
PARTIAL COMPOSITION AND RECURSION OF MODULE SPECIFICATIONS

Francesco Parisi-Presicce

Department of Mathematics

University of Southern California

Los Angeles, California 90089-1113

ABSTRACT

The basic interconnections of module specifications (union, composition and actualization) were

studied in earlier papers. Here we introduce partial composition and partial actualization of

module specifications, describe the connection with their "total" counterpart and prove that the

result of successive partial compositions (or actualizations) is independent of the order. We also

introduce a recursive construction first of a single module and then of two modules "recursivety

calling" each other. A connection between these two recursions is established, along with

compatibility properties with the basic constructions and the expected fixed point equation at the

semantical level.

1. INTRODUCTION

The algebraic approach to the formal specification of data types has been the most investigated

one (fLZ 75/,/GTW 78/,/WPPDB 83/,/Ga 83/and many others), although there have been other

interesting approaches in more general settings (/BMM 79/).

The module specification introduced in earlier papers (fEW 85/,/BEPP 86/) is a formalization of a

notion which is central to the modular approach to the development of large software systems

(/qPa 72/,/WE 85/). tt combines the main ideas of parametrized specification and of implementation

of abstract data types along with the notion of information hiding, treated in/GM 82/by adding an

export interface to a data type to represent its visible part.

An abstract mc~tfle consists of four parts: an export interface, with the operations visible

outside the module, an import interface, representing the operations to be provided to the module,

a parameter part, shared by the interfaces, and a body, containing both interfaces and providing an

implementation of the sorts and operations of the export interface in terms of those of the import.

All four parts are described by algebraic specifications (see/EWT 83/,/EFPB 86/for extensions),

the first three with loose semantics, while that of the body is the free consmaction over import

algebras. Our notion of module reflects in part the structure of Ada packages and Modula-2

modules, both consisting of a "declarative" part, with the list of sorts and operations visible

outside and either the list of those to be imported (Modula-2) or the name of another module

2t8

whose export operations are needed in the body (Ada), and an "implementation" part, with the

module's own data type and defined operations. In both languages, the interfaces are purely

syntactical, not allowing semantical conditions on the sorts and operations, as we do or as

permitted in OBJ2 (/FGJM 85/) and in Extended ML (/ST 85a/). More detailed discussions on the

relationship between our module concept and Ada and Modula-2 can be found in /BEFP 86/, ~ W

86/.

The interconnection mechanisms for building modules from other modules are an integral part

of a stepwise modular development of software systems (/BG 77/). In previous papers, we have

introduced four basic operations on module specifications: union (/BPP 85/), composition

(JEW 85/,]BEPP 86/), actualization (]EW 85],]PP 85/) and extension (/BEPP 86/). We have also

shown that these operations are compatible (/PP 86/,/EFP 86/), guaranteeing that the correctness

of a stepwise refinement strategy for module specifications is independent of the order in which

the building operations are carried out.

In this paper, we introduce two new operations on module specifications: partial

composition/actualization, and recursion. Partial composition allows us to compose a module,

whose import consists of two distinguishable parts I1 and I2, with another module which

provides the data described, say, in I1, postponing the decision for I2 to a later time. This

operation is proved to be well defined both syntactically and semantically and to produce the same

result regardless of whether the successive partial compositions are carried out first through I i and

then through I2 or vice versa. Similar results are obtained for partial actualization. The single

recursion construction defines a new module recf(M) from a given M, when the import of M is

intended to be provided by the export of M itself. The mutual recursion operation provides a new

module from two module specifications "recursively calling each other". The two constructions

are syntactically correct but, unlike the other operations, additional conditions are required to

guarantee their semantical correctness. Single recursion is shown to be compatible with union,

composition, actualization and the "submodule" partial order.

The paper is organized as follows: section 2 contains a review of the basic notions of module

specification, its semantics and basic operations, along with a summary of their compatibility.

Section 3 introduces partial composition and partial actualization, relates them to their total

counterpart and shows how successive partial compositions (or actualizations) are equivalent to a

union followed by a total composition (or actualization). Section 4 defines single recursion using

coequalizers, and shows how its semantic satisfies a fixed point equation. Mutual recursion,

defined independently, is shown to be related in a natural way to single recursion. Some

conclusions are drawn in section 5.

2. MODULE SPECIFICATION AND THEIR BASIC OPERATIONS

We assume some familiarity with the basic notions of algebraic snecification SPEC = (S, OP,

E) and of specification morphism f = (fs, fop): SPEC1 --~ SPEC2. We use Atg(SPEC) to denote

the category of SPEC-algebras and SPEC-homomorphisms. Any specification morphism

f : SPEC1 --~ SPEC2 defines a forgetful functor Vf : Alg(SPEC2) --* Alg(SPEC1) whose left

adjoint Ff : Alg(SPEC1) --~ Alg(SPEC2) is called the ~ n c t o r associated with f.

219

The category CATSPEC of specifications and specification morphisms is dosed under the

pushout construction (/EM85/) and SPEC1 + SPEcoSPEC2 denotes the pushout object of

fj : SPEC0 --* SPECj, j = 1,2, when the specification morphisms are obvious from the context.

For any pushout SPEC3 = SPEC1 + S P E c o S P E C 2 , any SPEC3-algebra A3 (resp.

