every s in SPAR-{bool} and every t in Tz:PAR+Z;,. Now, let COND be {not(C)/C is a ~;PAR(X)-condition

215

and 3t' in T~:PAR(X) PSP I'L ;~X.t=t' if C}, COND is non contradicting w.r.t EPAR+E' thus according to

lemma 2.2 A = T~:PAR+~:,/---EPAR+E,+E(COND) is in LOGALG(SP') and every not(C) in COND is true in A (i.e.

every C is false in A).

Let ACT=SP'+(o,o,E(COND)), let the parameter passing morphism hl be the inclusion morphism, then

Fil(Uhl(TACT)) ~ Uh2(Fi2(TACT)). The reason is the following: Fil generates some junk on Uhl (TACT) (at

least the term t would be junk, if we consider its variables as constant symbols from ~'), but on

Uh2(Fi2(TACT)) we have generated, at least, the double of junk: for every junk element t of sort s

generated by Fil, in Fi2(TACT) we have the same element plus UsCs(t).

<=) See [5] •

4. Referenqe~

[1] Arbib, M.E.; Manes, E.G.: "Arr0w._s. structures and functors: the categ0rics, I imperativQ",

Academic Press 1975.

[2] Bell, J.L.; Slomson, A.B.: "Models and Ultraoroducts: an IntroduqtJPn", North-Holland (1971)

[3] Burstall, R.M.; Goguen, J.A.: "The semantics of Clear, a specification language",

Copenhaoen Winter Schq01 qn Abstract Software Speqification, Springer LNCS 86, pp. 292-332, 1980.

[4] Ehrich, H.-D.: "On the theory of specification, implementation and parameterization of abstract

data types", JA(~M 29,1 (1982), pp. 206-227.

[5] Ehrig, H.: "Algebraic theory of parameterized specifications with requirements", Pr0c. 6th.

CAAP, Springer LNCS 112, pp. 1-24, 1981.

[6] Ehrig, H.; Kreowski, H.-J.; Thatcher, J.W.; Wagner, E.G.; Wright, J.B.: "Parameter passing in

algebraic specification languages", Prqc. Aarhus Wqrkshoo on Pr0gr~m Specification, Springer LNCS 134,

1981.

[7] Ehdg, H.; Mahr, B.: "Fundamentals of alaebraic specification 1", Springer EATCS Monographs on

Theor. Comp. Sc., 1985.

[8] Ganzinger, H.: "Parameterized specifications: parameter passing and implementation with respect

216

to observability", TOPLA_S_ 5,3 (1983), pp. 318-354.

[9] Goguen, J.A.; Meseguer, J: "Universal realization, persistent interconnection and implementation

of abstract modules", Prec. IX ICALP, Springer LNCS 140, pp. 265-281, 1982.

[10] Goguen, J.A.; Meseguer, J: "Completeness of many-sorted equational logic", ~igplan Notices 16,7

(1981) pp 24-32.

[11] Goguen, J.A.; Meseguer, J: "Equality, types, modules and (why not?) generics for logic

programming", The J.o_urnal of Logic Programming 1,2 (1984), pp. 179-210.

[12] Goguen, J.A.; Thatcher, J.W.; Wagner, E.G.: "An initial algebra approach to the specification,

correctness and implementation of abstract data types", in ' ~ t Trends in Pr0gramminq Methodoloqy.,

V01 IV: Data Structuring', R.T. Yeh (ed,), Prentice Hall 1978, pp. 80-149.

[13] Navarre, M.; Orejas, F.: "Proof rules for conditional equations", Res. Rep., Facultat d'informatica de

Barcelona, 1986.

[14] Orejas, F.: "Passing compatibility is almost persistency", in 'Recenl; trend8 on data type

soecification' H.-J. Kreowski (ed.)Springer IFB 114, 1985.

[15] Padawitz, P. : "Towards a proof theory of parameterized specifications", in 'Semantics of Data

Types', G. Kahn, D.B. MacQueen, G. Ptotkin (eds.), Springer LNCS 173 (1984), pp. 375-391.

[16] Padawitz, P. : "Parameter preserving data type specifications", in 'Formal Methods and Software

Development, voll', H. Ehrig, Ch. Floyd (eds.) Springer LNCS 186 (1985), pp. 323-341.

[17] Selman, A. : "Completeness of calculii for axiomatically defined classes of algebras", Algebra

Universalis, 2, 1 (1972), pp. 20-32.

[18] Thatcher, J.W.; Wagner, E.G.; Wright, J.B.: "Data type specification: parameterization and the power

of specification techniques", Prec. 10th STOC, San Diego, Ca., 1978.