SPEC3-homomorphism h3) is the amalgamated sum A1 + AoA2 (resp., hl + h0h2) of

SPECi-algebras Ai (resp., SPECi-homomorphisms hi). Given pushout specifications SPEC3 and

SPEC3' and functors Fi : Alg(SPECi) --~ Alg(SPECi'), i = 0,1,2, we use F1 + FoF2 to denote the

functor F3: Alg(SPEC3) --~ Alg(SPEC3') defined by F3(A1 + AoA2) = FI(A1) + F0(A0)F2(A2).

For more details, see/EM85L

2.1 Definition (Module Specification and Semantics)

A module specification M is a four-tuple (PAR, EXP, IMP, BOD) of algebraic specifications

along with four specification morphisms i, v, s and e (s and e injective) making the following

syntactical diagram commute

The semantics of M is SEM = V v • F s.

e

PAR --~ EXP

$ s $ v

IMP --~ BOD

The restricted semantics is RSEM = R e" SEM, where R e : Alg(EXP) --~ Alg(EXP) is given by

Re(E) = n {E'E Alg(EXP): g ' c E, Ve(E) = Ve(E)}.

A semantical condition is imposed on the free functor Fs, which is required to be strongly

persistent, i.e. that V s (Fs(A)) = A for all IMP-algebras A. Sometimes (in particular when dealing

with composition of module specifications) we will add the requirement that F s preserves injective

morphisms and call it, in this case, strongly conservative.

In te rore ta t ion The specifications IMP and EXP represent the import and export interfaces,

respectively, PAR is the shared parameter part and BOD is the body of the module intented to

contain an implementation of the EXP operations using the IMP operations. The semantics SEM

is a transformation from IMP-interface algebras to EXP-interface algebras and the strong

persistency guarantees that the PAR part of the IMP-algebra is not modified by this transformation.

The restriction functor R e reduces the carrier of the EXP-algebra SEM(A) to those data reachable

from its parameter part.

2.2 Definition (Submodule and Union)

A module specification M0 = (PAR0, EXP0, IMP0, BOD0) is a submodule specification of

M 1 = (PAR 1,EXP 1, IMP 1, B OD 1) if there exists a fo u r-tuple m = (mp, m E, m I, m B) of inj ective

specification morphisms such that

i) each square of the following diagram commutes

220

e0 v0 sO i0

PAR0 --> EXP0 --> BOD0 +-- IMP0 +- PAR0

mp ,l, m E .1. mB.i. Sm I Stop

PARt --> EXP1 --> BOD1 +-- IMP1 +-- PAR1
el vl sl il

ii) if VQ is the forgetful functor associated with mQ, then

V B - F s l = F s 0 - V I a n d V E ' R e l =Re0"V E.
We write M0 ~ M1 and call m : M0 -+ M1 a Mod-morphism. Given M0 < mj Mj,j = 1,2, the

union M1 + MoM2 of M1 and M2 with respect to M0 is the pushout object of the morphisms

mj: M0 --> Mj in the category of module specifications and Mod-morphisms (/PP86/). Each

component of M1 + MoM2 is the pushout specification of the corresponding components of M0,

M1 and M2.

The operation of actualization of a module specification M= (PAR, EXP, IMP, BOD) consists

of "replacing" the parameter part PAR by a (parametrized) specification PS 1 = (Parl, ACT1) with

j: Parl --> ACT1 via a parameter passing morphism h: PAR --> ACT1.

2.3 Definition (Actualization)

Given a module specification M = (PAR, EXP, IMP, BOD), a parametrized specification

PS 1 = (Par1, ACT1) and a parameter passing specification morphism h: PAR --) ACT1, the

actualization of M by PS1 via h, denoted by act h (PSI, M), is the module specification

(Par1, EXP1, IMP1, BOD1), where EXP1 = ACT1 +PAREXP, IMP1 = ACT1 +PARIMP and

BOD1 = IMPI +IMpBOD as in the following diagram

Parl

PAR N EXP

"~ ACT1 ,-~ EXP1

IMP "~ BOD

IMP1 > BOD1

The third basic operation on module specifications is that of composition, where the import

interface of a module specification is "matched" with the export interface of another one. The

"unused" interfaces will provide two of the components of the composite module specification.

2.4 Definition (Composition)

The composition M1 * h M2 of two module specifications Mj = (PARj, EXPj, nVIPj, BODj),

j = 1,2, with interface morphism h = (hp, hE), where hp: PAR1 --~ PAR2 and hE: IMP1 --> EXP2

are specification morphisms such that e2 • hp = h E " il, is the module specification

M3 = (PAR3, EXP3, IMP3, BOD3) as in the diagram

221

PAR3 = PAR1 --+ EXPt = EXP3

h p / I~MP1 -9 BO~Dt

PAR2 --9 EXP2 (1)

IMP3 = IMP2 --) BOD2 -~ BOD3

where (1) is a pushout in CATSPEC.

For each of the three operations, the semantics of the resulting module s~ecification can be

expressed directly in terms of those of the arguments. The semantics and restricted semantics of

M1 + MoM2 are SEM1 + SEMOSElVI2 and RSEM1 +RSEMoRSEM2, respectively (/BPP85/).

The semantics of act h (PSI, M) is id A + idpSEM, with id the appropriate identity functors, and a

similar characterization of the restricted semantics holds if either h factors through Parll(/PP85/) or

the semantics of PS 1 is taken into account (/PP86/,/EFPB86/). Denoting by V h the forgetful

functor of h E, the semantics of M1 "h M2 is SEMI -V h -SEM2 while the restricted semantics

is RSEM1 • V h • RSEM2, if Fst is strongly conservative (/EW85/,/BEPP86/).

The compatibility of these operations on module specifications is necessary to guarantee that

the order in which these operations are applied does not effect the final system. This allows the

restructuring of large systems fo~ reasons of efficiency and gives more flexibility in updating

specifications due to changes in system requirements. The interaction of these module

interconnections has been studied elsewhere (/EW85/,/BEPP86/,/PP86/,/EFP86/).

2.5 .Theorem (Compatibility of the Basic Operations)

1) The operations of union, actualization and composition are monotone in each of their

arguments with respect to the "submodule" partial order.

2) For i = 0, 1, 2, let Mi = (PARi, EXPi, IMPi, BODi) be module specifications, PSi =

(Pari, ACTi) with ji: Pari -+ ACTi parametrized specifications and hi: PARi -+ ACTi

parameter passing morphisms. If M0 <_ miMi and (qip, qiA): PS0 --+ PSi are such that

ji • qip = qi A • j0 and qi A " h0 = hi " mip, then

aCthl + h0h2 (PSI+PsoPS2, MI+MoM2) = aCthl(PS1, M1)+acth0(PS0,M0)acth2(PS2,M2)

3) For i = 0, 1,2, let Mi = (PARi, EXPi, IMPi, BODi) and Ni = (PARi', EXPi', IMPi',

BODi') be module specifications and hi = (hip, hiE) interface morphisms from Mi to Ni.

K M0 -< miMi and NO -<niNi and ni E • hO E = hi E " mi I, then

0VI1 +MoM2) * hl+ h0h2 (N1 +NoN2) = (M1 -hIND + (M0 * h0N0) (M2 ,h2N2).

222

4) Let M1 and M2 be module specifications with an interface morphism h =(hp, h E) from

M1 to M2 and PS1 = (Par1, ACT1) a parametrized specification with a parameter

passing morphism hi: PAR1 --+ ACT1. Then there exist PS2 =(Parl, ACT2) and

h2:PAR2 -+ ACT2 such that

aCthl(PS1, M1 *h M2) = aCthl (PSI, M1) *h+ididaCth2(PS2, M2).

3. PARTIAL COMPOSITION AND ACTUALIZATION

In this section, we are going to investigate two somewhat different ways of combining

module specifications. Suppose we have a module specification M, whose import interface can be

decomposed as the union IMP1 + IMpoIMP2 of two subspecifications sharing a common part

IMP0, and another module specification M1 whose export interface provides the operations

described in IMPt. Given such a "matching", is it possible to compose the two modules now,

postponing the matching of the remaining part IMP2 of the import interface? Under what

conditions is such a composition well defined and how does it relate to the composition defined in

the previous section?

3.1 Definition (Partial Composition)

Let M = (PAR, EXP, hMP, BOD) be a module specification with PAR = PAR1 + PARoPAR2

and IMP= IMPI+IMP01MP2, M' = (PAR', EXP', IMP', BOD') another module specification

and hl = (hip, hiE) an interface morphism with hlp: PAR1 -* PAR' and hl E : IMP1 --> EXP'

satisfying e' • hip = hl E" il. If there exists a specification morphism k: IMP0 -~ IMP' such

that IMP0 --) IMP' -+ BOD' = IMP0 -+ IMP1 ~ EXP' --> BOD', then the partial composition

M • ~IM' of M and M' w.r.t, h! is the module specification (PAR, EXP, IMP' + IMPOIMP2,

BOD' + IMP1BOD) as in the foUowing diagram

PAR0

PAR 1 PAR2

h i p / t i e [

/ k IMPO / v j / x.~
/ IMPI / IMP2

/ I/'IMt, ~_ ,BOp

PAR'//--~ EXP'
a, ~ 1 ,

IMP' --> BOD' ~ BOD"

IMP"

The condition on hl is exactly the one required in the (Nit) composition of Definition 2.4.

223

The existence and property of the morphism k state that the two "subimports" IMP1 and IMP2 can

share only a specification which is preserved basically unchanged, from the import to the export of

M'. The pushout property of IMP" guarantees the existence of a specification morphism

s" : IMP" -4 BOD" while the universal property of PAR defines i": PAR --~ IMP". This universal

property also guarantees the commutafivity v"" e = PAR ~ EXP ~ BOW' =

PAR --~ IMP --~ BOW' = s" • i" of the diagram of Me~IM' by proving that

PARj ~ PAR ~ EXP --* BOD" = PARj --> PAR --> IMP" --> BOD" forj = 1,2,.

The existence of the morphism k is necessary (in the basic algebraic case treated here) to insure a

consistent handling of the shared subimport IMP0. The requirement on k could be dropped by

allowing constraints along with the basic specifications (see/EFPP86/), thereby restricting

subsequent compositions to module specifications not in conflict with the already matched IMP0.

Instead of proving that the resulting module specification satisfies the semantical conditions

of definition 2.1, we now show how to relate partial composition with the operations defined in

the previous section. The basic idea is that leaving IMP2 unchanged is equivalent to composing it

with a module specification which behaves like the identity.

3.2 Mitin Lemma

Let M, M', hl and k be as in definition 3.1, MIj = (PARj, IMPj, IMPj, IMPj) a n d

h = h i + idid. Then

M .hPl M' = M* h (M' + MIoMI2)

The first immediate consequence of the Main Lemma is that partial composition is well

defined, that is, that the resulting four-tuples of specifications and specification morphisms satisfy

the conditions in 2.1.

3.3 .Theorem

Let Mj = (PARj, EXPj, IMPj, BODj), j = 3,4, and M = (PAR, EXP, IMP, BOD) be module

specifications with PAR = PAR1 + PARoPAR2 and IMP = IMP1 + IMPOIMP2. For j = 3,4, let

hj be an interface morphism and kj: IMP0 ~ IMPj a specification morphism such that the partial

composition of M and Mj is defined as in 3.1. Then

M* h3+ j d h4 (M3+ MIOM4) = (M,, ~3 M3) *~4 M4.

3.4 Coro l larv

With the notation of the previous Theorem, (M- ~3 M3) .hP4 M4 = (M. ~4 M4) .hP3 M3.

We should point out that there are some compatibility properties enjoyed by partial composition,

Their formulation and proofs can be reconstructed in a straigthforward manner using Thin. 2.5

and Lemma 3.2.

For the remaining part of this section, we investigate the analog of partial composition for

actualization. If we are given a module specification whose parameter part is the union of two

subspecifications, we can actualize only one of the subspecifications, postponing the choice of the

224

remaining parameter part.

relationship between partial

actualizations.

The results parallel those of partial composition, including the

and "total" actualization and the effect of successive partial

3.S Definition (Partial Actualization)

Let M = (PAR, EXP, IMP,BOD) be a module specification with PAR = PAR1 + PARoPAR2,

PS 1 = (Parl,ACT1) a parametrized specification with f l : Parl --~ ACT1 and

hlA: PAR1 --~ AC~I a parameter passing specification morphism. If there exists a specification

morphism hip: PAR0 --~ Par1 such that PAR0 --~ Parl - , ACT1 = PAR0 --~ PAR1 --~ ACT1,

then the partial actualization pacthI (PS1, M) of M byPS 1 w.r~t, h ! is the module specification

(PAR', EXP', IMP', BOD') where, in the diagram

PAR0 ~ PAR2

h lp P 1 --~ PAR --* EXP

/ f I ~ h l m ~

Parl --~ ACT1 IMP --~ BOD

IMP' = IMP + PAR1ACT1, EXP' = EXP +PAR1ACT1

PAR' = PAR2 +PAROParI, BOD' = BOD +IMpIMP'

The new import interface is obtained by repIacing PAR1 in IMP with AC~I; similarly for the

new export interface. The new parameter is the union of the untouched subparameter PAR2 with

the parameter Par1 introduced by the actualization with PS 1. Their shared part PAR0 is not

duplicated and could represent basic standard specifications, such as bool and nat, which are

going to be shared by every specification and to be left unchanged by every module in the system.

The universal property of PAR' induces a unique specification morphism i': PAR ' --~ IMP',

compatible with the existing morphisms. Similarly, we can obtain a unique e': PAR' --~ EXP'

and it can be shown, using the uniqueness of the induced morphism from PAR' to BOD', that

PAR' --~ IMP' --* BOD' = PAR' --~ EXP' --~ BOD'. As was the case for partial composition,

we can relate partial actualization to (total) actualization, thereby inferring the semantical

correctness of the construction above.

3.6 L e m m a
Let M, PSI and hl = (hlp, htA) be as in Definitiion 3.5 and, abusing the notation, let PARj

be the parametrized specification (PAR_j, PARj) with id: PARj -~ PARj, j = 0,2. Then

pacthl(PS1, M) = aCthl A + idid (PS1 +PARoPAR2, M)

Since the free construction of the (totally) actualized module specification is strongly

225

persistent or conservative if the original free construction is, partial actualization is semantical!y

correct in view of the above Lemma. The next result shows that successive partial actualizations

by PS 1 and PS2 yields the same module as the total actualization by PS 1 + PARoPS2. As a

corollary, we obtain the commutativity of repeated partial actualization.

3.7 Theorem
Let M = (PAR, EXP, IMP, BOD) be a module specification with PAR = PARt +PARoPAR2,

and, for j = t,2, PSj = (Parj, ACYj) a parametrized specification and hj = (hjp, hJA) a parameter

passing morphism such that the partial actualization of M by PSj w.r.t hj is defined. Then

pacth2 (PS2, pacthl(PS1,M)) = act h l+ i d h2 (PS1 + PARoPS2, M).

4. R E C U R S I O N OF M O D U L E S P E C I F I C A T I O N S

The operations of union, actualization and composition are the basic mechanisms to build

module specifications from other module specifications. The construction which we are going to

introduce next is be motivated by looking at the interface morphism f in the composition Mof M'

as a "call" of the export of M' by M. A "recursive call" is then represented by an interface

morphism from (part of) the import of a module specification M to the export of the same M, in

such a way that the parameter part is left unchanged. The effect of such a recursive call should

leave the parameter part and the export interface unchanged, remove the "domain" of the recursive

calt f from the import interface and identify within the body each operation op of IMP with its

counterpart f(op) of EXP. To make this i~ormal discussion precise, we need to review the notion

of coequalizer (/HS 73/).

Given two morphisms f,g: A --* B in a category CAT, the coequalizer of f and g, denoted by

Coeq(f, g), is a pair (C, k), with k: B --4 C a morphism in CAT, such that k-f = k 'g and for

any m: B -4 D in CAT satisfying m ' f = m-g, there is a unique morphism n : C ~ D in CAT

such that m = n'k. (We will at times abuse the terminology and refer to the object part C as the

coequalizer of f and g).

Coequalizers are unique up to isomorphism and k is always an epimorphism (/HS 73/). In the

category of sets, C is the set of equivalence classes of B generated by the pairs (f(a), g(a)) for

a ~ A and k is the canonical projection sending each element of B into its equivalence class. If

f=g, then Coeq(f,g) = (B, id B). It is not too hard to show that any pair of specification

morphisms f,g: SPEC1 --~ SPEC2 has a coequalizer in CATSPEC. First construct $3 and OP3

in the c/~tegory of sets and then use k = (k s, kop) to "translate" E2 into E3. Given a SPEC2 -

algebra A satisfying Vf(A) = Vg(A), there is always a SPEC3 - algebra B such that Vk(B) = A.

The construction of B is similar to that of amalgamation (/BPP 85 / , /EM 85/) and can be

summarized as follows. Since k is an epimorphism, for any s E $3, there is s' s $2 such that

s = k(s'): define B s = As,. There is no ambiguity in the definition, since if" we also have

s = k (s") for some s" e $2, then there exists, by definition of coequalizcr, sl e S1 such that

f(si)=s' and g(sl)=s". But then, by assumption, As,= (Vf(A))si=(Vg(A))sI=As -. Similarly

for op e OP3. Such an algebra B is ~ , since Vk:AIg(SPEC3)--~Alg(SPEC2) is the equalizer

of Vf and Vg and thus a monomorphism.

226

We are now ready to define recursion over a single module specification. Later in this section

we will also discuss the case of two modules "recursively calling" each other.

4 . 1 D e f i n i t i o n (Single Recursion)

Given a module specification M=(PARI+PARoPAR2, EXP, IMPI+IMPOIMP2, BOD) and a

specification morphism f : IMP2--,EXP such that

(a) PAR2---)IMP2-+ EXP = PAR2-+PARI+ PARoPAR2 ---) EXP and

(b) IMP0--)IMP2---)EXP--,BOD = IMP0---~IMPI+IMPOIMP2--~BOD,

the recursion of M over f, denoted by re@M), is the module specification

MI= (PARI+PARoPAR2, EXP, IMPI+PARoPAR2, BOD1) as in the following diagram

i l +idid

PAR1 + PARoPAR2 e > EXP

1 vi
IMP1 +PARoPAR2 -+ IMP1 +IMPOIMP2 -+ BOD -+ BOD1

s'

where (BODI,k) = Coeq(v'f, s-j2), with j2:IMP2-+IMPI+IMPOIMP2 the canonical inclusion.

The conditions (a) and (b) are similar to those imposed in the definition of partial composition.

It is easy to show that the diagram commutes and that s' is again injective. If f is such that

IMP2---~EXP--~BOD=IMP2---rIMP1 + IMPOIMP2 -+ BOD, then the only effect of the

construction is to remove from the import interface the part of IMP2 not in PAR2. This agrees

with our definition, since if v'f=s-j2, then k=idBo D.

The semantical conditions on the new module specification need not be satisfied in general as

the following example shows. For simplicity, it is understood that all specifications contain

BOOL with the appropriate if-then-else operator. Let M=(PAR, EXP, IMP1 +PARIMP2, BOD)

be given by the following

PAR = sort nat

opns 0: --~ nat

SUCC: nat -+ nat

IMP1 =.PAR + o p n + : nat nat --~ nat

eqn O + x = x

SUCC(x) + y = SUCC(x+y)

IMP2 = PAR + opn g: nat --~ nat

EXP = PAR + opn G : nat -+ nat

227

BOD = IMP u EXP + eqn G(x) = i_f x = 0 then SUCC(0) else g(SUCC (x))

Let f: IMP2 --) EXP be the identity on PAR and fop(g) = G. Then

recf(M)= (PAR, EXP, tMPl, BOD 1) where

BODI=IMP1 u EXP +

eqn G(x) = if x = 0 then SUCC(0) els___ee G~SUCC(x))

and the specification morphisms are the ob'4ous inclusions. Then the free functor associated with

s ' :IMPI-+BOD1 is not strongly persistent. The problem is similar to that of termination of

recursively defined functions (completeness). From the point of view of Term Rewriting Systems

(fPD85]), persistency of the free functor F s, is equivalent to proving confluency and termination

of the expanded TRS obtained by adding (in the above example) the equation G(x)=g(x) and

removing terms containing g from the set of normal forms.

The following theorem establishes the correspondence between the semantics of M and that of

recf(M). For simplicity, we restrict our attention to the case where PARI=PAR0 and

IMPI=IMP0 in def. 4.1.

4.2 Theorem (Fixed Point Property)

Let M=(PAR, EXP, IMP, BOD), f:IMP--~EXP a specification morphism satisfying f-i = e and

MI=recf(M)=(PAR, EXP, PAR, BODt).

a) If F i and F k are strongly persistent, then the flee functor F s, is strongly persistent

b) If F k is strongly persistent, then SEM • Vf- SEMI = SEM1

c) If, in addition, F s is strongly conservative, then RSEM • Vf" RSEM1 = RSEM1

With one additional assumption, the recursive construction preserves the submodule partial order.

4.3 Theorem (Submodule Compatibility)

Let M = (PAR, EXP, IMP, BOD), M'= (PAR', EXP', IMP', BOD'), M_~ m M', f: IMP --~ EXP

and f : IMP' --~ EXP' be such that mE' f = f ' m I, If F k and F k, are strongly persistent and

V I • F i, = F i • Vp , then recf (M) _ r ec f (U ') .

We can show that the operation of single recursion is compatible with union, actualization and

composition. All three compatibilities are based on different interpretations of the following

Lemma.

4.4 L e m m a

Let hj :A0- -~Aj , k j :B0- -~Bj , j=l,2, andmj, n j : A j ~ B j , j = 0, 1,2, besuchthat

k j ' n 0 = n j " h j a n d k j ' m 0 = m j ' h j , j = l , 2 . Then

Coeq(ml + m0m2, n 1 + n0n2) = Coeq(m 1,n 1)+Coeq(m0, n0)C°eq(m2,n2)"

We now state the compatibility of single recursion with the three basic operations. For simplicity,

for union and ~tctualization we restrict our attention to the case considered in Theorems 4.2 and

4.3.

228

4.5 Th¢grem (Compatibility with Union)

Let M0 -< Mj, j = 1,2 and fj: IMPj --~ EXPj, j = 0,1,2, compatible specification morphisms

which are the identity on PARj. Then

recfl +t9 f2 (M1 + MoM2) = recfl(M1) + recf0(M0) recf2(M2).

4.6 Theorem (Compatibility with Actualization)

Let M = (PAR, EXP, IMP, BOD), f:IMP --~ EXP a specification morphism with f • i = e,

PS = (Par, ACT) a parametrized specification and h:PAR --~ ACT a parameter passing

morphism. Then act h (PS, recf (M)) = rec f + idid (act h (PS, M)).

The third compatibility property we have investigated is that with partial composition, in which

the IMP2 part of the import interface is matched by f with the export of the same module while

the IMP1 part is matched via h with the export interface of another module. The next result

states that the order in which these two operations are carried out is immaterial.

4.7 Theorem (Compatibility with Partial Composition)

Let M = (PARI+PAROPAR2, EXP, IMPI+IMPOIMP2, BOD) be a module specification and

f : IMP2 ~ EXP a specification morphism such that recf(M) is defined. Let

M' = (PAR',EXP', IMP', BOD') be another module specification and h=(hp,hE) an interface

morphism satisfying the conditions in definition 3.1. Then

recf(M .h p M')= recf(M)-~ M'

In Theorem 4.5, the single recursion over a union is the union of the corresponding single

recursions provided that each specification morphism fj is within the same module. We want to

consider next the case of two module specifications recursively "calling" each other as allowed,

for example, in Ada (/B184/). Suppose that we have two module specifications M1 and M2 with

imports IMPI+IMPOIMP1 ' and IMP2+IMPOIMP2 ', and exports EXP1 and EXP2,

respectively, and we want to define a new module consisting of M1 and M2 only, where M2

provides the import IMPt' of M1 and M1 the IMP2' part of the import of M2. In the new

module, IMPI' and IMP2' arc no longer in the import interface, while IMP1 and IMP2 are.

The new body should contain not only the bodies of M1 and M2, but also the information that

part of the import of M1 uses M2 and viceversa. Let us make this precise.

4.8 ~ (Mutual recursion)

Let Mj = (PARj+PAROPAR0, EXPj, IMPJ+IMPOIMPj ', BODj), j=1,2, be module

specifications and let fl : IMPI' --~ EXP2 and f2 : IMP2' --~ EXP1 be specification morphisms

such that

(a) IMP0 ~ IMP1'-+ EXP2 --~ BOD2 = IMP0 --~ IMP2' --~ BOD2 and

(b) IMP0 ~ IMP2' --~ EXP1 -~ BODI=IMP0 --> IMPI'-~ BOD1.

Then the mutual recursion of M1 and M2 via fl and f2, denoted by recfl,f2(M1,M2), is the

module specification (PARI+PAROPAR2, EXPI+IMP0 EXP2, IMPI+IMP0 IMP2, BOD*)

where BOD* is the colimit object of

229

IMP1' --+ EXP2 ---~ BOD2

IMP0 BOD*

"a A
IMP2' ---> EXP1 --> BODI

and the specification morphisms are all induced by the appropriate universal properties. The

assumption of f l and f2 guarantees that the module specification MI0 = (PAR0, IMP0, IMP0,

IMP0) shared by M1 and M2 is not modified by the recursive calls. In particular, it implies that

the interface morpliisms (idpAR0, f l) and (idpAR0,f2) provide a well defined partial

composition of MI with M2, and of M2 with M1, respectively, in the sense of definition 3.1.

The verification that the syntactical diagram of rec fl,f2(M1,M2) commutes is very tedious but

direct. The strong persistency of the free functor from Alg(IMPI+IMPOIMP2) to Alg(BOD*)

cannot be guaranteed in general for reasons similar to the single recursion case. The

construction above can be generalized slightly to allow an arbitrary parameter PAR, the same for

both IMPI' and IMP2', in place of PAR0, provided that f l and f2 are compatible with

PAR ---> EXPj.

It is not surprising that mutual and singte recursion are closely related. The situation is

similar to that of two recursive definitions, say of functions F and G, where F is defined by a

polynomial in G alone and viceversa. The components of the solution of this recursive system

can be also obtained by substituting one polynomial in the other one and then solve the single

recursive definition in the oniy unknown function variable left.

4.9 Th¢0r¢m (Mutual vs. single recursion)

Let Mj and fj be as in definition 4.8 and let

MEj=(PARj, EXPj, EXPI+IMPoEXP2, EXPI+ IMP0 EXP2) , j=l ,2, with the obvious

specification moI~hisms.Tlien

MEI • recfl,f 2 (MI,M2) = recf2 (M1 • fPl M2) and

ME2 • recfl,f 2 (M1,M2) = recfl (M2 • fP2 M1)

The previous Theorem allows us to exploit Theorems 4.5, 4.6 and 4.7 to obtain the

compatibility of mutual recursion with union, composition and actualization.

5. CONCLUSION

In this paper we have introduced two partiat interconnections of module specifications: partial

composition and partial actualization. Although motivated by the intuitive idea of establishing

interconnections as other module specifications become available, it is shown that both partial

operations can be expressed in terms of their total counterpart and union (3.2, 3.6). Exploiting

the algebraic laws expressing the compatibility of the basic operations, we have shown that

successive partial compositions (or actualizations) are equivalent to a total composition (or

actualization) with a union (3.3, 3.7). As a by product, the order in which partial compositions

are carried out becomes immaterial.

230

A more interesting construction mechanism, recursion, was introduced in section 4. Unlike

the other operations on module specifications, where the semantical correctness is a direct

consequence of that of its arguments, the recursion construction (whether single or mutual) does

not guarantee the strong persistency of its free functor, unless additional conditions are imposed

on the original module. Lacking these, generating or logical constraints (fEWT 83/, fEFPB 86/)

should be used to restrict the class of import algebras. Along the same lines, while the

semantics of the basic operations can be proved to be compositional and can be explicitly

described in terms of those of the arguments (fEW 85/,/BPP 85/), the semantics of recf(M) is

reiated implicitly to that of M by a fixed point equation. Notice that the equation is at a

semantical level and not syntactical: in CATSPEC (as in all categories) the emphasis is on. the

morphisms, not on the objects. So, by composing M with recf(M) using f, the "information"

that the module M is the same is lost. Even though our definition of BOD1 in 4.1 was

motivated by an intuitive idea of the effect of "self reference" via f, we can find in fEL 83/that,

in order to obtain the fixed point equation 4.2(b), the use of the coequalizer is, more or less,

forced. Coequalizers are also used in the approach to the algebraic solution of recursive

equations found in /BG 81/. It should be pointed out that our solution for recursive

interconnections of modules is different than in ~184/, where partial orders within each algebra

and on the set of algebras are introduced with the functors required to be monotone.

Although the semantical funtors SEM and RSEM can be viewed as an observational behavior of

the module specification, other notions of "behavioral" semantics of modules are being

analyzed, giving rise to different "levels" of observabitity. We will discuss them in a

forthcoming paper, along with comparisons with other observability concepts, such as in/GGM

76/,/Rei 81],/GM 82/,/ST 85b/.

ACKNOWLEDGEMENTS

I am grateful to E. Astesiano, E.K. Blum, H. Ehrig, W. Fey, H, Hansen, M. Lowe and B.

Mahr for many helpful discussions. Many thanks also to Annette Mosley for her excellent job

of typing an unreadable manuscript in record time. This research was supported in part by the

National Science Foundation under Grant DCR-8406920.

REFERENCES

/AMRW85/

/BG 81/

/BMM79/

/B1 84/

~EPP86/

/BPP 851

/BG 771

Astesiano E., Mascari G.F., Reggio G., Wirsing M., On the Parametrized
Algebraic Specification of Concurrent Systems, CAAP 85, LNCS 185(1985)
342-358
Benson D.B., Guessarian I., Algebraic Solutions m Recursion Schemes, LI.T.P.
Tech,Rep. 81-66. Univ. Paris VII, Dec. 1981
Bertoni A., Mauri G., Miglioli P.A., A Characterization of Abstract Data as
Model-Theoretic Invariants, ICALP 79, LNCS 71(1979) 26-37
Blum, E.K., An Abstract System Model of Ada Semantics, TRW Technical
Report, Aug. 1984.
Blum E.K., Ehrig H., Parisi-Presicce F., Algebraic Specification of Modules and
their Basic Interconnections, to appear in JCSS 86.
Blum, E.K., Parisi-Presicce, F., The Semantics of Shared Submodule
Specifications, Proc. TAPSOFT 85 Vol. 1, LNCS 185 (1985) 359-373.
Burstall R.M., Goguen J.A., Putting Theories together to make Specifications.
Proc. 5th Intern. Joint Conf. on Artif. Intell., Cambridge 1977, 1045-1058.

231

/EL 83/

/EFP 86/

~FPB 86/

/EKTWW 81/

/EM 85/

FEWT 83/

FEW 85/

~ W 86/

/FGJM 85/

/Ga 83/

/GGM 76/

/GM 82/

/GTW 78/

/t-IS 73/

/LZ 75/

/PD 85/

/PP 85/

/PP 86/

/Par 72/

~e i 8t/

/ST 85a/

/ST 85b/

/SW 831

/WE 86/

/WPPDB 83/

Ehrich H.-D., Lipeck U., Algebraic Domain Equations, Theoret. Comp. Sci. 27
(1983) 167-196.
Ehrig, H., Fey, W., Parisi-Presicce, F., Distributive Laws for Composition and
Union of Module Specifications for Software Systems, Proc.IFIP TC2 Work.
Conf. on Program Specification and Transformation, Bad Tolz, April 1986.
Ehrig, H., Fey, W., Parisi-Presicce, F., Blum, E.K., Algebraic Theory of
Module Specifications with Constraints, Proc. Math. Found. of Comp. Sci,
LNCS 233 (1986) 59-77.
Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G., Wright, J.B.,
Parameter Passing in Algebraic Specification Languages, Proc. Aarhus Workshop
on Prog. Spec., 1981, LNCS 134 (1982) 322-369.
Ehrig, H., Mabx, B., Fundamentals of Algebraic Specifications 1: Equations and
Initial Semantics, EATCS Monographs on Theoret. Comp. Sci. Vol 6,
Springer-Verlag, 1985.
Ehrig H., Wagner, E.G., Thatcher, J.W,, Algebraic Specifications with
Generating Constraints, ICALP 83, LNCS 154 (1983) 188-202.
Ehrig, H., Weber, H , Algebraic Specification of Modules, Proc IFIP Working
Conference on Formal Models in Programming, Vienna 1985.
Ehrig H., Weber, H., Programming in the Large with Algebraic Module
Specifications, Proc. IFIP Congress '86, Dublin, Sept 1986.
Futatsugi, K., Goguen, J.A., Joannaud, J.-P., Meseguer, J., Principles of OBJ2,
12th ACM POPL, New Orleans, 1985, 52-66.
Ganzinger, H., Parametrized Specifications: Parameter Passing and
Implementation, ACM TOPLAS 5, 3 (1983).
Giarratana, V., Gimona, F., Montanari, U., Observability. Concepts in Abstract
Data Type Specifications, 5th Symp. Math. Found. of Comp. Sci. 1976, LNCS
45 (1976) 576-587.
Goguen, J.A., Meseguer, J , Universal Realization, Persistent Interconnection
and Implementation of Abstract Modules, tCALP 82, LNCS 140 (1982) 265-281.
Goguen, J.A., Thatcher, J.W., Wagner, E.G., An Initial Algebra Approach to the
Specification, Correcmess and Implementation of Abstract Data Types, in Current
Trends in Prog. Method., IV: Data Structuring (R.T. Yeh, Ed.), Prentice Hall,
New Jersey (1978) 80-149.
Herrlich, H., Strecker, G.E., Category Theory, Allyn and Bacon Inc., Boston,
1973.
Liskov, B.H., Zilles, S.N., Specification Techniques for Data Abstraction, IEEE
Trans. on Soft. Eng., Vol SE-1, No. 1(1975) 7-19.
Padawitz, P., Parameter Preserving Data Type Specifications, Proc. TAPSOFT
85 Vol i, LNCS 185 (1985) 323 - 341.
Parisi-Presicce, F., Union and Actualization of Module Specifications: Some
Compatibility Results, Techn. Report, Univ. of Southern California, 1985, to
appear in JCSS.
Parisi-Presicce, F., Inner and Mutual Compatibility of Basic Operations on
Module Specifications, Proc. CAAP 86, LNCS 214 (1986) 30-44. Full version:
Techn. Rep. 86-06, Techn. Univ. Berlin, April 1986.
Parnas, D.L., A Technique for Software Module Specification withExamples,
Comm. ACM 15, 5(1972) 330-336.
Reichet, H., Behavioral Equivalence - A unifying concept for initial and final
specification methods, Proc. 3rd Hungarian Comp. Sci. Conf., Budapest, 1981,
27-39.
Sannella, D., Tarlecki, A., Program Specification and Development in Standard
ML, 12th ACM POPL, New Orleans, 1985, 67-77.
Sannella, D., Tarlecki, A., On Observational Equi~ alence and Algebraic
Specification, CAAP 85, LNCS 185 (1985) 308-322.
Sannella, D., Wirsing, M., A Kernel Language for Algebraic Specification and
Implementation, Internal Report No. CSR-131-83, Univ. Edinburgh, 1-44.
Weber, H., Ehrig, H., Specification of Modular Systems, IEEE Trans. Soft.
Eng., June 1986.
Wirsing, M., Pepper, P., Partsch, H., Dosch, W., Broy, M., On Hierarchies of
Abstract Data Types, Acta Inform. 20 (1983) 1-33.

